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Abstract: Corrosion under insulation (CUI) is one of the increasing industrial problems, especially in
chemical plants that have been running for an extended time. Prediction modeling, which is one of
the solutions for this issue, has attracted increasing attention and has been considered for several
industrial applications. The main objective of this work was to investigate the effect of combined data
input in prediction modeling, which could be applied to improve the existing CUI rate prediction
model. Experimental data and field historical data were gathered and simulated using an artificial
neural network separately. To analyze the effect of data sources on the final corrosion rate under the
insulation prediction model, both sources of data from experiment and field data were then combined
and simulated again using an artificial neural network. Results exhibited the advantages of combined
input data type from the experiment and field in the final prediction model. The model developed
clearly shows the occurrence of corrosion by phases, which are uniform corrosion at the early phases
and pitting corrosion at the later phases. The prediction model will enable better mitigation actions
in preventing loss of containment due to CUI, which in turn will improve overall sustainability of
the plant.

Keywords: prediction rate model; artificial neural network; corrosion under insulation; experimental
data input and field data input

1. Introduction

Corrosion under insulation (CUI) refers to external corrosion on the surface of piping and/or vessels
fabricated from low alloys, carbon manganese steel, or austenitic stainless steel that happens beneath
insulation due to the penetration of water. CUI is typically localized corrosion but is difficult to identify
because it is hidden under insulation material until it becomes a serious problem, which especially
occurs in chemical plants that have been running for an extended time [1].

The CUI problem in industries increases with years. As had been reported by Exxon Mobile
Chemical and National Association of Corrosion Engineers (NACE), the utmost incidence of leakages
in the refining and chemical industries is due to corrosion under insulation (CUI) and out of 30 facilities,
17 state CUI as the focal challenge in their industries [2]. CUI also has a high implication to financial
cost. The United States Congress reported that direct loss and maintenance costs due to corrosion are
approaching $276 billion per year, where practically 40% to 60% of maintenance costs are allocated for
CUI piping detection and rectification of CUI occurrence [3,4]. This value would be twice if indirect
costs were considered. Likewise, the NACE Corrosion Costs Study stated that corrosion costs in the
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United States are approaching $1 trillion annually and are estimated to exceed this amount in a couple
of years [5]. In addition to important CUI detection methods for prevention and inspections, it is also
very important to have a high-accuracy CUI prediction model as a guideline to schedule effective
maintenance planning to avoid higher costs due to CUI.

Over the past few years, prediction modeling has attracted increasing attention and has been
considered for applications in several industries, including for cases such as corrosion in piping [6–8].
The current standards for CUI prediction, such as in API 581, are developed based on experimental
and/or numerical works, which are sometimes generalized and contain flaws [9]. At present, numerous
prediction models for CUI have been developed using historical field data as data input on each
local industry or country [10]. Although this type of data input is well established for enabling
the development of different places of corrosion under the insulation model to be used as a local
maintenance guide, the data input effects on the available model have not been extensively studied.
Some research has been reported without the changing behavior of the corrosion phase, as the historical
field data was only collected after decades of operation [11,12]. This issue affects the practicality and
the quality of the prediction model developed.

Therefore, a substantial study on the type of data input required for developing a prediction
model is essential to understand the relative importance of combined data input in the CUI prediction
model. In this work, the single data input, from historical field data and experimental data explicitly,
and combined data input of both field and experimental data are tested to investigate the effect of type
of data input on the CUI prediction model.

2. Materials and Methods

2.1. Historical Field Data Input

The historical field data was initially collected from three gas processing plants (GPP) with a total
of 11,000 m of pipe length on the east coast of the Malaysia Peninsular (5◦50′30” N, 104◦07′3, 7′30” E)
near the South China Sea which experiences equatorial climate. Both visual inspection data and wall
thickness data types were involved in the historical field data collection after the removal of insulation
on the piping surface. In visual inspection data, CUI data were treated as binary data. When CUI was
found, data was denoted as 1, and 0 when CUI was not found. An example of visual inspection data
collected from the field where CUI was heavily detected is shown in Figure 1.
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For wall thickness data, the detailed value for nominal thickness, Nt in millimeters, and actual
thickness (average wall thickness), At in millimeters, and year in service denotes by Yrservice were
recorded to calculate the field CUI rate, CRf in mm/year as given in Equation (1).

CR f =
Nt−At
Yrservice

. (1)

Other than that, the field data were configured and classified for each parameter which involves
the six groups of operating temperature (less than −12 ◦C, −12 ◦C to 16 ◦C, 17 ◦C to 48 ◦C, 49 ◦C to
93 ◦C, 94 ◦C to 121 ◦C, and above than 121 ◦C) as prescribed in API 581 practices, age of the pipe (15 to
20 years of pipe age), type of insulation (cellular glass, calcium silicate, perlite and rockwool), design
of pipe (with elbow or no elbow in pipe design), pipe material (carbon steel or stainless steel), and
small (less than 2 inches pipe diameter) or big bore pipe (more than 2 inches pipe diameter).

For field data analysis and simulation, the CUI data recorded were then compared with the plant
design and operating data to ensure the CUI collected data were satisfactory for further analysis. Data
were tabulated and analyzed using pivot table functions in Microsoft Excel.

As the input data from the field were still limited in generating an effective final CUI prediction
model, results obtained were simulated through the prediction profiler simulator function in Statistical
Discovery JMP 10.0 2012 SAS Integration 9.1.3 Server software package. The steps are simplified as:

(1) Determination of artificial neural network (ANN) parameters: Available parameters were
operating temperature (◦C), insulation type, pipe design, piping thickness (mm), type of pipe
material, type of environment (weather condition either rainy or sunny), elapsed time (years),
and CUI rate (mm/year) data. This surface profiler is suitable when the data contain more than
one continuous factor. In this study, the operating temperature and corrosion rate were set as a
continuous factor.

(2) Definition of ANN architecture: The basic structure of the ANN was identified and determined.
The layer of hidden nodes, the input parameter, and the output parameter were clearly prescribed.
For this study, one hidden layer was used, and a hyperbolic tangent function (TanH) with a
sigmoid type was used as an activation function for the ANN test.

(3) Data normalization, filtration, and initialization: Field data collected from the actual plant in
Kerteh, Malaysia, were simulated. Before that, the incomplete, missing information from the
database or outlier values were removed to ensure only significant data were included. Usually,
the field data are collected without the thickness measurement. Thus, data were simulated
to generate sufficient data to continue with normalization and filtration. During this process,
the range of CUI rate data was set from 0 to 1 mm/year based on ABB EUT.249A references as a
common CUI rate occurrence [13].

(4) ANN training and surface profiling: For training purposes, 70% of normalized data was used,
while 15% for validation set and other 15% were for testing the basic model being developed.
The surface profiling platform was used to plot points on the surface model after the ANN
training completed. The points were selected based on the parameter and profiled the loss as
a function of the parameters. The CUI rates were determined and tabulated in Excel sheets or
in graphs.

2.2. Experimental Work Data Input

There were two phases during the experimental work. The initial phase embraced the preparation,
setup, testing, and calibration of the entire probe for the CUI experiment based on the Official Guide
for Laboratory Experiment of Corrosion under Insulation (ASTM G198-07) specification, while the
second phase was the modified experiment which is suited to the main parameters from the historical
field data analysis [14]. Three main items, the insulation, rings specimen, and the solution reservoir,
were properly prepared.
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The Perlite insulation in the initial phase was prepared according to ASTM G189-07, while in
the modified phase, calcium silicate insulation (2.5-inch outside diameter and 1.6-inch thickness) was
placed around the testing section to provide the annular space to retain the test environment, as shown
in Figure 2a.

Sustainability 2019, 11, x FOR PEER REVIEW 4 of 13 

The Perlite insulation in the initial phase was prepared according to ASTM G189-07, while in the 123 
modified phase, calcium silicate insulation (2.5-inch outside diameter and 1.6-inch thickness) was 124 
placed around the testing section to provide the annular space to retain the test environment, as 125 
shown in Figure 2(a). 126 

For the rings specimen, a piping material of carbon steel grade A106B, density 7.86 g/cm³ with a 127 
2-inch diameter, 0.2-inch thickness, and specimen area of 9.58 cm³ was used for both phases. Each 128 
ring specimen was surface finished, ground to 600 grit, soaked into a chemical cleaning solution 129 
which contained 1000 ml hydrochloric acid (HCl sp. Gr. 1.19), 20 g antimony trioxide (Sb2O3) and 50 130 
g stannous chloride (SnCl2), and placed in an ultrasonic cleaning machine, S30H Elmasonic. The 131 
cleaning process was set to 3 min per specimen and dried using a dryer to ensure no pits or particles 132 
occurred on the rings’ surfaces and weighted as initial mass to the nearest 0.1 mg according to the 133 
ASTM Practice G1-03. The ring specimens acted as test electrodes in two separated electrochemical 134 
cells, by a dam (bigger Teflon ring of 3.0 inch outside diameter) as presented in Figures 2(b) and (c). 135 
The Teflon spacers were machined from the same spacer material, polytetrafluoroethylene (PTFE) 136 
resins. During the experiment, the carbon steel rings separated by Teflon spacers were held by blind 137 
flange pipe sections on both ends, as in Figure 2(d). 138 

    
(a) (b) (c) (d) 

Figure 2. The initial phase of the experiment (a) Preparation of insulation material; (b) The corrosion 139 
under insulation (CUI) cell mock piping with blind flanges; (c) The ring specimens after surface 140 
finishing; (d) Preparation of the carbon steel ring specimens and a Teflon spacer. 141 

The solution reservoir is the solution that represents an atmospheric condensate with impurities 142 
of acids and chlorides found in industries. The solution made contained 100 ppm NaCl dissolved in 143 
reagent water and 1 M of sulfuric acid, H2SO4, with pH 6. The flow of this solution was controlled by 144 
a micro-metering pump with a maximum capacity of 30 ml/min and a maximum stroke frequency of 145 
300 strokes per minute. The pumping flow rate was tested and stabilized until the dropped solution 146 
was 5 ml/min with 14 strokes per minute. For one accelerated CUI experiment (accelerating the 147 
corrosion process), the wet and dry condition was controlled with a duration of 20 hours wet and 4 148 
hours dry for each cycle minimum for 72 hours continuously. The benefit of the accelerated CUI 149 
experiment, especially to study the performance of the CUI rate regarding the time elapsed, can be 150 
found in [15]. 151 

In the completed CUI cell run, both electrochemical cells comprised three (3) rings specimens. 152 
The center ring was used as the working electrode (WE), while the other two rings were used as the 153 
reference electrode (RE) and auxiliary electrode (AE) connected to a potentiostat, as in Figure 3(a) 154 
and (c). The ring specimens acted as test electrodes in two separate electrochemical cells and were 155 

monitored by a Gill AC-1493 Sequencer software package specifically for the linear polarization 156 
resistance (LPR) function. The LPR function was used because it responded fast and could detect the 157 
changes in the corrosion rate during the experiment in minutes. 158 

As the CUI cell experiment should simulate the real field condition, the internal piping condition 159 
was filled with the synthetic oil, immersion heater, and temperature controller, as in Figure 3(c) and 160 
(d). After the CUI cell and insulation was completed, as presented in Figure 3(b), the cyclic 161 
temperature was set at 65 °C during wet conditions and 121 °C during dry conditions and the solution 162 
representing the environment condition which was dropped from the solution tank through a valve 163 
and solution inlet, continued to drain at the bottom as in Figure 3(e) and (f). After the CUI test was 164 
finished within the specified exposure time, the insulation was dismantled, and the ring specimens 165 

Figure 2. The initial phase of the experiment (a) Preparation of insulation material; (b) The corrosion
under insulation (CUI) cell mock piping with blind flanges; (c) The ring specimens after surface
finishing; (d) Preparation of the carbon steel ring specimens and a Teflon spacer.

For the rings specimen, a piping material of carbon steel grade A106B, density 7.86 g/cm3 with a
2-inch diameter, 0.2-inch thickness, and specimen area of 9.58 cm3 was used for both phases. Each ring
specimen was surface finished, ground to 600 grit, soaked into a chemical cleaning solution which
contained 1000 mL hydrochloric acid (HCl sp. Gr. 1.19), 20 g antimony trioxide (Sb2O3) and 50 g
stannous chloride (SnCl2), and placed in an ultrasonic cleaning machine, S30H Elmasonic. The cleaning
process was set to 3 min per specimen and dried using a dryer to ensure no pits or particles occurred
on the rings’ surfaces and weighted as initial mass to the nearest 0.1 mg according to the ASTM
Practice G1-03. The ring specimens acted as test electrodes in two separated electrochemical cells, by a
dam (bigger Teflon ring of 3.0 inch outside diameter) as presented in Figure 2b,c. The Teflon spacers
were machined from the same spacer material, polytetrafluoroethylene (PTFE) resins. During the
experiment, the carbon steel rings separated by Teflon spacers were held by blind flange pipe sections
on both ends, as in Figure 2d.

The solution reservoir is the solution that represents an atmospheric condensate with impurities
of acids and chlorides found in industries. The solution made contained 100 ppm NaCl dissolved in
reagent water and 1 M of sulfuric acid, H2SO4, with pH 6. The flow of this solution was controlled by a
micro-metering pump with a maximum capacity of 30 mL/min and a maximum stroke frequency of 300
strokes per minute. The pumping flow rate was tested and stabilized until the dropped solution was
5 mL/min with 14 strokes per minute. For one accelerated CUI experiment (accelerating the corrosion
process), the wet and dry condition was controlled with a duration of 20 h wet and 4 h dry for each
cycle minimum for 72 h continuously. The benefit of the accelerated CUI experiment, especially to
study the performance of the CUI rate regarding the time elapsed, can be found in [15].

In the completed CUI cell run, both electrochemical cells comprised three (3) rings specimens.
The center ring was used as the working electrode (WE), while the other two rings were used as the
reference electrode (RE) and auxiliary electrode (AE) connected to a potentiostat, as in Figure 3a,c.
The ring specimens acted as test electrodes in two separate electrochemical cells and were monitored
by a Gill AC-1493 Sequencer software package specifically for the linear polarization resistance (LPR)
function. The LPR function was used because it responded fast and could detect the changes in the
corrosion rate during the experiment in minutes.
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Figure 3. The CUI experiment in action (a) The CUI cell completed and ready to insulated; (b) Insulated
CUI cell with a calibrated temperature controller; (c) The CUI cell inflow for wiring and inlet chemical.
Viewed from above after insulation and cladding applied; (d) The CUI cell with the synthetic oil
poured inside; (e) The insulated CUI cell with the attached chemical solution dropping system;
(f) The completed CUI cell attached to the potentiostat and computerized software.

As the CUI cell experiment should simulate the real field condition, the internal piping condition
was filled with the synthetic oil, immersion heater, and temperature controller, as in Figure 3c,d.
After the CUI cell and insulation was completed, as presented in Figure 3b, the cyclic temperature was
set at 65 ◦C during wet conditions and 121 ◦C during dry conditions and the solution representing the
environment condition which was dropped from the solution tank through a valve and solution inlet,
continued to drain at the bottom as in Figure 3e,f. After the CUI test was finished within the specified
exposure time, the insulation was dismantled, and the ring specimens were cleaned and weighed
carefully after exposure, using the standard specifications mentioned in ASTM G1-03, previously.

Three (3) replicates were used for each test and recorded. For each experimental replicate, six (6)
samples were produced, and the average values of mass loss were calculated. For the experimental
CUI rate in millimeters per year, the CRexp of each sample was calculated using the relationship in
Equation (2).

CRexp =
K ×M

D×A× T
, (2)

where K is constant (8.76 × 104 mm/yr). This K value in millimeters per year was selected beyond
the several other unit choices to express corrosion rates, as mentioned in ASTM G1-90, to ensure the
standardization of the results from the experiment can be directly compared with the results from
the field which were gathered in millimeters per year. M is a mass loss in grams, A is an exposed
area in centimeters squared, T is a time of exposure in hours, and density, D, in centimeters cubed.
Similarly to the field, as the input data from the experiment were still limited in generating an effective
final prediction model, results obtained were also simulated through the prediction profiler simulator
function in the Statistical Discovery JMP 10.0.0 2012 SAS Integration 9.1.3 Server software package.
The same steps can be referred to in Section 2.1.
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2.3. CUI Rate Prediction Modeling

In developing the final CUI rate prediction model, only the most influential input factors from the
field and experiment were included because the process and predictive ability of the artificial neural
network (ANN) greatly depends on the best input set. In fact, if the model includes irrelevant variables,
the model will be difficult to train, and a less accurate model will be produced. Before this CUI model
development, the most influential factors for both field and experimental data were determined [16,17].
Thus, in the final CUI rate model, the data input consisted of the most influential input parameter,
which was the operating temperature (°C), with an addition of the age of pipe to ease of time-based
measurement. The output was the CUI rate in millimeters per year.

The final CUI rate prediction was modeled by three (3) neural network layers’ structure consisting
of two (2) input nodes in the first layer, eight (8) hidden nodes in the second layer, and in the third layer,
one (1) output node. The two (2) input units involved elapsed time (years) and operating temperature
(°C), while the output was the CUI rate (mm/year). The input was then weighted and associated with
the connection to the neuron in the hidden layer; then, the activation function was balanced to yield the
output. The activation function at each node spread the value of the weighted input to the weighted
output and produced non-linear values with a sigmoidal function with backpropagation [18,19].
This expression is shown as in Equation (3).

Zk =
1

1 + e−[
∑
(

wjk yj+€j
€k

)]

. (3)

The output node, Zk is the output value of current layer k-th neuron, €j is the threshold or bias from
the current layer k-th neuron, while wjk is the joiner weight between the maiden layer and forward layer
neuron. yj is the input layer value based on the j-th neuron, whereas the effect of €k is an adjustment to
the sigmoid function shape. In this study, a sigmoidal function of a hyperbolic tangent (TanH) function
as in Equation (4) was adopted to ensure the value of the CUI rate was in a specified range during
prediction [19,20].

f (TanH) =
e2y
− 1

e2y + 1
. (4)

In this equation, y is a linear combination of the Y parameters. Only positive values of this
hyperbolic tangent function were gathered as the CUI rate. There are a total of 9344 data input, 4424
from field data, and 4918 were from experimental data. The finalized model featuring the age of pipe
with its CUI rate was visualized in a graph, and the fitting line was calculated. In determining the best
model for data fitness, a range of neurons in the hidden layers of the ANN was tested. Neurons with
the highest R2 value were selected for model development as it indicates the best fit.

Although neural networks are very flexible with high capability and applied in various fields,
they may overfit data. It can fit the data model very well but poorly perform the forecast observations.
This phenomenon can be defined by observing the sum of squared error (SSE) and the R2 values. If the
R2 shows a high value with high SSE, this means the model might be overfitted. A decent model
should have a high R2 value with low SSE. Thus, to avoid the overfitting problem, the bias value was
applied to the model variables and used an independent data set to evaluate the predictive power of
the model.

Further, during the model development process using the prediction profiler simulator function
in the Statistical Discovery JMP 10.0 2012 SAS Integration 9.1.3 Server software package, the original
data were separated into parts. A part of a dataset was specified to estimate model parameters,
while the other part for checking the predictive capability of the model. The neural network was
divided into three sets, which were training data, validation data, and testing data. Training data was
used for estimations of model parameters. Validation data for finding the optimal value of the weight
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and calculates or validates the predictive capability of the model while testing data for independent
calculation of the model’s predictive capability.

The expected outcome of the statistical analysis done for the CUI rate model was a trend line with
a function of elapsed years in relation to the CUI Rate. The configured trend line, smooth fitting, or
quadratic line was fitted. Thus, the more accurate line consisting of a corrosion degradation process
was produced by the kernel smoothing line method.

In the kernel smoothing method, each data point in the region was weighted according to its
distance from the closest point, k. The points close to k were assigned large weights and points far
from k, small weights. Another line trend, such as quadratic or linear function, was fitted into the
plotted input variable to the output variable by formerly assigned weightage using weighted least
squares. This computation of k was made for every single value. This locally weighted expression
delivers an estimation of f(k) for the regression surface at any value k in the specified value of input
parameter range, R. To bring out the locally weighted regression, a distance function R was created in
the space of the input parameter. As an example, let one input parameter be the Euclidean distance.
Then, each input variable was divided by its standard deviation if there were multiple inputs, and
then the Euclidean distance was used, and the scale adjusted. Other than that, this method required
a weight function and a measurement of region size. However, it is not the intention to formulate
these functions. Detail formation of this weight function and determination of region size had been
explained in detail by Liu [21] and Cleveland [22].

3. Results

3.1. Historical Field Result

There was a total of 1708 inspections spots in the piping susceptible to CUI. Out of 11,000 m of
pipe length being reinsulated, 191 m of pipe length had been cut and replaced with new pipes due to
the potential higher risk of CUI. This figure reflects 1.74% of the total pipe length. More than 90% of
CUI pipes involved carbon steel pipe, while the highest CUI rate involved calcium silicate insulation.
Sixty-six percent of cases involved small bore pipe while the remaining 34% involved big bore pipe.
Smaller bore size piping commonly had a higher probability of failing as the pipes have a thinner wall
compared to bigger bore.

For field data, a total number of 4400 simulated data using statistical analysis software (SAS) for
the field with a resulted mean of 0.148 mm/year for the CUI rate, as shown in Figure 4a. The highest
CUI rate obtained was 0.957 mm/year, with the median value of 0.124 mm/year, while the lowest value
was 0.000 mm/year. Above that, the upper quartile showed a value of 0.187 mm/year, while the lower
quartile was 0.083 mm/year. The probability limit values of 95% were 0.151 mm/year for upper and
0.145 mm/year for the lower mean. The low standard deviation of 0.107 and 0.002 mean standard error
showed that these empirical field results were dependable for the CUI prediction model development.

The distributional characteristics and the level of the CUI rate in the box plot in Figure 4a show
a comparatively short box, which means that the overall CUI rate for the simulated field data has
a high level of agreement with each other. These results were also in agreement with the findings
in the statistical analysis of the pressure vessel and piping failures by You and Fu [23] and research
by Khan et al. [24]. Thus, these CUI impactful parameters from the field were conserved during the
experimental work design.
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3.2. Experimental Work Result

The results obtained from the experiment were artificially simulated to generate more data using
a neural network surface profiler. The distribution of the simulated CUI rate obtained with the
probability of occurrence is shown in Figure 4b. The distribution of the CUI rate shows a taller size box
plot and whisker, including the outliers, which means the CUI rate held quite different ranges of CUI
rate from 0 to 1 mm.

For the quantiles, the maximum rate was 1.169 mm/year, the median value was 0.204 mm/year,
while the minimum value was 0.001 mm/year. Other than that, the upper quartile showed a value of
0.263 mm/year, while the lower quartile was 0.137 mm/year. A total number of 4918 simulated data
with a mean of 0.222 mm/year for the CUI rate were gained. The CUI rate values of 0.226 mm/year
and 0.219 mm/year for lower and upper mean, respectively, show the obtained heuristic results are
reliant. The low standard deviation of 0.156 and 0.002 mean standard error shows that the simulated
experimental results are reliable for the CUI model development. A glance at some experimental
specimen conditions after the insulation was removed is shown in Figure 5a–c.
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Figure 5. CUI rings specimens (a) condition after test completed and insulation dismantled, (b) a close
up of the rings after the CUI test was completed, (c) close up of the ring surface with corrosion.

3.3. CUI Rate Prediction Model

Overall, the R2 value is relatively high, in the range of 0.84 to 0.99, as tabulated in Table 1.
The RMSE value is less than 1%, and this indicates that the absolute deviation is acceptable. Based on
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this, the ideal number of neurons for the hidden layer is 8 nodes with an R2 value of 0.99 and RMSE of
0.009 for training. As for validation and testing, the 8 nodes also gave the best R2 value of 0.90 and
0.91, with the lowest RMSE of 0.010 and 0.009, respectively. This points out that the final CUI rate
prediction model developed is reliable.

Table 1. Comparison of neuron number in the hidden layer.

Nodes
Training Validation Testing

R2 RMSE R2 RMSE R2 RMSE

1 0.84 0.024 0.87 0.024 0.85 0.024
2 0.85 0.018 0.89 0.018 0.86 0.018
3 0.85 0.016 0.88 0.016 0.87 0.016
4 0.86 0.015 0.89 0.015 0.87 0.015
5 0.87 0.014 0.88 0.015 0.88 0.013
6 0.88 0.012 0.89 0.014 0.87 0.014
7 0.87 0.011 0.88 0.012 0.89 0.009
8 0.99 0.009 0.90 0.010 0.91 0.009
9 0.88 0.009 0.87 0.010 0.89 0.010
10 0.89 0.008 0.87 0.011 0.86 0.011

Other than that, the actual versus predicted graphs for training, validation, and testing for
combined data input were produced, as in Figure 6. All graphs show the actual and predicted output fit
linearly along the line. This is an indication that the final CUI prediction model developed is consistent.
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4. Discussion

4.1. Comparison of Single Type Data and Combined Data in the CUI Rate Model

In determining the best model for data fitness, the comparison of single data type and combined
data type was done. For single data type, the individual experimental and field result was modeled as
output separately. Then, the combined data from experimental and field were model and compared,
as in Figure 7.

Based on the comparison model in Figure 7, the experimental results demonstrate much lower
corrosion rate values by time, especially after 20 years of time elapsed, which is shown in the yield
curve. This prediction might fall into the unhealthy prediction rate for CUI and be dangerous if real
piping operation follows this model. Thus, it can be emphasized that the short-term experimental test
alone is not reliable for the development of the overall prediction model even though the range of
neurons is enough for longer-term prediction as the model predicts lower corrosion loss than actual.
However, the importance of this experimental work results is on the initiation part of the corrosion
rate model. It shows a more accurate initiation of CUI rate development. Thus, this complements
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the model made by the field data alone. The model cannot be used to predict the initiation of CUI as
opposed to the experimental work. This phenomenon can be understood clearly in Figure 7.

Figure 7. Comparison of CUI rate model developed based on single type input (Field only and
Experiment only) with combined data input (Combined Field and Experiment).

The line model produced by the field data gave high corrosion loss values in the initial phase,
although, in actual performance, CUI will not give this corrosion loss as its protective coating and
insulation systems are supposedly still active. For this reason, the experimental data were used to
complement the model. Despite the roles individually played by the actual field data and experimental
data, both are very important. Thus, by integrating and combining both sources of data, the CUI
prediction model can be the distinguishing factor in industries since most existing CUI models are
dependent on either field or lab work separately. The comparison of the model developed based on
single type data, either field or lab, and integration of multi-type data sources was clear.

The smooth line fitting by the combined data sources in blue line, as shown in Figure 7, has a
similar trend when associated with the model compiled by Bhandari [10], and then followed the pitting
corrosion model trend developed by Melcher for pitting corrosion except for the length of the years
elapsed [25]. Even though Fontana [26] did not specify which type of corrosion will occur based on
the timeframe, these main types of corrosion due to CUI are still tallied as recorded. For instance,
the CUI prediction model consists of the specific elapsed time indicating the association for different
phases; this might be considered as an improvement to the existing CUI models available worldwide,
which do not embrace the deviations in corrosion mechanism with time. Thus, it can be demonstrated
that the corrosion under insulation in oil and gas piping occurs as uniform corrosion in the early phase
and at the end, might fail due to the pitting corrosion.

4.2. CUI Rate Model with Corrosion Phases

For further analysis, the combined input data for the CUI rate model was divided into several
corrosion phases, as shown in Figure 8. Specifically, phase 0 shows a nearly straight line and is linear
with a near-zero value. In this phase, the coating and insulation system was in a steady-state and act as
a protection system successfully. However, at about 3 years of time elapsed, the protection system
might have some trauma, such as the initial degradation of coating materials, slight damage to the
insulation, or any other possibility that happens during operation or maintenance. This means that,
as time elapsed, local substance reaction can occur unimpeded by the external transmission.
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Then, in phase 1 and phase 2, the model can be described in approximation, as an exponential
linear relationship between the formation of corrosion and time. If the corrosion has been initiated
earlier at the end of phase 0, both of these phases were controlled by the concentration of oxygen in
the electrolyte substance. The corrosion rate was administrated by the rate of oxygen content in the
chemical reaction, together with the corrosion product layer to the external surface.

However, the linear function in phase 2 will have a higher slope compared to phase 1, as the rate
of oxygen diffusion to the corroding surface was increased by time. After the corrosion yields took
place on the external surface of the piping material (at the end of phase 2), oxygen flux will decay.
During this period, the transition from phase 2 to phase 3, the function will be non-linear.

During phase 3, the CUI rate is governed by the metabolic rate of a corrosion agent in the
electrolyte. In general, the presence of other chemical substances in the electrolyte, which interact
with the metal surface and corrosion, will promote an equilibrium steady-state for the corrosion rate.
Thus, during phase 3, the CUI rate was linear as time elapsed.

At the end of equilibrium steady-state in phase 3, the long term CUI rate data for phase 4 returned
exponentially upward as in phase 1 and 2, but with a much greater slope. During this time, it is
very dangerous to leave the pipe in service as the CUI rate might suddenly increase higher than
expected. Thus, it is suggested that when piping enters phase 4, inspection is compulsory and proper
maintenance, either repair or change is required.

In summary, for this CUI rate model, phase 0 and phase 1 have a longer formation time of up to
3 years and 19 years, respectively. The formation of corrosion takes a longer time to initiate due to
the initial protection by the coating and insulation system as the nature of CUI itself. Once this initial
effect wears off, the effect of coating and insulation system as per the trend in phases 2 to 4 are likely to
follow the pitting corrosion model, as discussed by Valor [27].

5. Conclusions

Corrosion under insulation (CUI) is a vital issue for piping in industries, such as petrochemical
and chemical plants, due propensity for impact on the environment should a catastrophic event occur
due to CUI. To prevent such incidents due to CUI and mitigate potential surprises, this work focuses
on the effect of the input data type to the CUI rate prediction model. Based on the investigation,
this study concludes:

The CUI rate prediction model was successfully developed by the simulation and application
of an artificial neural network. The combined input from field and experiment with one hidden
layer consisting of nine nodes by sigmoidal hyperbolic tangent function and validation of the
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backpropagation method resulted in the fitness of objective function with a high R2 of 0.99 and
RMSE of 0.009. The simulation is recommended for limited data input for forecasting and modeling.
As ANN is a good predictor of corrosion modeling, it is recommended for other types of corrosion to
improve prediction.

For the effect of input data type on the CUI rate prediction model, the combination of field
and experimental results suggested optimum advantages as the phases of corrosion can be detected.
By the corrosion phases adopted, it was found that CUI commonly occurs as general corrosion in
the early stages and trending as pitting corrosion afterward. This CUI rate model can be used as a
general guideline for insulation pipe in equatorial climate zone locations as the zones have similar
environments to the Malaysia Peninsular in this case study. Otherwise, for other climate zones,
the same procedures can be duplicated to produce the CUI rate prediction model. It is hoped that
this combined data type CUI rate prediction model will be beneficial in plant management and can
act as an aid guideline for inspection planning purposes, which can help in prioritizing maintenance
schedules in risk-based inspection (RBI).
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