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Abstract: Intra-day control and scheduling of energy systems require high-speed computation and
strong robustness. Conventional mathematical driven approaches usually require high computation
resources and have difficulty handling system uncertainties. This paper proposes two data-driven
scheduling approaches for hydrogen penetrated energy system (HPES) operational scheduling.
The two data-driven approaches learn the historical optimization results calculated out using
the mixed integer linear programing (MILP) and conditional value at risk (CVaR), respectively.
The intra-day rolling optimization mechanism is introduced to evaluate the proposed data-driven
scheduling approaches, MILP data-driven approach and CVaR data-driven approach, along with
the forecasted renewable generation and load demands. Results show that the two data-driven
approaches have lower intra-day operational costs compared with the MILP based method by 1.17%
and 0.93%. In addition, the combined cooling and heating plant (CCHP) has a lower frequency
of changing the operational states and power output when using the MILP data-driven approach
compared with the mathematical driven approaches.

Keywords: hydrogen penetrated energy system; long short-term memory; combined cooling and
heat power

1. Introduction

The continuing development of the energy system has made the conventional electric power
system move forward to a multi-carrier energy system including electric, gas, heating, and cooling [1].
Along with the increasing penetration of renewable energy, uncertainties and fluctuations of the energy
system are becoming serious challenges to network operators [2]. It is important to explore efficient
ways of balancing renewable generations and consumer energy demands. Benefiting from the storage
stability, energy density, and transformation capability (Power-to-Gas) of hydrogen, the hydrogen
penetrated energy system (HPES) is attracting great attention in recent years [3–5]. The hydrogen can
be used as the fuel not only for the fuel-cell battery but also for the combined cooling and heating plant
(CCHP) when mixed with natural gas, the so-called Hydrogen Compressed Nature Gas (HCNG) [6,7].
However, due to the tight coupling characteristics of the HPES and the little research on HCNG
powered CCHP, it is difficult to establish mathematical models of the equipment within HPES in high
accuracy, and the operational scheduling and adjustment for HPES also require high computation
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resources. Thus, Artificial-Intelligence assisted scheduling and control approaches are considered as a
potential way of managing the HPES.

A number of studies have been performed for multi-carrier energy systems using mathematical
based optimization approach [8–11]. In article [8] the authors model the multi-carrier energy system
as a non-linear model and perform the coordinated scheduling for the energy resources using the
heuristic optimization methodology. The approach in [12] proposed an optimal scheduling approach
for integrated energy system with consideration of energy storage systems and ancillary services.
The regionally integrated energy system is modeled as a linear mathematical model which can be
solved by software packages and commercial optimization systems, YALMIP, and CPLEX. In article [13],
the authors proposed a conditional value at risk (CVaR) based multi-objective optimization approach
for hydrothermal system considering the uncertainties of energy demands. Results show that the
CVaR based approach is applicable for hydrothermal integrated energy systems, and the risk level of
the system operation can be decreased. The approach in [14] proposed a bi-level economic dispatch
method for nature gas-electricity coupled energy systems to minimize its operational cost. The lower
level model is transferred by Karush-Kuhn-Tucher (KKT) conditions and added to the upper-level
model, which make the whole model as a mixed integer linear programing (MILP) formulation and
can be solved by most of the commercial optimization software packages. Other mathematical-driven
approaches for optimizing the integrated energy system operation have been presented in [15–18].

The aforementioned mathematical-driven scheduling and control approaches for a multi-carrier
energy system require high-computational resources, especially when the system has a large number
of non-linear components or is on a large-scale. Therefore, when online scheduling and control of
the HPES is needed, the mathematical-driven approaches sometimes are not able to meet the speed
requirements. Thus, some data-driven based approaches are proposed that learn the scheduling
experience offline and control the system online [19–22]. In article [19], the authors proposed a
reinforcement learning control approach for building heating systems. The results show that the
proposed method is able to handle the control of building systems with various ambient temperatures
in a very short time. A similar reinforcement learning approach for community energy management
is proposed in [23], of which the fuzzy control concept is introduced into the Q-learning algorithm
to handle the rewards of learning process. The approach in [20] proposed a random forest-based
model predictive control approach for building energy optimization and climate control. The case
studies show that the energy can be saved up to 49.2% within the building. A number of data-driven
approaches have been used in the building energy management system as mentioned above and
achieve reasonable performance. The HPES is a more complex system than building or community
energy systems, and the scheduling and management of HPES have similar characteristics to building
energy systems, but few data-driven control approaches are investigated to optimize the operation of
multi-carrier energy system or integrated energy system. Thus, it is worth exploring the potential of
data-driven control approaches in the HPES.

In this paper, the detailed models of HPES are established at first. After then two data-driven
operational scheduling approaches based on Long Short-Term Memory (LSTM) are introduced. The
two approaches learn and formulate the operational scheduling models based on the MILP and CVaR
optimization results of the HPES respectively. To validate the performance of the two approaches,
the two approaches are evaluated in the intra-day operation of a typical HPES which requires high
computation speed and has more uncertainties. The contributions of this paper can be summarized
as below.

(1) This paper proposed two LSTM based operational scheduling and control approaches for HPES.
(2) This paper evaluated the performance of the proposed approaches in the intra-day operation of

the HPES.
(3) The intra-day operational cost, intra-day equipment operational scheduling and the computational

speed of the proposed scheduling and control approaches are analyzed in detail.
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The remainder of this paper is organized as follows: Section 2 describes the modeling of HPES in
MILP and CVaR, the data-driven approaches operational flow for HPES, and the established process of
data-driven scheduling approach based on LSTM. Section 3 performs the detailed analysis of proposed
approaches compared with conventional mathematical driven approaches. Section 4 concludes the
advantages and shortcomings of the proposed data-driven approaches.

2. Materials and Methods

2.1. Hydrogen Penetrated Energy System (HPES)

HPES is an integrated energy system that can convert the surplus electricity into hydrogen which
can be stored and re-used at the right time. Such energy systems can facilitate the consumption of the
wind and photovoltaic (PV) energy and reduce the grid pressure and system operating cost. Figure 1.
shows the structure of the HPES where the hydrogen is generated via water electrolyzing within an
electrolyzer and subsequently stored in the hydrogen tank(s). The hydrogen can be mixed with natural
gas as the input fuel for combined cooling and heating power (CCHP) units or used independently for
hydrogen fuel cells. The CCHP units can supply electrical energy, hot water, and smoke whilst other
devices such as electric boiler and heat exchanger can only provide hot water. The electric cooler and
absorption chiller are used for cooling. The heat pump can be used for both cooling and heating.
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2.2. HPES Mathematical Modelling

The LSTM model needs to learn the historical optimization scheme in order to produce a control
strategy. Hence, it is inevitable to model the HPES and collect the optimization scheme from the
historical data. The LSTM learns the data that is optimized by either the MILP or CVaR method and
the effects are analyzed separately.

The HPES generally contains five energy-carrier busbars including the electrical busbar, hot water
busbar, smoke busbar, hot air busbar, cold air busbar. The energy balance of each busbar is expressed
by Equations (1)–(5):
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LE + Pgrid.s + PHP + PEC + PEL + PEB = PPV + PW + Pgrid.b + PHFC + PCHP, (1)

LTW + QAC.water = QHFC + QHE.water + QCHP.water + QEB, (2)

QAC.smoke + QHE.smoke = QCHP.smoke (3)

Lca = QHP.c + QEC + QAC (4)

Lta = QHP.h (5)

The hydrogen generated from the electrolyzer can be used by the CCHP unit and the fuel cell.
More specifically, the CCHP unit takes the gas mixture consisting of natural gas and hydrogen as the
input fuel. The device constraints are presented in Equations (6)–(14). Note that Equations (9)–(11) are
derived from experimental data and show the relationship between the electrical power of CCHP and
the flow rate of natural gas (vng) and hydrogen (vH2.CHP).

vgb = vng + vH2.CHP (6)

0 ≤ vng ≤ vmax
ng (7)

0 ≤ vH2.CHP ≤ ε
max
·vgb (8)

PCHP = 3.031vng + 1.019vH2.CHP (9)

QCHP.water = 6.086vng − 0.5331vH2.CHP (10)

QCHP.smoke = 0.9914vng + 0.3012vH2.CHP (11)

Pmin
CHP·µCHP ≤ PCHP ≤ Pmax

CHP·µCHP (12)

−R·∆t ≤ P1
CHP − P0

CHP ≤ R·∆t (13)

µCHP ∈ {0, 1} (14)

The constraints of the hydrogen tank are indicated by Equations (15)–(17). The change in the
amount of hydrogen in the hydrogen storage tank is related to the speed and time of the charge and
discharge gas, as shown in Equation (15). The hydrogen storage tank also has maximum capacity
constraints and charge and discharge gas maximum speed constraints as shown in Equations (16)
and (17). In the model described herein, the hydrogen storage tank charging rate is the same as
the electrolyzer producing hydrogen gas velocity and is therefore not listed in the hydrogen storage
tank constraint.

V1
H2

= V0
H2

+ vht.i·∆t− vht.o·∆t (15)

0 ≤ VH2 ≤ Vmax
H2

(16)

0 ≤ vht.o ≤ vmax
ht.o (17)

It is necessary for the electrolyzer and fuel cell to satisfy the relationship between its power and
the flow rate of hydrogen as stated in Equation (18), as well as the upper and lower limits of the
hydrogen flow rate as depicted in Equation (19).

P = v·δ (18)

vmin
≤ v ≤ vmax (19)



Sustainability 2019, 11, 6784 5 of 18

Other devices should primarily meet the relationship between power and efficiency or energy
efficiency ratio (EER) as shown in Equation (20). The electro-thermal efficiency of devices should also
satisfy the upper and lower limits as shown in Equations (21) and (22). The power exchanged between
the grid and the HPES also needs to meet the upper and lower limit of Equations (21) and (22).

Q = P·η (20)

Pmin
≤ P ≤ Pmax (21)

Qmin
≤ Q ≤ Qmax (22)

Equations (23)–(25) state how the system operating costs can be calculated and the MILP objective
function of the day-ahead economic scheduling can be determined. The price of each part is the unit
price multiplied by the time. The optimization goal is to minimize the operating cost of the system
under the conditions of busbar constraints and equipment constraints.

Cng = cng·

24∑
t=1

(
vt

ng·∆t
)

(23)

Cgrid.b =
24∑

t=1

(
Pt

grid.b·∆t·ct
grid.b

)
(24)

Cgrid.s = cgrid.s·

24∑
t=1

(
Pt

grid.s·∆t
)

(25)

Objective : min
(
Cng + Cgrid.b −Cgrid.s

)
Constraints : (1)–(25)

When the CVaR approach is used, the value of CVaR shall be calculated using Equations (26)–(28).
This paper defines the objective function of CVaR as the CVaR whose operating cost exceeds the
expected operating cost. In the traditional CVaR method, the value of the value at risk (VaR) is
first required, which makes the solving process more complicated. According to [24], CVaR can
be calculated under the condition that the VaR value is unknown. This method is applied to the
solution process. Two intermediate variables ξ and φi are used to calculate CVaR, where ξ is used
instead of VaR. The proposed objective function is equivalent to the conventional method, as shown in
Equations (26)–(28). The corresponding objective function is the sum of the expected running cost and
the CVaR. Note that β is the weight of CVaR.

Objective : minξ+
1

N·(1− α)
·

N∑
i=1

φi (26)

Constraints : φi
≥ Ci

Bill − EBill − ξ (27)

φi
≥ 0 (28)

Objective : EBill + β·RCVaR

Constraints : (1)–(25), (27), (28)

2.3. Data-Driven Approach for HPES Scheduling

Long Short-Term Memory (LSTM) is suitable for processing and predicting the time series related
problems and the running optimization problems of an HPES are time-correlated. Based on the
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historical data, this paper proposes to use LSTM to solve the day-ahead economic scheduling problems
of a HEPS.

The procedure of the data-driven approach for HPES scheduling is shown in Figure 2.
The characteristics of the LSTM model (i.e., the predicted value of the PV power, wind power,
and load) are obtained through the integration and calculation of the raw data, which forms the input
space of the model. After the optimization computation, the label of the LSTM model (i.e., the day-ahead
economic scheduling scheme of the integrated energy system) can be derived, which establishes the
output space of the model. The input and output space are normalized so that they can be used as the
standard data for the LSTM model. Appropriate LSTM network parameters are obtained by training
the LSTM model. Consequently, the day-ahead economic scheduling scheme of the HPES can be
achieved from the predicted values of the PV power, wind power, and load. In order to verify the
performance of the optimized scheduling scheme generated by the LSTM, this paper establishes the
intra-day rolling optimization model of the HPES and compares the intra-day rolling results of three
different day-ahead economic scheduling schemes based on LSTM, mixed integer linear programming
(MILP) and conditional value at risk (CVaR), respectively.
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2.4. LSTM Based Approach

2.4.1. Introduction of LSTM

The LSTM artificial neural network is a recurrent neural network (RNN) proposed by Hochreiter
and promoted by Alex Graves [25]. The long short-term memory function is added so that the
information will not be attenuated, which solves the gradient vanishing and exploding problems
during the long sequence training process of RNN. Figure 3 illustrates the network structure of the
LSTM. There are two states in LSTM: the long term memory ct and the short term memory ht. An LSTM
unit has three inputs and three outputs. For time t, the inputs are the data input xt at time t and the
long term memory ct−1 and short term memory ht−1 at a previous time (t − 1) whilst the outputs are
the data output yt, long term memory ct and short term memory ht at time t.
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The internal architecture of an LSTM unit is indicated in Figure 4 where four training states are
achieved via combining the current input xt and the ht−1 that is outputted from the previous time t − 1.
z f , zi and z0 represents the results of the forget gate, input gate and output gate which are derived by
applying the sigmoid function to the product of the weight (e.g., W f , Wi or W0) and the concatenated
vector [xt, ht−1]. The results are between 0 and 1. z is the network input which is converted to a value
between −1 and 1 by applying the tanh function to the product of the weight W and the concatenated
vector [xt, ht−1].

z f = sigmoid
(
W f

[
ht−1, xt

])
(29)

zi = sigmoid
(
Wi

[
ht−1, xt

])
(30)

z0 = sigmoid
(
W0

[
ht−1, xt

])
(31)

z = tanh
(
W

[
ht−1, xt

])
(32)

There are three steps within the LSTM:
The “forget” step selectively drops the input from the previous node and use z f as the forget

gate controller to decide how much information of ct−1 will be forgotten. Note that the value of z f is
between 0 and 1. Value 0 indicates “completely forget this” whilst 1 indicates “completely keep this”.

The “input” step selectively takes the current input xt where the content of the current input is
denoted by z and zi is used as the input gate controller. Note that the value of zi is between 0 and 1.
Value 0 indicates “completed drop this” whilst 1 indicates “completed take this”.

The “output” step is mainly controlled by z0 and the output yt is achieved by transforming ht.

ct = ct−1
� z f + zi

� z (33)

ht = z0
� tanh

(
ct
)

(34)

yt = sigmoid
(
W′ht

)
(35)
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2.4.2. LSTM based Control Strategy

According to the model established in Section 3.1, the MILP and CVaR based day-ahead economic
scheduling scheme for the HPES can be obtained from the historical data of load, PV power and wind
power (including actual and predicted values). The input space of the LSTM network consists of
six variables that are related to the load, PV power, and wind power. These six variables include
the electrical load LE, hot water load LTW , cold air load Lca, hot air load Lta, PV power PPV and wind
power PW . In order to reduce the number of labels, eleven variables that can represent the operation of
all devices are selected and all other variables of the system can be derived accordingly. The eleven
representative system variables are the natural gas consumption rate vng, hydrogen consumption
rate of the CCHP unit vH2.CHP, electrical power of the electric boiler PEB, smoke power consumed by
the heat exchanger QHE.smoke, smoke power consumed by the absorption chiller QAC.smoke, hot water
power consumed by the absorption chiller QAC.water, hydrogen generation rate of the electrolyzer vhst.i,
hydrogen output rate of the hydrogen storage tank vhst.o, heating power generated by the heat pump
QHP.h, cooling power generated by the heat pump QHP.c and electrical power of the electric refrigerator
PEC. Using the input and output space to train the LSTM network, appropriate network parameters
can be obtained and the day-ahead economic scheduling scheme of the HPES can thus be deduced
from the future predicted data.

This paper denotes the learning process of the MILP based optimization method as experiment 1
whilst the learning process of the CVaR based optimization method as expression 2.

Experiment 1: the input space contains the predicted values of the load, PV power, and wind power
whilst the output space is the operating strategy that is achieved by applying the MILP optimization to
the actual values of the load, PV power, and wind power.

Experiment 2: the input space contains the predicted values of the load, PV power, and wind power
whilst the output space is the operating strategy that is achieved by applying the CVaR optimization to
the predicted values of the load, PV power, and wind power.

3. Results and Discussion

3.1. Data Description and Processing

It is difficult to obtain a complete dataset, and the dataset used in the case study consists of two
parts. The data of PV and wind power is retrieved from the China Meteorological Data Service Centre
whilst the load data comes from a hotel in the United States. Both data cover a one-year period and the
time resolution is one hour. Due to the rich wind resources, meteorological data of the Fujin area in
Heilongjiang province of China is selected. The major parameters include directional irradiation HA,
wind speed, etc. For the PV generation, polycrystalline silicon components are used with conversion
efficiency K1 of 18% and overall efficiency K2 of 90%. In terms of the wind generation, a 600 kW wind
turbine S43 supplied by Goldwind is used. The diameter of its blade diameter is 43.2 m and the
specified cut-in speed is 3 m/s. Note that the local air density is assumed to be 1.2 kg/m3.

PPV = HA× S×K1 ×K2 (36)

PW =
1
2
ρv3S (37)

Using Equations (36) and (37), the actual output of the wind turbine and PV panel can be calculated.
Since this study focuses on the day-ahead economic scheduling, the input to the model should be the
predicted values. On top of the actual values achieved from Equations (36) and (37), a disturbance that
is a function of time t (1.5t/100) is added to construct the input data for the model. Figure 5 shows the
input data for the LSTM training set.
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The output of the model is the day-ahead economic scheduling scheme for the HPES and for both
optimization approaches (i.e., MILP based and CVaR based), the step size is 1 h. The confidence level of
CVaR is configured as 0.99 and the number of Monte Carlo simulation is set as 200. The aforementioned
optimization process is encoded in YALMIP and solved by CPLEX 12.8.0. Table 1 lists the major
parameters of the devices within HPES whilst Figure 6 illustrates the grid electricity price.

Table 1. Parameters of devices.

Device Quantity Parameter Value

Grid /
Pmax

grid.b 1000
Pmax

grid.s 1000

Electric Boiler 2
ηEB 0.95

Qmax
EB 240

Absorption Chiller 12
ηAC 0.8

Qmax
AC 50

Hydrogen Storage Tank 5
Vmax

H2
200

vmax
hst.o 20

vmax
hst.i 20

Heat Pump 14

COPHP.c 3.85
COPHP.h 4

Qmax
HP.c 38

Qmax
HP.h 38

Fuel Cell 1
δHFC 1

vmax
H2.HFC 35

Heat Exchanger 1
ηHE 0.85

Qmax
HE.water 150

Electric Refrigerator 6
COPEC 4
Qmax

EC 20

CCHP 1

vmax
ng 200

MN 80
Pmax

CHP 600
Pmin

CHP 60
R 100

Electrolyser 3
δEL 5
vmax

hst.i 50
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3.2. LSTM Network Training Process

Because the data in the input space has obvious seasonal characteristics (as shown in Figure 5),
it is determined to involve the first 27 days of each month within the entire 12-month data set as the
training set, which is equivalent to 7776 h. The remaining 984-h data is used as the test set. Note that
the timestep = 1 h. The LSTM model established in this paper is implemented using the LSTM module
of the keras framework that is built upon TensorFlow. In Win10 system, the tests are conducted using
the Python-based Spyder environment. The output dimension of the LSTM layer is 100 and a fully
connected layer is attached to the LSTM layer. There are 11 neurons in the output layer indicating
the predicted values associated with the device operating status at the next time interval. The LSTM
network parameters are shown in Table 2.

Table 2. LSTM Network Parameters.

Parameter Experiment 1 Experiment 2

Dimension of LSTM Layer Output 100 100
Loss Function MAE MAE

Number of Iteration 600 450
Dimension of Output Layer 11 11

Data Set 365 365
Learning Rate 0.001 0.001

Solver adam adam

3.3. Result Analysis

3.3.1. Analysis of Training Results

Taking the data of 29th June in the test set as an example, the predicted results in Experiment 1 and
Experiment 2 are presented in Figures 7 and 8. The dotted lines highlight the results of applying the
MILP and CVaR optimization whilst the solid line shows the LSTM predicted results. The optimization
results and learning results of the heat pump cooling power are 0 in both Experiment 1 and Experiment 2
and thus are not illustrated in the figures. In Experiment 1, the predicted results are roughly the same
as the optimization results and the locations of the crest and trough are similar, but there are certain
gaps between the predicted results and optimization results from the perspective of numeral value.
In Experiment 2, the trends and values of the predicted results and optimization results are very close.
In both experiments, the predicted operation status of the CCHP unit (which is a critical device in the
integrated energy system) is correct. It is worth noting that the LSTM is able to facilitate the time series
related day-ahead economic scheduling of an integrated energy system.
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3.3.2. Verification of Training Results on Intra-Day Basis

In order to analyze the training results of Experiment 1 and Experiment 2, an intra-day rolling
optimization model is constructed to fine-tune the day-ahead economic scheduling scheme so that the
intra-day loading requirement can be satisfied. The step size for the intra-day rolling optimization is
1 h whilst the renewable energy output and load takes the actual values of the day. The rolling period
T is 4 h and the optimization aims to minimize the adjustment to the day-ahead scheme. The rolling
optimization will be performed for 21 times. In the 1st to 20th optimization, the scheduling scheme of
the first period in each optimization attempt is taken as the intra-day scheduling scheme for the HPES
whilst the optimization results of the 21st attempt were used as the scheduling scheme for 21 to 24 h
within the day.
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In each optimization, the day-ahead economic scheduling scheme predicted by LSTM network
OPRE and the optimized scheduling scheme achieved by applying intra-day rolling optimization OINT

are both 4× 11 matrices. Matrix Ω is the difference between the two schemes.

Ω = OPRE −OINT =


ω1,1 · · · ω1, j · · ·ω1,11

ω2,1 · · · ω2, j · · ·ω2,11

ω3,1 · · · ω3, j · · ·ω3,11

ω4,1 · · · ω4, j · · ·ω4,11

 (38)

For the intra-day rolling optimization, it is still essential to meet the busbar constraints and device
constraints. The objective function during each rolling optimization attempt is given below.

Objective : min
4∑

i=1

11∑
j=1

∣∣∣ωi, j
∣∣∣

Constraints : (1)–(22), (38)

In this section, we will compare the advantages and disadvantages of the four methods from the
perspectives of economics, adjustment extent, and electricity purchase.

(a) Economic Analysis

Based on the results of intra-day rolling optimization, the intra-day operating cost of the integrated
energy system can be calculated using Equations (23)–(25). In this paper, 41 days’ data within the test
set are used in Experiment 1, Experiment 2, MILP optimization and CVaR optimization to determine the
day-ahead scheduling schemes. After the intra-day rolling optimization, the corresponding intra-day
operating cost is derived. Figure 9 presents the average intra-day operating cost in 41 days for each
optimization approach and the best plan. By applying the MILP optimization to the actual data, the
optimal intra-day scheduling scheme is achieved. The MILP based method results in the highest
average operating cost of ¥4642.9, which is ¥1 higher than that obtained from the CVaR based method.
Experiment 1 leads to the lowest average operating cost of ¥4587.4 which is lower than that of MILP
by 1.17%. The average cost obtained in Experiment 2 is ¥4599.8 which is lower than that of MILP by
0.93%. The final result of Experiment 1 is closest to the optimal solution. It can be observed that the
average intra-day operating costs of Experiment 1 and Experiment 2 are lower than those of MILP and
CVaR methods, which proves the feasibility of using LSTM model for day-ahead economic scheduling
and the economic performance is better than MILP and CVaR.
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(b) Analysis of Adjustment Extent

The extent of adjustment (implemented by the intra-day rolling optimization) to the day-ahead
economic scheduling reflects the resistance of the day-ahead operation plan to the uncertainty (PV power,
wind power, and load) in the system. This paper uses the CCHP unit (which is a critical device in the
integrated energy system) as an example to analyze the performance of four day-ahead optimization
methods (i.e., Experiment 1, Experiment 2, MILP, and CVaR) when various uncertainties are seen on
predicted values. Figure 10 depicts the extent of adjustment to the day-ahead CCHP electrical power
output plan on 29th June, when different optimization methods are used. Considerable adjustment
is observed for Experiment 2 and CVaR. The reason is that CVaR produces a relatively conservative
optimization strategy in order to deal with the uncertainty of renewable generation and load within the
integrated energy system. Since the data set of Experiment 2 is optimized by CVaR, similar adjustment
extent is observed. The adjustment of Experiment 1 and MILP is small, even when the uncertainties of
the predicted values are significant during 15 h and 24 h. The total amount of adjustment for each
optimization method is listed below.

• Experiment 1: 295.5 kWh
• Experiment 2: 1444.7 kWh
• MILP: 326.5 kWh
• CVaR: 1,019 kWh

The adjustment of Experiment 1 is the lowest and only accounts for 20% of that of Experiment 2.
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Figure 10. Comparison of adjustment to the day-ahead combined cooling and heating plant (CCHP)
electrical power output plan on 29th June.

The CCHP operation plan obtained from Experiment 1, Experiment 2, MILP, and CVaR methods
is compared to that from the optimal intra-day scheduling scheme as presented in Figure 11. In the
first 1–8 h, the predicted values are relatively accurate and thus the optimization strategies provided
by MILP and CVaR are closer to the optimal intra-day scheduling scheme. When the error of the
predicted values grows, the gaps between the MILP and CVaR strategies and the optimal strategy are
more obvious. By contrast, the optimization strategy derived from Experiment 1 maintains close to the
optimal scheme in the later period, outperforming the other three strategies. This can also be verified
by the associated system operation cost where Experiment 1 sees the lowest cost of ¥5493. The system
operation cost of Experiment 2, MILP and CVaR are ¥5504.3, ¥5653.6 and ¥5548.4, respectively.
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(c) Analysis of Electricity Purchase

This section compares the amount of electricity that is required to be purchased when using different
intra-day rolling scheduling schemes and Figure 12 shows the results on 29th June. The amount of the
purchased electricity in Experiment 1 is 3232.2 kWh which is the smallest among all four optimization
schemes. It is lower than that of Experiment 2, MILP and CVaR by 1.6%, 13.4%, and 8.5%, respectively.
Purchasing less mount of electricity can reduce the grid pressure and Experiment is superior to other
methods from this perspective.
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3.3.3. Running Time of Optimization Program

Table 3 compares the difference of the optimization running time when applying the four methods
to the data of 29th June. All optimization programs are run on a Windows 10 computer with Intel Core
i7 8750H 2.2 GHz CPU and 16 GB 2666 MHz memory. The LSTM model takes the least amount of time
around 0.2 s whilst MILP requires 0.98 s. The running time of CVaR is approximately 3000 times of the
LSTM running time.

Table 3. Comparison of Optimization Program Running Time.

Optimization Method Experiment 1 Experiment 2 MILP CVaR

Time(s) 0.16 0.23 0.98 586.5
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4. Conclusions

In order to explore the advantages and disadvantages of traditional optimization methods such
as MILP and CVaR and the emerging machine learning methods for day-ahead economic scheduling
of integrated energy systems, this paper proposes an LSTM model that can learn the optimized results
achieved by applying the MILP and CVaR optimization methods and analyses the accuracy of the
learning results. The objective function is specified so that the intra-day rolling optimization with the
smallest deviation from the day-ahead scheduling scheme can be achieved. Based on such objective
functions, the day-ahead economic scheduling scheme provided by Experiment 1, Experiment 2, MILP,
and CVaR are compared in terms of economy, adjustment to achieve intra-day rolling optimization, the
total amount of purchased electricity, and optimization running speed. From this, several conclusions
can be made.

Experiment 1 and Experiment 2 use the LSTM model to learn the optimization results obtained
from MILP and CVaR, respectively. According to the training results, the LSTM predicted values are
close to the optimization results of the test set in terms of the time dimension and device operating
trend. This proves the feasibility of using the LSTM model for the day-ahead economic scheduling of
an integrated energy system.

Subsequently, the training results obtained from Experiment 1 and Experiment 2 are optimized
for the intra-day rolling and compared with those obtained via using MILP and CVaR optimization
methods. Among the four optimization methods, Experiment 1 leads to the lowest average operating
cost and the smallest adjustment of CCHP for intra-day scheduling. The associated intra-day scheduling
after applying the adjustment is also the closest to the optimal scheduling scheme-based optimization
on actual data. In the interaction with the grid, the purchase of electricity in Experiment 1 also has the
least amount of purchased electricity. This proves that the LSTM is superior to the MILP and CVaR for
the day-ahead economic scheduling of integrated energy systems.

Experiment 1 and Experiment 2 are faster than MILP and CVaR. Considering the training results
and the intra-day rolling optimization results, Experiment 1 (i.e., LSTM model is used to learn the
results that are obtained by applying MILP optimization to the actual historical data) outperforms the
Experiment 2, MILP, and CVaR, and can be used for the day-ahead economic scheduling of HPES.

This paper verifies the performance of LSTM in the economic dispatching of hydrogen-containing
energy systems, but the types of equipment in the system are not enough, and the performance of
LSTM in the process of intraday rolling optimization and real-time optimization scheduling is not
examined. The application of LSTM in the daytime rolling optimization and real-time optimization
scheduling will become the focus of the next step, and more energy conversion equipment will be
added to the system structure.
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Nomenclature

Symbol Quantity
∆t Time length of the interval (h)
α Confidence level
β Factor of the CVaR
δ Ratio between Electrical Energy and Hydrogen (kW·h/Nm3)
ε Volume Proportion of Hydrogen in the Gas Mixture
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Symbol Quantity
η Operation Efficiency or Energy Efficiency of Device
µ Binary Variable
ξ Value at Risk
ρ Air Density (kg/m3)
φi Intermediate Variable of Calculating CVaR
Ω Difference Matrix of Scheduling Scheme
C Cost (¥)
c Unit Cost (¥/kWh)
ct Long Term Memory of LSTM
HA Directional Irradiation (kWh/m2)
ht Short Term Memory of LSTM
K PV Efficiency
Lca Cooling load (kW)
LE Electrical Load (kW)
Lta Heating Load (kW)
LTW Hot water load (kW)
LHV Lower Heating Value of Gas Mixture (kJ/Nm3)
n Number of Intraday Rolling Optimization
N Number of Monte Carlo Simulation
O Matrix of Scheduling Scheme
P Electrical Power (kW)
PCHP Electricity generation power of CHP (kW)
PEB Power consumed by electric boiler (kW)
PEC Power consumed by electric refrigerator (kW)
PEL Power consumed by electrolyzer (kW)
Pgrid.b Power bought from grid (kW)
Pgrid.s Power sold to grid (kW)
PHFC Fuel cell generation power (kW)
PHP Power consumed by heat pump (kW)
PPV PV generation power (kW)
PW Wind generation power (kW)
Q Heating/Cooling Power (kW)
QAC Output power of absorption chiller (kW)
QAC.smoke Smoke power consumed by absorption chiller (kW)
QAC.water Hot water power consumed by absorption chiller (kW)
QCHP.smoke Smoke power generated by CHP (kW)
QCHP.water Hot water power generated by CHP (kW)
QEB Hot water power generated by electric boiler (kW)
QEC Cooling power generated by electric cooler (kW)
QHE.smoke Smoke power consumed by heat exchanger (kW)
QHE.water Hot water power generated by heat exchanger (kW)
QHFC Hot water power generated by fuel cell(SOFC only) (kW)
QHP.c Cooling power generated by heat pump (kW)
QHP.h Heating power generated by heat pump (kW)
R Electrical Power Ramping Constraint of CHP (kW/h)
S Cross Sectional Area of Wind Turbine Blade (m2)
t Time
T Rolling Period (h)
V Gas Volume (Nm3)
v Gas Flow Rate (Nm3/h)
xt Input to LSTM
yt Output from LSTM
z Network Input of LSTM
z? Gate Controller of LSTM
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