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Abstract: Research assessing on-road emission flow patterns from motor vehicles is essential in
monitoring urban air quality, since it helps to mitigate atmospheric pollution levels. To reveal the
influence of vehicle induced turbulence (VIT) caused by both front- and rear-vehicles on traffic exhaust
and verify the applicability of the simplified line source emission model, a Computational Fluid
Dynamics (CFD) numerical simulation was used to investigate the micro-scale vehicle pollutant flow
patterns. The simulation results were examined through sensitivity analysis and compared with the
field measured carbon monoxide (CO) concentration. Conclusions indicate that the vehicle induced
turbulence caused by the airflow blocking effect of both front- and rear-vehicles impedes the diffusion
of front-vehicle traffic exhaust, compared with that of the rear vehicle. The front-vehicle isosurface
with the CO mass fraction of 0.0012 extended to 6.0 m behind the vehicle, while that of the rear-vehicle
extends as far as 12.7 m. But for the entire motorcade, VIT is beneficial to the diffusion of pollutants in
car-following situations. Meanwhile, within the range of 9 m behind the rear of the lagging vehicle lies
a vehicle induced turbulence zone. Furthermore, the influence of vehicle induced turbulence on traffic
exhaust flow pattern is obvious within a range of 1 m on both sides of the vehicle body, where the
concentration gradient of on-road emission is larger and contains severe mechanical turbulence. As a
result, in the large concentration gradient area of the pollutant flow field, which accounts for 99.85%
of the total concentration gradient, using the line source models to represent the on-road emission
might introduce considerable errors due to neglecting the influence of vehicle induced turbulence.
Findings of this study may shed lights on predicting emission concentrations in multiple locations by
selecting appropriate on-road emission source models.

Keywords: urban traffic; vehicle induced turbulence; CFD numerical simulation; traffic emission; car
following situations; line source emission model

1. Introduction

The rapid growth vehicle ownership in China leads to increasingly serious traffic emission
problem, which has become one of the main contributors of air pollution since the 1990s [1,2]. Dense
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traffic and population induce heavy concentrated on-road emissions and also a high pollution exposure
level, imposing a threat to human health [3].

Precise air quality management is essential for relieving the health burden caused by road
transportation. Vehicle pollutant concentration prediction is crucial in improving the air quality
management level. Operational models and CFD models are two major urban pollutant dispersion
assessment tools [4]. The operational models use the mathematical methods from empirical monitoring
and experiments, which have been mostly applied to the prediction of emission concentrations in city
scales under different circumstances, including the CALINE model, OSPM model, and so on [5,6].
Computational Fluid Dynamics (CFD) models are generally utilized in small-scale pollutant dispersion
scenarios by analyzing subject-concerned fluid motion and heat transfer using computer-based
numerical methods [7]. Assessing pollutant concentrations under heavy traffic in urban areas is still a
challenging question [8]. As a result, microscale simulations with CFD models have become a useful
method for investigating pollutant diffusion principles [9].

For a long time, the simplified line source models have been used to represent on-road traffic
emission source in CFD simulations. The simplified line source emission models ignore the interaction
of the flow field on the outside surface of the vehicles and the space headway between front- and
rear-vehicles in the car fleet, regarding the traffic emission source as a line source parallel to the
driveways with continuous and homogeneous emissions [10–12]. Jeanjean et al. [13] studied the
influence of street trees on road traffic emission dispersion at a city scale by introducing line source
models with emission rates of 1 ugs−1m−2 for all roads in OpenFOAM software, finding that trees
can reduce the concentration of vehicle pollutant by 7%. Sun and Zhang [14] analyzed and discussed
the effectiveness of avenue trees in dispersing vehicle pollutant in asymmetric street canyons, with
a velocity inlet in ANSYS Fluent as a line source model, indicating that wind direction and canyon
geometry play important roles in traffic exhaust diffusion. Buccolieri et al. [15] found that the ratio
of street width to building height (W/H) is a crucial variable affecting pedestrian height level traffic
originated pollutant concentration, with four tracer gas emitting line sources simulating on-road vehicle
emissions. However, few studies have discussed the applicability and effectiveness of line source
design in simulating vehicle pollutant sources. Meroney et al. [16] found that closely spaced point
sources rather than uniformly continuous line sources can better approximate the traffic exhaust source.
Within the city scale, the interaction between the urban traffic and atmosphere movement tends to
induce complicated flow patterns. This fact produces a heterogeneous distribution of on-road emissions
and the strong emission concentration gradient [17] in urban roads, which is difficult to simulate by
using the extremely simplified line source model. The studies of automotive aerodynamics illustrate
that the flow over a vehicle contains extremely complex mechanical turbulence [18]. Rao et al. [19]
found that noticeable augmentation of turbulent kinetic energy appeared in heavy traffic conditions.
Affected by the airflow blocking effect in car-following situations, vehicle induced turbulence (VIT)
significantly influences exhaust dispersion in urban areas, especially in street canyons [20]. Due to the
oversimplification of line source models, the impact of vehicle induced turbulence on traffic exhaust
flow pattern and instantaneous exposure concentration of pedestrians has been ignored, resulting in
deviation from reality. According to Deng and Guan [21], the simulated concentration error of the
infinite line source emission model is at a 10−1 order of magnitude, introducing considerable errors
due to neglecting the influence of vehicle induced turbulence. Few studies have investigated the effect
of vehicle induced turbulence and applicability of line source models under heavy traffic conditions in
the urban environment.

The problems investigated in this paper include the following: Does vehicle induced turbulence
affect the flow pattern of on-road emissions? If so, how does vehicle induced turbulence influence the
traffic exhaust flow pattern? Are simplified line source models always valid when simulating a vehicle
pollutant source? Through field measurement, datasets related to roads, traffic, meteorology, and CO
concentration were obtained. As complex fleet conditions can be decomposed into models of multiple
vehicles in front and behind, an idealized car following system including two vehicles was established.



Sustainability 2019, 11, 6705 3 of 17

A typical vehicle model was chosen using the occupancy statistics of the Chinese automobile market.
Through the grid sensitivity analysis, a reasonable meshing scheme was determined. CO was chosen
as the tracer gas, which is chemically inactive and has stable properties [22]. With the ANSYS Fluent
software, the CFD numerical simulation method was used to conduct the microscale simulation
of an on-road emission flow pattern, which has a better performance of simulating complicated
airflows [23,24]. Results were examined by comparison between the CO field measured concentration
and the CO simulated concentration.

The remainder of the paper is structured as follows: Section 2 summarizes the fundamental field
measurement process and CFD modeling methodologies, along with the grid sensitivity analysis and
model calibration used to illustrate the validity and reliability. In Section 3, results of steady-state
simulation and transient simulation in CFD numerical simulation were presented to assess the influence
of VIT. Conclusions and recommendations for future work are provided in Section 4.

2. Methodology and Modeling

The CFD simulation is built on numerical methodologies and algorithms by applying representative
models and a realistic dataset [25]. The traffic flow, CO concentration, and meteorology information
required were obtained from field measurements (see Section 2.1). Then, the numerical approach is
detailed, including a computational domain built-up, mathematical model, CFD parametrization, and
CFD model assumptions. A grid sensitivity analysis was performed before the main CFD simulation
to ensure there is an adequate grid resolution, followed by model calibration to verify the effectiveness
of the simulation.

2.1. Field Measurement

Jinan city is located at 36◦40′ N latitude and 116◦57′ E longitude, northwest of Shandong Province,
China [26]. Qingnian East Road, a traffic artery with typical road configuration (two-way, six-lane,
double-sided sidewalk) located in the downtown area of Jinan city, was chosen as the representative
trunk road for field monitoring. The observed road segment was between intersections to avoid the
error caused by the concentration and dispersion of traffic flow and pedestrians. At the same time, the
selected road section was flat, without vehicle climbing and turning errors and was not affected by
side parking at bus stops or temporary stops. As such, the selected measurement segment was the
road section between the cross-section of Qingnian East Road and Jingshi Road, and the cross-section
of Qingnian East Road and Wenhua West Road. The monitoring location was selected at the midpoint
of selected road segment, thus reducing the impact of vehicle stop and go, acceleration, deceleration,
lane changing, and pedestrian crossing at intersections, etc. Situated in the city center of Jinan, the
monitoring location is surrounded by some famous attractions, like Quancheng Park and Mount
Qianfo, as well as urban functional areas like hospitals, universities, business district, and TV stations,
and has a large traffic flow. Field measurements were conducted during PM peak hours in 20 April
2018, from 16:30 to 18:30, when the traffic flow was relatively steady in both volume and composition.

2.1.1. CO Concentration

To provide real CO concentrations for examination, Langan Model T15n CO Measurers were
used to collect and record CO concentrations for every 5 s. Four monitoring points (Figure 1) were
perpendicular to the road direction from the roadside to the outside at pedestrian height (1.5 m). These
points spanned 6-meter and are 2-meter apart from each other, to detect the variation of concentration,
with comparable larger gradient in the perpendicular direction than along the road direction.

During the measurement, the temperature was about 26 ◦C, and the maximum and average wind
speed were 2.5 m/s and 1 m/s, at the monitoring location, with the wind direction mainly coming from
the north.
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counting times corresponding to the time headway reading from the recorded video. The probability 
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highest market share [28]. Thus, the MIRA model of notch-back sedans was selected, as it has 
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2.1.2. Traffic Flow

The average speed and space headway of the traffic flow during peak hours were captured
by portable radar speed detectors and video recorders. In this paper, the Bushnell 10-1911 radar
speedometer was adopted to collect the instantaneous velocity, and the recorded video was used
to count the vehicles and calculate time headway manually. According to the dataset obtained, the
representative peak hour was selected as 17:20–18:20. The peak hourly volume was 1080 vph (small
passenger cars only), with an approximate average speed of 9.29 m/s. A total of 600 effective peak hour
time headways were collected and the scatter diagram was plotted according to frequency counts in
Figure 2a, where the X axis represents effective time headway and the Y axis represents counting times
corresponding to the time headway reading from the recorded video. The probability distribution
curve of the data was fitted in MATLAB (Figure 2b). The time headway (s) corresponding to the
highest point (A) of the fitting curve was the saturated time headway, 2.6 s. With the average speed
(9.29 m/s) calculated, the average space headway (m) of peak hour was approximated as 24.15 m using
Equation (1) [27]

hs = V · ht = 9.29× 2.6 = 24.154m. (1)
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2.2. Numerical Approach

2.2.1. CFD Model Built-Up

A CFD simulation model including two vehicles on car-following state was established. According
to the automobile sales statistics released by China Association of Automobile Manufacturers (CAAM)
in 2017, the sales of sedans exceeded SUV and MPV, accounting for the highest market share [28].
Thus, the MIRA model of notch-back sedans was selected, as it has abundant aerodynamic resistance
experimental data and the outline is similar to the actual vehicle surface streamline [29]. By setting
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the space headway as the average value of 24.15 m, the geometrical configuration of CFD numerical
simulation was modeled and shown as in Figure 3a. The computational domain was established to be
sufficiently large to imitate the actual flow field precisely, and the total blockage ratio was 0.968%, well
below the 3% recommended criterion [30].Sustainability 2019, 11, x FOR PEER REVIEW 7 of 18 
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2.2.2. Mathematical Model

Because an automobile’s external flow field involves variations in traffic emission dispersion over
time, and can be regarded as having unsteady, viscous, and incompressible flows [31], the governing
equations in Cartesian coordinate system, as the derivation deduced by Batchelor et al. [32], includes
continuity equations (Equation (2)) and momentum equations (Equation (3)):

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (2)

∂(ρui)

∂t
+
∂
(
ρuiu j

)
∂x j

= −
∂p
∂xi

+
∂τi j

∂x j
+ Fi (3)

τi j = 2µSi j −
2
3
µ
∂u j

∂x j
δi j (4)

Si j =
1
2

(
∂ui
∂x j

+
∂u j

∂xi

)
(5)

δi j =

{
0 , i , j
1 , i = j

(6)
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where ρ is the flow density, ui and u j are the component velocities in different directions, p is the flow
pressure, Fi is the component body force in one direction, t is time, xi, x j are coordinate components,
τi j is the viscous stress tensor (Equation (4)), µ is dynamic viscosity, Si j is the deformation rate tensor
(Equation (5)), and δi j is the Kerodiler function (Equation (6)), according to Blazek [33].

For the turbulence model, the RNG k− ε model was used to calculate air flow process because
it agrees with the experimental results and shows reliability in automobile flow field calculation
problems [34,35]. In the light of Pulliam and Zingg [36], the turbulent kinetic energy k and the
turbulence dissipation rate ε are set based on Equations (7) and (8), where R represents additional
source term caused by deformation rate, µt represents turbulence viscosity, as calculated by Equation (9)

∂(ρk)
∂t

+ ρu j
∂k
∂x j

=
∂
∂x j

[(
µ+

µt

σk

)
∂k
∂x j

]
+ µt

∂u j

∂xi

(
∂ui
∂x j

+
∂u j

∂xi

)
− ρε (7)

∂(ρε)

∂t
+ ρu j

∂ε
∂x j

=
∂
∂x j

[(
µ+

µt

σε

)
∂ε
∂x j

]
+

c1ε
k
µt
∂u j

∂xi

(
∂ui
∂x j

+
∂u j

∂xi

)
− c2ρ

ε2

k
−R (8)

µt = cµρ
k2

ε
. (9)

ui and u j are the average of the transient values ui and u j. Turbulent Prandtl number for k and ε
are represented by σk and σε, respectively. Empirical constants c1, c2, and cµ have a given value of 1.44,
1.92, and 0.09, respectively.

Moreover, the emission dispersion process was calculated using special transport equations [37]:

∇ · (ρµYi) = ∇ ·
(
ρDi,e f f∇Yi

)
+ Si (10)

Di,e f f = Di,m +
µt

ρSct
(11)

where Yi is the mass fraction of component i, Di,e f f is the effective mass diffusion coefficient, Di,m is the
molecular diffusivity, and Si is the generation rates. Meanwhile, Sct is the turbulent Schmidt number
used to show the scalar dispersion competence of pollution, selected according to specific condition,
with an optimal value ranging from 0.3 to 1.0 [38]. This study used a Schmidt number of 0.7.

2.2.3. CFD Parametrization

According to the wind speed, wind direction, and other information obtained from the field
meteorological condition monitoring of the detecting location, corresponding computational domain
boundary conditions (Figure 3b) can be set.

• Inflow boundary: Velocity-Inlet, Temperature = 300 K, CO Mass Fraction = 0.001.
• Outflow boundary: Pressure-Outlet, Static Pressure = 0.
• Ground and vehicle body surface: Stationary Wall, Roughness Height (m) = 0, Roughness

Constant = 0.5.
• Top and side surfaces: SYMMETRY.
• Exhaust pipe: Velocity-Inlet (VCO = 4.8 m/s), CO Mass Fraction = 0.1.
• Flow (air): Pressure = 1.01325 × 105 Pa, Temperature = 288 K, Density = 1.225 kg/m3,

Dynamic Coefficient of Viscosity µ = 1.7894 × 10−5 Pa · s, Kinematic Coefficient of Viscosity
υ = µ/ρ = 1.461× 10−5 m2/s.

2.2.4. CFD Model Assumptions

Focusing on simulating CO emission concentration distribution under car-following induced
turbulence, some assumptions are used in this paper to achieve a balance between computational
expense and simulation precision.
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Assumption 1. The automobile external flow field can be regarded as unsteady, viscous, and incompressible flow,
which is consistent with the continuous medium hypothesis for establishing the N-S equation of fluid dynamics.

Assumption 2. The model treats the motor vehicle as a closed entity and neglects the exchange of internal and
external fields caused by the opening of the skylight, side window, or external circulation system of the vehicle.
Therefore, the steering wheel, seats, and other interior parts of the vehicle are ignored.

Assumption 3. The influence of vehicle surface details and slight deformation on the flow field outside the
vehicle is ignored. Therefore, the CFD vehicle model is only built with the external frame structure of the specified
vehicle, while the mirrors, bumpers, grille, sealing element, handrail, and external antenna are ignored.

Assumption 4. Based on the demand of tail gas emission simulation, the motor vehicle exhaust pipe does not
belong to the detailed components in Assumption 3 and should be simulated separately.

Assumption 5. Compared to dynamic impacts of emission flow, the thermal effects are considered to be
less significant.

Assumption 6. Under actual road conditions, traffic flow is fluctuating all the time. However, given the
limitations of computer processing power and the complexity of fluctuant traffic flow simulation, it is almost
impossible to fully simulate traffic flow changes. Thus, the vehicles in the simulation model are moving forward
at the same speed. And the more complicated fluctuant traffic flow situation can be simulated further on the basis
of this study.

2.3. Grid Sensitivity Analysis

Unstructured grid was adopted around the vehicle, and structural grid was adopted in the
computational domain periphery. In addition, the vehicle surface, ground area, and trailing vortex
area were divided into detailed mixed grid schemes. To ensure that the simulation result data were
independent from the grid resolution, a grid sensitivity analysis was carried before starting the
calculation, since grid size can influence error propagating (13). The precision of grid size was divided
into four scales: Low, Medium-low, Normal, and High, corresponding to maximum grid size of 0.25 m,
0.3 m, 0.35 m, and 0.4 m, separately, in ANSYS ICEM CFD software. Testing the four precision scales,
with aerodynamic resistance coefficient (Cd) as the inspection standard:

Cd = F/(q · S) (12)

where F is the aerodynamic resistance, q is the inflow dynamic pressures, and S is the frontal projected
area of vehicle. Selecting the CODASC wind tunnel experiments data 0.3055 as the standard Cd [39], a
residual convergence of 10−5 was used for four cases. The grid quantity and Cd results are summarized
in Table 1.

As shown in Table 1, when the maximum grid size is 0.4 m and 0.35 m, the number of grids was
small and the simulation accuracy was poor. When the maximum grid size was 0.3 m and 0.25 m, errors
of both were less than 5% of the previous result, but the difference of grid number was nearly doubled,
indicating that when the maximum size was less than 0.3 m, further refinement of grid had little effect
on improving computational accuracy. Therefore, the Normal precision was adopted to divide the
formal computational domain grid. This divide scheme not only achieved grid independence, but also
obtained a balance between accuracy and CPU time.

Table 1. Verification results of grid sensitivity analysis.

Precision Low Medium-Low Normal High

Max grid size (m) 0.40 0.35 0.30 0.25
Grid quantity 300,000 450,000 650,000 1,150,000

Cd 0.366 0.364 0.320 0.312
Error (%) 19.80 19.20 4.70 2.10
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2.4. Model Calibration

The CFD simulated CO mass fraction was further verified with the field measurements. Due to
the low concentration of CO in the air, the measurers may suffer with readings deviation. As a result,
the CO concentration obtained from sampling was averaged before comparison (Figure 4a).
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field measurement.

The overall measured roadside CO concentration presented a steady rise trend, and the reasons
were preliminarily speculated as follows:

• The monitoring duration was at the evening peak, with large motor vehicle flow and high CO
emission intensity;

• There are tall buildings on both sides of the monitoring locations, and CO was easy to
accumulate there;
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• On the day of experiment, the wind speed was small, which makes it difficult for CO to enter the
surrounding area.

After the simulation converged, comparison between the simulation output and the averaged
measurements were plotted in Figure 4b. The dotted line represents the CO mass fraction obtained by
numerical simulation, while the solid line is the CO concentration obtained by field monitoring.

To ensure the effectiveness of the simulation, the monitoring points were set perpendicular to
the road. If the simulation was inaccurate, the output curve would largely deviate from the observed
value. In Figure 4b, the overall trend of simulation curve was in accordance with the field measurement
curve. Moreover, the percentage uncertainty of CFD simulation compared to the field measurement at
four monitoring points (A, B, C, D, see Figure 1) was 2.3%, 18.2%, 14.5%, and 6.2%, respectively, all far
lower than the results from the previous study, which is about 30% [40]. Therefore, the simulation
model and outputs were recognized as valid.

In addition to a validation between the data obtained with CFD and the field measurement, other
previous literature were examined to assure simulation accuracy. The pressure coefficients of the
front-vehicle surface are plotted in Figure 5. The pressure on the front of the car and the window was
high, and there was a negative pressure area at the junction of the window and the upper surface of
the car body. The pressure coefficient distribution and the value of pressure were consistent with the
previous studies [41–43]. Thus, the robustness of the model is verified.
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3. Results and Discussion

To further investigate the spatial and temporal flow pattern of traffic exhaust, steady-state
simulations and transient simulations were performed. The main results are as follows.

3.1. Steady-State Simulation Results

3.1.1. Verification of Existence of VIT Influence

To verify that vehicle induced turbulence influence the flow pattern of on-road emission, velocity
vector of the front- and rear-vehicles surrounding in the exhaust pipe longitudinal section are shown
in Figure 6a. Through the spatial distribution of velocity vector, difference of exhaust flow pattern,
related closely to air motion, can be performed. Here the velocity of the inflow boundary was set to
10.29 m/s, equaling to the fleet average speed plus the opposite average wind speed from north in peak
hours, i.e., the speed of the wind relative to the car.
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Figure 6. Diffusion in the directions along the road and perpendicular to the road, (a) Velocity vector
contrastive diagram of the longitudinal section, (b) CO concentration contrastive diagram of the
longitudinal section, (c) Concentration distribution map with a CO mass fraction of 0.0012, (d) CO
concentration contrastive diagram of 4 m behind the tail of the front car, 4 m behind the tail of the rear
car, and 6 times the vehicle length behind the tail of the rear car, (e) CO mass fraction at pedestrian
breathing height (1.5 m) on both sides of the road.
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As can be seen from Figure 6a, the blocking effect of vehicles on the flow field makes the airflow
velocity in the head, windshield, and tail of vehicles decrease significantly. Moreover, when vehicles
are in the normally car-following situations, the air velocity around the two vehicles is obviously
different, and the velocity around the rear car is generally lower. The blocking effect of front car causes
the airflow to converge at the tail, forming a complex trailing vortex area, where vortexes are constantly
generated, rotated, and shed, resulting in the energy loss of airflow impinging on the rear car. Thus,
airflow velocity at the head of rear car is remarkably lower than that of the front car. At the same time,
the blocking effect of rear car induces boundary layer and turbulent separation area around the rear
vehicle, aggravating the velocity decrease at the windshield, the interface of the windshield, the and car
roof and underbody, compared to the front vehicle. Due to a distinct difference existing in the velocity
vector around both front- and rear-vehicles, emission diffusion is bound to be different, indicating that
vehicle induced turbulence has an impact on the on-road emission flow pattern. To explore the specific
influence of vehicle induced turbulence on the flow pattern of traffic exhaust, the characteristics of the
flow field both perpendicular to and along the road direction were analyzed separately.

3.1.2. Influence of VIT in Direction along the Road

In the direction along the road, the CO mass fraction distribution map in the exhaust pipe
longitudinal section is shown in Figure 6b. A red color indicates the highest CO concentration, followed
by green, while blue indicates the lower concentration, and white indicates the lowest. It can be
observed that the flow pattern of vehicle pollutant near the exhaust pipe remains consistent, but the
emission of rear car diffuses faster. The concentration distribution map with CO mass fraction of 0.0012
is presented in Figure 6c. By comparing the dark blue areas with same CO mass fraction (=0.0012)
along the tail of the two vehicles, it can be figured out that the dark blue area of the rear car has an
extension distance (12.7 m) about twice as large as that of the front car (6.0 m). The trailing vortex area
caused by the front car as well as the external surface boundary layer and turbulent separation area
caused by the rear car impede the emission diffusion of front car and reduce diffusion dilution speed.
As shown in Figure 6a, the interval from the tail of front car to the head of rear car is a low-speed flow
area, indicating that VIT hinders the emission diffusion of the front car by reducing the airflow velocity.

3.1.3. Influence of VIT in Direction Perpendicular to the Road

In the direction perpendicular to the road, Figure 6d shows the partially enlarged CO mass
fraction map of a cross section at 4 m behind the tail of the front car, 4 m behind the tail of the rear car
and 6 times vehicle length behind the tail of the rear car, respectively. Through comparison, on-road
emissions of the rear car diffuse faster than that of the front car at the same distance (4 m) behind the
two vehicle tails in direction perpendicular to the road. The equal-scale enlargement map of Figure 6d
indicates the existence of a large concentration gradient area in the cross section. In fact, the large
concentration gradient area is within a range of 1 m on both sides of the vehicle’s body, even in the
well-diffused cross section which is 6 times the vehicle length behind the tail of the rear car. The CO
mass fraction at the exhaust pipe is 0.1, and the ambient background CO concentration is 0.001. Thus,
the total concentration gradient is 0.999. However, the mass fraction at 1 m away from the vehicle
body decreased to 1.15 × 10−3, so there was a large concentration gradient area accounting for 99.85%
of the total concentration gradient only within 1 m on both sides of the vehicle’s body.

To determine the specific numerical relationship between on-road emission concentration and
background emission concentration 1 m away from vehicle sides, quantitative analysis was carried
out on the concentration of two intersected lines which are parallel to and 1 m apart from the left and
right vehicle sides, at the pedestrian breathing height (1.5 m) level, as shown in Figure 6e. It can be
inferred that the right side concentration curve first increases compared with the left side, and the
on-road emissions reached the right intersected line fast. Moreover, at the same distance behind the
exhaust pipe of the front car, the emission concentration of the right intersected line (solid line) was
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higher than that of the left (dash line). This is mainly because the exhaust pipe is on the right side of
vehicle center longitudinal section, so that the right intersected line is closer to the exhaust pipe.

In terms of pollutant concentration, the difference between the numerical value of the two
curves in Figure 6e and the background concentration (0.001) was less than 10−6, and concentration
at vehicle side 1 m was very close to the background concentration. Namely, the effect of vehicle
induced turbulence caused by front- and rear-vehicles on the traffic exhaust flow pattern was limited.
More importantly, within a range of 1 m on both sides of the vehicle body there was a rather large
concentration gradient area, containing sharp mechanical turbulence and a complex on-road emission
flow mechanism. In this region, VIT should be considered carefully as it could have a dominant
influence on the emissions concentration.

3.2. Transient Simulation Results

In addition to the steady-state simulation, the transient simulation assists to obtain the process
of physical quantity changing with time. Different from most previous correlated studies, to make
the numerical simulation more accurate, this paper used dynamic grid technology to solve the fluid
boundary motion problem in a transient simulation, which can better simulate the shape of flow field
changing with time due to boundary motion. A layering grid update method in the ANSYS Fluent
software was applied to establish the dynamic grid model. The motion state of vehicles in the CFD
model built in Section 2.2.1 can be defined using transient profiles, which use time and speed of point
seriation to specify the motion mode of the component [44]. Here the vehicle speed was set to 9.29 m/s,
and velocity of the inflow boundary was set to 1 m/s as the average wind velocity. Two vehicles were
assumed to move at the same speed in 4 s together in the computing domain. The single simulation
time step was set at 0.005 s, and the total simulation time steps were 800.

3.2.1. Judgment of Stable Driving State

It is necessary to get time steps in order to reach the stable moving state. Different from the
continuous running situation on real roads, in the early stage of simulation, two vehicle models started
from being static. Therefore, the initial simulative stage should be eliminated during the analysis
process. The aerodynamic resistance coefficient Cd was used to determine whether the vehicle had
reached a stable driving state. When Cd was stable at a certain value, the state was considered as stable.
Upon taking 0.1 s (20 steps) as the time interval for statistical analysis, Cd was basically stable at 0.3
after 200 steps. Therefore, the analysis was based on the time step larger than 200 (time after 1 s).

3.2.2. Influence of VIT over Time

Figure 7 presents the corresponding relationship between the vehicle position and the velocity
field. The reference plane was selected at the cross Section 4 m behind the tail of the front vehicle at
the beginning of the simulation. The observation interval was 0.6 s. For the process of the rear car
approaching, passing, and leaving the reference plane, the high-speed diffusion area focused on a
small portion of the field, since large areas of the periphery had a low air flow velocity. It could be
inferred that the low emission concentration at 1 m away from the vehicle sides was affected by the
low airflow velocity. Meanwhile, when the rear car left the reference plane, the velocity map of the
reference plane had no obvious changes since the tail of the rear car was 9 m away from the plane.
In this case (9.29 m/s speed, 24.15 m space headway), 9 m behind the rear car was recognized as the
airflow disturbance zone, with the influence of VIT weakening after 9 m.
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4. Conclusions

In this paper, a CFD numerical simulation of on-road emission flow pattern in urban roads was
performed to verify and reveal the influence of vehicle induced turbulence. A complex fleet situation
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was decomposed into the superposition of front- and rear-car following models, and the influence of
VIT on one group of car-following models was studied. Conclusions can be drawn as follows:

• The vehicle induced turbulence caused by front- and rear-vehicles impedes the diffusion of traffic
exhaust of the front car. Until the convergence timing occurred in the steady simulation, the
front-vehicle isosurface with the CO mass fraction of 0.0012 extended to 6.0 m behind the vehicle,
while rear-vehicle isosurface with the CO mass fraction of 0.0012 extended to 12.7 m behind the
vehicle. Thus, in the direction along the road, the dispersion speed of the rear car pollutant was
about twice that of the front one. According to Wang et al. [45], the CO concentration of a single
car drops to a number near the background concentration within 4 m of the vehicle rear, which is
lower than the results in this paper. By comparison, we can draw the conclusion that although
the emissions of the front vehicle disperse slower than that of the rear vehicle, from an overall
perspective, VIT is beneficial to the diffusion of pollutants of a motorcade.

• In the direction perpendicular to the road, the VIT influence area is generally concentrated
within 1 m of the vehicle side. This result is consistent with the research of Wang et al. [45],
which concluded that the concentration is relatively high within the radius of the exhaust pipe
from 1 m to 1.5 m. That is, within a range of 1 m on both sides of vehicle there is a large
concentration gradient area, which accounts for 99.85% of the total concentration gradient between
the background environment and the exhaust pipe, which contains sharp mechanical turbulence
and a complex traffic exhaust flow mechanism. In the large concentration gradient region, VIT
should be considered carefully since it might affect the on-road emissions concentration.

• In this research, with the fleet average speed of 9.29 m/s and the average space headway of 24.15 m,
the vehicle induced turbulence zone was approximated within a range of 9 m behind the rear car,
afterwards the influence of VIT weakened.

The main limitation of the CFD simulation model proposed in this paper is that the fluctuant
traffic flow was simplified into vehicle fleet of uniform motion, due to the assumptions imposed
in Section 2.2.4. In addition, only the MIRA model of notch-back sedans was selected to explore
the emissions flow pattern in this paper based on the statistics of actual road vehicle composition.
However, the model calibration introduced in Section 2.4 concludes that the assumptions applied can
simulate the actual condition well.

Overall, this paper supplemented research on vehicle pollutant flow pattern regularity and paved
the way for using CFD to investigate the influence of vehicle induced turbulence. The outcomes
discovered in this study have practical significance, which assists to minimize the adverse impacts of
heavy vehicle emissions through reasonable traffic management and planning. For example, relieving
traffic congestion and making sure that vehicles in a car fleet have a large space headway can effectively
speed up vehicle pollutant diffusion, as exhaust dispersion of the front car can be impeded on by
the rear-vehicle airflow blocking effect. Moreover, it is recommended to set a green belt or other
infrastructure to keep a distance between the outside lane and adjacent non-motorized lane that
is greater than 1 m, to avoid the risk of riders in the non-motorized lane and pedestrians inhaling
excessive automobile exhaust.

Results in this paper suggested the application scope of the line source traffic emission model,
which may be utilized in emission quantitative statistics and studies about roadside traffic pollution
distribution. However, when using a complex turbulent flow field for surrounding the vehicle,
involving the influence of road barriers and a green belt on traffic exhaust diffusion and so on,
simplified line source models may induce remarkable errors at a 10−1 order of magnitude. Future
research can focus on supplementing the vehicle model and the improvement of real traffic flow
fluctuant imitation in simulations. Other vehicle models, such as trucks, or combinations of vehicle
models can be used to explore the differences between VIT impacts on various motorcycle types.
Moreover, a dynamic motorcade model which considers the distribution frequency of the vehicle speed
may be established to improve simulation accuracy and better reflect actual vehicle movement. Further
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studies may be conducted to reveal the specific manifestation of the concentration differences between
line source models and the actual situations by incorporating dense monitoring data, refined models,
and even large amounts of big data [46].
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