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Abstract: Understanding and predicting animal distribution is one of the most elementary objectives
in ecology and conservation biology. Various environmental factors, such as habitat area, habitat
quality, and climatic factors, play important roles in shaping animal distribution. However, the
mechanism underlying animal distribution remains unclear. Using generalized additive mixed
models, we analyzed the effects of environmental factors and years on the population of five Anatidae
species: Tundra swan, swan goose, bean goose, greater and lesser white-fronted goose, across their
wintering grounds along the Middle and Lower Yangtze River floodplain (MLYRF) during 2001–2016.
We found that: (1) All populations decreased except for that of the bean goose. (2) The patch area was
not included in any of the best models. (3) NDVI was the most important factor in determining the
abundance of grazing geese. (4) Climatic factors had no significant effect on the species in question.
Our results suggest that, when compared to habitat area, habitat quality is better in predicting
Anatidae distribution on the basin scale. Thus, to better conserve wintering Anatidae, we should
keep a sufficiently large area at the single lake, as well as high quality habitat over the whole basin.
This might be achieved by developing a more strategic water plan for the MLYRF.
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1. Introduction

Understanding and predicting animal distribution is one of the most elementary objectives in
ecology and conservation biology. The animal distribution could be affected by various environmental
factors, such as habitat area, habitat quality and climatic factors [1]. Despite endeavors to unravel such
a fundamental problem during past decades, it still remains not fully understood. Changes in species
abundance and distribution might be driven rapidly by local or global environmental changes [2,3], so
addressing which is the main driver of species changes at multiple spatial scales is critical for taking
conservation measures.

Eastern China is one of the most important wintering regions for migratory waterbirds, supporting
over two million individuals, including more than one million Anatidae [4,5]. About 80% of
these Anatidae winter within the wetlands in the Middle and Lower Yangtze River floodplain
(MLYRF) [5]. However, the Anatidae population size has been declining continuously in this area [5,6].
Understanding how environmental factors affect animal population changes at large tempo-spatial
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scales, as shown for Anatidae in the MLYRF, is crucial for their conservation [7]. Some case studies have
found that habitat area and quality play an important role in determining waterbird distribution in the
MLYRF. Zhang et al. demonstrated that a larger patch area concentrated the larger number of grazing
Anatidae at Shengjin Lake [8]. Guan et al. found a positive effect of habitat quality (including winter
season vegetation index, habitat area and topographic wetness index) on geese density at Dongting
Lake [9]. However, all these studies were conducted for one individual lake, and few studies were
conducted at larger tempo-spatial scales within the MLYRF [10]. Such a comprehensive study is
urgently needed.

The individual–area relationship, which describes the relationship between population density
and patch area, has been successfully used to explain the distribution of Anatidae populations in
wetland [8]. In MLYRF, grazing Anatidae mainly feed on recessional meadows after the drawdown
of the water level, and tuber-feeding birds mainly forage on tubers of submerged macrophytes
during wintering season [11,12]. Thus, we expect positive correlations between land/water area and
Anatidae populations. As suggested by optimal foraging theory [13–15], food quantity and habitat
heterogeneity could determine Anatidae distribution through forage intake limitations. As difficulties
in handling long leaves and in locating bites with increasing biomass, the intake rate of Anatidae
follows a bell-shaped curve with increasing food quantity, which maximizes at the intermediate
biomass [15,16]. Habitat heterogeneity, such as the spatial variance of vegetation biomass or structure,
generally increases the time needed to search for and handle food, thus, negatively affecting individual
intake rates [17,18]. In addition, according to the allometry scaling law, the effects of food quantity and
habitat heterogeneity would also differ among species with different body sizes [15,16,19].

Besides habitat, the distribution of birds can be affected by climatic factors, such as temperature
and precipitation [20]. For example, a warmer climate is preferred by wintering birds, as more energy
is consumed to compensate for colder ambient temperatures [21]. Precipitation is positively correlated
with primary productivity within wetlands, which favors herbivores [22]. A high water level disfavors
birds, such as tuber-feeders because a higher water level denies them access to the food hidden under
the water [23].

In recent years, more and more ornithologists prefer to use contemporary statistical methods,
such as generalized additive model. Zenzal et al. used generalized additive mixed model (GAMM) to
investigate hummingbird migration across years [24]. La Sorte et al. used GAMM to investigate how
land-use change affect avian species [25]. Wen et al. used GAMM to analyze the effects of climate and
hydrology on waterbird population dynamics [2].

In this research, we aimed to investigate relationships between the environmental variables
and population sizes of five Anatidae species in four key wintering areas in the MLYRF during
2001–2016: Tundra swan Cygnus columbianus, swan goose Anser cygnoides, bean goose A. fabalis, greater
white-fronted goose A. albifrons and lesser white-fronted goose A. erythropus. Tundra swan and swan
goose mainly feed on tubers of Vallisneria spiralis [12], whereas, the latter three species graze on
recessional grasslands in wintering areas.

2. Materials and Methods

2.1. Study Area

This study was conducted in 43 wetlands in four key wintering areas (Poyang Lake, Dongting
Lake, Shengjin Lake and Anqing Lakes) in the MLYRG (see Figure 1 and supplementary materials
Table S1). The total area of the 43 lakes is ca. 2800 km2. This region has a subtropical monsoon climate
that produces a large variation in precipitation among seasons. Wetlands here are characterized by
annual recharge from summer rainfall, followed by water level recession in winter, which provides
habitats for hundreds of thousands of wintering waterbirds.
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Figure 1. The location of (a) Poyang Lakes, (b) Dongting Lakes, (c) Shengjin Lake and (d) Anqing 
Lakes in the Middle and Lower Yangtze River floodplain (MLYRF). The red line shows the boundary 
of the 43 wetlands concerned in this study. See the name of each lake in supplementary materials 
Table S1 according to numbers. 

Poyang Lakes, which are located in Jiangxi Province 28°24′–29°46′ N, 115°49′–116°46′ E), 
maintain a direct connection with the Yangtze River, which has a naturally fluctuating water level. 
The submerged area in the wet season (July to September, ca. 3600 km2) can be more than two times 
that in the dry season (November to February, ca. 1500 km2) [26]. This variation caused by water level 
fluctuation produces many types of habitats, such as ephemeral grasslands and mudflats. 

Dongting Lakes lie in Hunan Province (28°44′–29°35′ N, 111°53′–113°05′ E), with an annual 
seasonal water level fluctuation up to 18 m (the variation between maximal and minimal water level). 
Similar to the Poyang Lakes, the water level fluctuation has not been disturbed in Dongting Lakes, 
so various habitat types are formed, such as marshes and mudflats. However, the construction of 
Three Gorges Dam may have prolonged the drought period in Dongting Lakes, since its operation in 
2003 [27]. 

Shengjin Lake and Anqing Lakes are in Anhui Province (29°50′–30°58′ N, 116°07′–117°44′ E). 
These lakes are much smaller (the biggest is Huangda Lake with an area of ca. 270 km2) and lost their 
direct connection to the Yangtze River during the 1960s. Due to the different types of management at 
different lakes, various types of habitats exist as different lakes, such as recessional meadows in 
Shengjin Lake, and mudflats in Baidang Lake and Caizi Lake. 

2.2. Census Data 

Census data for the five studied Anatidae species were obtained from systematic surveys of 
these four areas. Wintering waterbirds were counted systematically from 2001 to 2016 
(supplementary materials Table S1). In all the surveys, the “look–see” [28] method was used to 
identify and count all present waterbirds. The observers mostly reached the counting spots by car or 

Figure 1. The location of (a) Poyang Lakes, (b) Dongting Lakes, (c) Shengjin Lake and (d) Anqing Lakes
in the Middle and Lower Yangtze River floodplain (MLYRF). The red line shows the boundary of the
43 wetlands concerned in this study. See the name of each lake in supplementary materials Table S1
according to numbers.

Poyang Lakes, which are located in Jiangxi Province 28◦24′–29◦46′ N, 115◦49′–116◦46′ E), maintain
a direct connection with the Yangtze River, which has a naturally fluctuating water level. The submerged
area in the wet season (July to September, ca. 3600 km2) can be more than two times that in the dry
season (November to February, ca. 1500 km2) [26]. This variation caused by water level fluctuation
produces many types of habitats, such as ephemeral grasslands and mudflats.

Dongting Lakes lie in Hunan Province (28◦44′–29◦35′ N, 111◦53′–113◦05′ E), with an annual
seasonal water level fluctuation up to 18 m (the variation between maximal and minimal water level).
Similar to the Poyang Lakes, the water level fluctuation has not been disturbed in Dongting Lakes,
so various habitat types are formed, such as marshes and mudflats. However, the construction of
Three Gorges Dam may have prolonged the drought period in Dongting Lakes, since its operation in
2003 [27].

Shengjin Lake and Anqing Lakes are in Anhui Province (29◦50′–30◦58′ N, 116◦07′–117◦44′ E).
These lakes are much smaller (the biggest is Huangda Lake with an area of ca. 270 km2) and lost their
direct connection to the Yangtze River during the 1960s. Due to the different types of management
at different lakes, various types of habitats exist as different lakes, such as recessional meadows in
Shengjin Lake, and mudflats in Baidang Lake and Caizi Lake.

2.2. Census Data

Census data for the five studied Anatidae species were obtained from systematic surveys of these
four areas. Wintering waterbirds were counted systematically from 2001 to 2016 (supplementary
materials Table S1). In all the surveys, the “look–see” [28] method was used to identify and count all
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present waterbirds. The observers mostly reached the counting spots by car or on foot. Boats were
sometimes used. Large Anatidae (like the swans and geese considered in this study) usually form large
flocks during the non-breeding season, allowing their easy identification and counting [29]. Surveys
were conducted by staffs from the nature reserve and by the authors using the same survey methods.
Multiple teams were made up, and there were at least one experienced observer to guide the survey. It
took 5–20 days to complete surveys. See Barter et al. [30] for more details.

2.3. Environmental Data

We used Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) surface
reflectance (SR) products to extract the habitat features that might potentially affect the waterbird
abundance in these areas. The current SR products are provided by the Landsat ecosystem disturbance
adaptive processing system (LEDAPS) with satisfying quality and consistency [31].

We selected images that were acquired around our survey dates with less than 10% cloud cover
(supplementary materials Table S2). Before processing, we employed a gap-filling method based
on local linear histogram [32] matching to remove duplicated data and correct the loss in the ETM+

images, due to the failure of the scan line corrector in 2003. Afterwards, we geometrically corrected
each image with an accuracy of fewer than 0.5 pixels.

Before image processing, we delineated the boundaries for all concerned wetlands according to
their natural and artificial landscapes (Figure 1). We then applied supported vector machines (SVMs)
to discriminate between water and land within each boundary. SVMs are supervised non-parametric
statistical learning techniques that can produce higher accuracy classifications, even without larger
training data sets [33]. For each image, we visually selected training sets based on the contrasting
differences between pixels containing land or water. All pixels within the study sites were classified as
land or water. Patch areas of land or water were then calculated by counting the related pixels. The
normalized difference vegetation index (NDVI) derived from the SR products was, thus, extracted from
the land as a surrogate of food abundance. We calculated the coefficient of variation (CV) of the NDVI
as an index of habitat heterogeneity. Images were processed in ENVI 5.0 (Harris Geospatial Solutions,
Broomfield, CO, USA) and ArcGIS 10.2 (Environmental Systems Research Institute, Redlands, CA,
USA). We obtained averaged temperature and accumulated precipitation in January for 2001–2016
from Chinese Meteorological Administration.

2.4. Statistical Analysis

We used generalized additive mixed models (GAMMs) to model the effects of the patch area, food
quantity, habitat heterogeneity, and climatic factors on swans and geese abundance with the survey site
as the random factor. The patch area used for grazers (bean goose and greater and lesser white-fronted
goose) was the land area, whereas, that used for tuber-feeders (tundra swan and swan goose) was
the water area. “Year” was also included to account for the possible temporal correlation of surveys
among the years. Usually, the count data contains excess zero records. Poisson distribution is often
used to model such count data, but provides poorer performance compared with zero-inflated Poisson
or negative binomial models [34]. Thus, based on the diagnosis by Wen et al. [2], we determined the
probability distribution function of our count data to be negative binomial type I (NBI) or II (NBII).
The general GAMM formulation is as follows:

g(E(Y)) = α+
n∑

i=1

fi(Xi),

where g(·) is a link function (e.g., NBI or NBII). E(Y) is the expected value of response variable Y. Xi is
the matrix of explanatory variables with fi (·) as the cubic spine (cs) smoothing functions, and α is
a constant.
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We then followed a stepwise model selection procedure (for the limitations of this approach see
Whittingham et al. 2006 [35]), initiated from a full model, including all predictor variables. Since
some research suggested that variables with a p-values slight larger than 0.05 also included some
useful information when modeling, hence, here variables with p-values higher than 0.1, estimated by
a Chi-Squared test, were, thus, omitted. Afterwards, the model was compared with the full model
based on generalized Akaike information criterion (GAIC). If the new model has a lower GAIC than
the full model, the variable is neglected in subsequent procedures [2]. The goodness of fit of the
selected models was evaluated with the pseudo-coefficient of determination (R2), which was used as a
surrogate for R2. All statistical analyses were conducted in R 3.2.4 [36] with the GAMLSS package [37].

3. Results

3.1. Population Trends

“Year” was included in all the best models except for bean goose. During 2001–2016 lesser
white-fronted goose populations increased slightly (p < 0.05, Table 1) within the study area, while
swan goose and greater white-fronted goose decreased (p < 0.05, see Table 1). Tundra swan tended to
decrease as well, though the year effect did not reach statistical significance (p < 0.1, see Table 1).

Table 1. Summary statistics for the best fitted generalized additive mixed models (GAMMs) for the
five Anatidae species counts in 43 wetlands for 2001–2016 in the Middle and Lower Yangtze River
floodplain (MLYRF).

Predictor Estimate Standard
Error

t-Value p Model Performance

Global Deviance GAIC Pseudo R2

Tundra Swan
(Intercept) 60.69 29.24 2.08 0.04 *

Year −0.03 0.01 −1.85 0.07
Precipitation 0.00 0.00 0.31 0.76 4492.74 4582.03 0.46
Swan goose
(Intercept) 488.73 61.19 7.99 0.00 **

Year −0.24 0.03 −7.91 0.00 **
Temperature −0.05 0.07 −0.67 0.51 4360.53 4462.05 0.38
Bean goose
(Intercept) 6.49 0.23 28.39 0.00 **
NDVI CV −0.05 0.06 −0.76 0.45

NDVI 2.12 0.64 3.31 0.00 **
Precipitation 0.00 0.00 −1.39 0.17 4688.96 4789.68 0.59

Greater white-fronted goose
(Intercept) 91.43 33.97 2.69 0.01 *

Year −0.04 0.02 −2.50 0.01 *
NDVI 1.64 0.76 2.14 0.03 * 2859.72 2943.25 0.44

Lesser white-fronted goose
(Intercept) −313.56 113.15 −2.77 0.01 *

Year 0.15 0.06 2.73 0.01 *
NDVI CV −0.66 0.32 −2.09 0.04 *

NDVI 19.86 2.68 7.42 0.00 ** 1271.61 1375.50 0.42

Note: p < 0.1, * p < 0.05, ** p < 0.01. GAIC, generalized Akaike information criterion.

For swan goose and greater white-fronted goose, the models showed the same pattern: The
population size stopped decreasing around 2005, followed by a rise in 2006–2007, and then a sharper
decline after 2007–2008 (Figure 2b,c). Tundra swan showed a similar trend, but compared with swan
goose and greater white-fronted goose, tundra swan declined later, starting in 2010 (Figure 2a). The
rate of decline was faster for swan goose (Table 1). The population of lesser white-fronted goose
increased until 2010, then subsequently decreased (Figure 2d).



Sustainability 2019, 11, 6814 6 of 10

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 11 

NDVI 19.86 2.68 7.42 0.00 ** 1271.61 1375.50 0.42 
Note: p < 0.1, * p <0 .05, ** p < 0.01. GAIC, generalized Akaike information criterion. 

For swan goose and greater white-fronted goose, the models showed the same pattern: The 
population size stopped decreasing around 2005, followed by a rise in 2006–2007, and then a sharper 
decline after 2007–2008 (Figure 2b,c). Tundra swan showed a similar trend, but compared with swan 
goose and greater white-fronted goose, tundra swan declined later, starting in 2010 (Figure 2a). The 
rate of decline was faster for swan goose (Table 1). The population of lesser white-fronted goose 
increased until 2010, then subsequently decreased (Figure 2d). 

Figure 2. Population abundance indices of (a) tundra swan, (b) swan goose, (c) greater, and (d) lesser 
white-fronted goose in 43 wetlands from 2001 to 2016 in the MLYRF using Generalized Additive 
Mixed Models (GAMMS). The solid line shows the abundance indices. The dotted lines show the 95% 
confidence intervals. 

3.2. Impacts of Habitat-Related Variables 

For grazing Anatidae (bean goose and greater and lesser white-fronted goose), NDVI was the 
most significant factor positively related to population abundance (Table 1). The three grazing species 
responded differently to the increasing NDVI: The population density of the larger species (bean 
goose and greater white-fronted goose) stopped increasing when NDVI reached 0.4 (Figure 3a,b), 
whereas, the smaller species, the lesser white-fronted goose, stopped at a lower NDVI value (0.28, 
Figure 3c). 

The NDVI CV, which represented habitat heterogeneity, was negatively correlated to bean goose 
and lesser white-fronted goose (Figure 3e). The population of lesser white-fronted goose decreased 
until the NDVI CV was three (Figure 3e). The patch area (land/water) was not selected in the best 
models (Table 1). Besides, using a linear mixed model with the lake as a random factor, we found no 
significant relationship between the log-transformed land/water area and the year. (p = 0.23 for 
log(Land)~year and p = 0.77 for log (Water)~year). 
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3.2. Impacts of Habitat-Related Variables

For grazing Anatidae (bean goose and greater and lesser white-fronted goose), NDVI was the
most significant factor positively related to population abundance (Table 1). The three grazing species
responded differently to the increasing NDVI: The population density of the larger species (bean goose
and greater white-fronted goose) stopped increasing when NDVI reached 0.4 (Figure 3a,b), whereas,
the smaller species, the lesser white-fronted goose, stopped at a lower NDVI value (0.28, Figure 3c).

The NDVI CV, which represented habitat heterogeneity, was negatively correlated to bean goose
and lesser white-fronted goose (Figure 3e). The population of lesser white-fronted goose decreased
until the NDVI CV was three (Figure 3e). The patch area (land/water) was not selected in the best
models (Table 1). Besides, using a linear mixed model with the lake as a random factor, we found
no significant relationship between the log-transformed land/water area and the year. (p = 0.23 for
log(Land)~year and p = 0.77 for log (Water)~year).

3.3. Effects of Climatic Variables

Precipitation was positively related to the numbers of tundra swan and bean goose, whereas,
temperature was negatively related to numbers of swan goose. Though included in the best models,
the effects of precipitation or temperature were not significant (p > 0.1; Table 1).
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Figure 3. The response of the population abundance indices of (a) bean goose, (b) greater, and (c) lesser
white-fronted goose to normalized difference vegetation index (NDVI) and of (d) greater and (e) lesser
white-fronted goose to NDVI coefficient of variation (CV)) using GAMMs. The solid line shows the
abundance indices. The dotted lines show the 95% confidence intervals.

4. Discussion

We analyzed the effects of environmental factors and year on five Anatidae species during
2001–2016. The results suggest that: (1) During the study period, most populations have been
decreasing, except for bean goose. Swan goose declined the fastest over the study period, whereas,
the number of lesser white-fronted goose declined quickly since around 2010. (2) The patch area was
not included in any of the best models. (3) NDVI was the most important factor in determining the
abundance of grazing geese. (4) Climatic factors had no significant effect on any species.

Populations of tundra swan, swan goose and greater white-fronted goose showed a clearly
decreasing trend, and lesser-fronted goose population stopped increasing until 2010 (Figure 2). In
eastern China, more than 80% of the population of these five species spend their non-breeding period
in the four key areas studied here [6]. The generally decreasing trends suggest possible degradation
within these four areas. Zhang et al. found that the population in the National Natural Reserves had a
lower decreasing rate [10]. However, only 6% of wetlands are protected by National Natural Reserves
in the MLYRF [38,39], which seems insufficient to improve the generally decreasing population trends,
especially considering their current status. Notably, the population of tuber feeders (i.e., tundra swan
and swan goose) decreased faster than that of grazers. Tundra swan and swan goose mainly forage on
tubers of submerged macrophytes, which have been dying out in the wetlands of the MLYRF, due
to intensive human activities in recent years [12]. The diminishing food resources likely explain the
decline in tuber feeders. Grazing geese are affected by habitat changes, which might be a consequence
of the hydrological changes caused by dam operation [40,41]. Our results suggest that tuber feeders
are more sensitive to habitat degradation. The bean goose diet is relatively more diverse [42], and less
sensitive to habitat changes. Thus, the population of bean goose showed no clear temporal trends.

The patch areas were not featured in the best models for any of the five species. This result is
inconsistent with those reported by Connor et al. [43] and Zhang et al. [8], who found a positive effect for
the patch area. We found no significant relationship between the log-transformed land/water area and
the year, which might explain the lesser contribution from patch areas. We found NDVI to be the most
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important factor influencing grazing geese, which is similar to the findings of Zhang et al. [10]. The
population size firstly increased, and then decreased with an increase in NDVI. Lesser white-fronted
goose stopped increasing when the NDVI reached 0.28, whereas, bean goose and greater white-fronted
goose stopped increasing at 0.4. Compared with the bigger bean goose and greater white-fronted
goose, the NDVI value at which the species stopped increasing was lower for the lesser white-fronted
goose, implying a possible effect of the allometry law [44,45]. The NDVI CV was generally negatively
correlated with the bean goose population, but this correlation was not significant; this result is also in
line with that of Zhang et al. [8]. As expected, the response of the lesser white-fronted goose population
to the increasing NDVI CV was an inverted bell curve. Unlike the widely distributed sedge Carex
meadow, the grass Alopecurus aequalis and the spikerush Eleocharis migoana, which are the main food
sources of the wintering lesser white-fronted goose, are seldom found beyond the heterogeneous
recessional grassland in East Dongting Lake [41]. Combined with heterogeneity negatively affecting
the foraging efficiency of geese by increasing searching and handling time [17,18], we conclude that
lesser white-fronted goose would favor a habitat with mild heterogeneity. In general, such results
suggest that, mediated by the allometry law, geese might prefer habitats of higher quality to larger
areas at basin scales [46,47].

Our study showed that wintering Anatidae in the MLYRF have generally declined. We also
showed the important effects of NDVI (i.e., habitat quality) on grazing Anatidae at the basin scale.
At this scale, patch area or climatic factors seem to play insignificant roles in determining Anatidae
populations. According to Zhang et al., increasing the patch area by managing the water level of a lake
would effectively protect wintering geese [8]. However, our results suggest that such management
actions might not benefit wintering geese at the basin scale. To better conserve the wintering Anatidae,
we need to integrate priorities at both the lake and basin scales, which means that enough patch areas
should be retained at a single lake, as well as high habitat quality over the whole basin. As suggested
by Zhao et al., reductions in grazing goose numbers at East Dongting Lake were correlated with
declines in the availability of suitable sedge swards, caused by earlier water table recession, due to the
commissioning of the Three Gorges Dam since mid-2003 [40]. Thus, habitat quality could be improved
by hydrological regimes, especially the timing of water draw down [9]. In conclusion, we might benefit
wintering Anatidae by developing a more strategic water plan for the MLYRF.
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