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Abstract: With the continuous improvement of people’s living standards and their increasing 
demand for fresh food, the cold chain logistics industry has developed rapidly. One of the biggest 
challenges to today’s cold chain logistics is to offer fresh food while minimizing CO2 emissions. The 
fresh degree and CO2 emissions are involved in the vehicle routing optimization problem in the 
cold chain logistics. In order to meet the quality requirement for fresh agricultural products and 
low carbon logistics, a novel routing optimization model considering the costs of quality 
deterioration and carbon emissions (Low Carbon and Freshness Degrees Vehicle Routing Problem 
(LCFD-VRP)) for cold chain distribution was established in this study. This model takes into 
account the fixed cost, fuel cost and time window penalty cost. An improved ant colony algorithm 
(IACA) is used to optimize the whole vehicle distribution routing with its strong global search 
ability. Tabu Search (TS) algorithm is used to search the single vehicle distribution routing with its 
good local search ability. An IACA combined with TS (IACATS) was proposed to solve the above 
LCFD-VRP model. The practicability of the model and the effectiveness of the above improved 
algorithm are verified using a real case study. The results of Zhoushan Dayang Refrigerated 
Logistics Co., Ltd. showed that, compared with the traditional algorithm, IACATS could reduce the 
dispatching of two refrigerated vehicles, thus lowering the total cost by 4.94%, shortening the 
actual transportation distance by 5.50% and cutting the total CO2 emissions by 8.9%. Therefore, the 
LCFD-VRP model can effectively help to achieve the low carbon emissions, multi-variety and 
low-cost distribution of fresh agricultural products. The proposed model and IACATS algorithm 
would be used to optimize VRP in cold chain enterprises. The results of this study also provide 
management suggestions for cold chain enterprises to effectively balance economic cost and 
environmental cost.  

Keywords: cold chain logistics; vehicle routing problem; improved ant colony algorithm; tabu 
search; fresh degree; CO2 emissions 

 

1. Introduction 

With the development of the economy and the improvement in people’s life quality, green and 
healthy products have gradually become the primary standard for consumers to choose fresh foods 
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[1]. This has resulted in the rapid development of global fresh agricultural products via cold chain 
logistics around the world. Compared with traditional logistics, the cold chain logistics of 
agricultural products has higher requirements for quality and timeliness [2]. The normal operation 
of refrigeration equipment produces a large amount of CO2 emissions and other greenhouse gases 
generated from distribution vehicles in the process of delivery. It leads to an increase in greenhouse 
gases and, as a result, air pollution and greenhouse effect will be intensified. The increased carbon 
emissions not only pollute the environment, but also raise the cost of logistics enterprises due to the 
implementation of national carbon-taxing policies [3]. Therefore, how to reduce carbon emissions in 
cold chain logistics, thereby alleviating the global warming caused by the greenhouse effect, has 
become a popular issue in the research field of cold chain logistics distribution routes [4]. 

In recent years, the optimization of cold chain logistics distribution routes has attracted 
extensive academic attention [5,6]. Although the above-mentioned studies have considered the 
impacts of various cost factors on cold chain logistics, there is still little research on cold chain 
logistics that considers the three factors of economy, product freshness, and environment at the same 
time [7]. Therefore, further studies should focus on how to construct suitable model to minimize cost 
coupling with increasing of product freshness and decreasing carbon emissions in the model 
according to the real situations. Considering the number of nodes explosively increase in cold chain 
logistics, how to design more effective algorithms to improve the efficiency of solutions to the model 
of the problem is of great urgency. More importantly, the practicability of the model and the 
effectiveness of the algorithm need to be verified by real cases. 

We herein propose a comprehensive Low Carbon and Freshness Degrees Vehicle Routing 
Problem (LCFD-VRP) model to optimize vehicle routing. This aims to minimize total costs, 
including the carbon emissions costs, and to maximize product freshness, based on the strategy of 
cost–benefit. The potential challenges in finding the solution of LCFD-VRP using improved ant 
colony algorithm combined with tabu search (IACATS) are as follows: 1) what are the essential 
attributes in the routing optimization? 2) How does the IACATS synergetic handle all the vehicles 
and the single vehicle in short time? 3) How are the simulated results evaluated? By means of 
IACATS algorithm, we used the strong global search ability of the improved ant colony algorithm to 
optimize the overall vehicle routing, and the local optimization ability of the tabu search (TS) 
algorithm to solve the local search of a single vehicle distribution route in the constructed 
LCFD-VRP model. The LCFD-VRP and IACATS algorithm were verified through a case study of the 
distribution service of fresh agricultural products provided by Zhoushan Dayang Refrigerated 
Logistics Co., Ltd. in Zhoushan, Zhejiang Province, which fits more with the real enterprise 
operations. It also achieved the three win–win situation among economic, environmental benefits 
and personal health demand.  

Thus, the remainder of this paper is organized as follows: a literature review is presented in 
Section 2. The model formulation is proposed in Section 3. An improved ant colony algorithm and 
TS algorithm is described in Section 4. The algorithm construction and case study are shown in 
Section 5. The results are illustrated in Section 6. The short discussion and the outlook for future 
research are presented in Section 7. Finally, the conclusions of this paper are listed in Section 8. The 
schematic illustration of this paper can be expressed as follows (Figure 1). 
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Figure 1. Flowchart of this study. 

2. Literature Review 

This paper mainly aims to obtain an optimal distribution plan with consideration of the fresh 
degree and carbon emissions in cold chain logistics distribution. By reviewing the previous research 
literature [8–11], we have found that the academic research on this issue can be divided into the 
following four fields: VRP model in cold chain logistics, VRP with freshness degree, VRP with 
carbon emissions and optimization algorithms.  

2.1. Research Considering the VRP Model in Cold Chain Logistics 

VRP has been treated as one of the most important theoretical and practical problems in 
mathematical and logistics fields since it was first proposed by Danttzig and Ramser in 1959 [12]. 
VRP can be classified into many sub-problems according to the different situation mathematical and 
logistics fields [13]. Many experts have focused on the fuel consumption model and the instant fuel 
consumption model in cold chain logistics [14]. Hsiao et al. [15] stated the relationship between the 
speed and load of the vehicle as well as its fuel consumption to establish the fuel consumption model 
in cold chain logistics. It can be concluded that running time is an engine-related module with a 
linear mathematical relationship among the total weights of the vehicle and velocity. Cheng et al. 
[16] considered the travel distance, the speed of the car, the load of the vehicle, etc., assuming that a 
bigger load M (mass) of the vehicle would increase p (speed). In regards to the instant fuel 
consumption model in cold chain logistics, Zhang et al. [17] considered the vehicle’s characteristics, 
such as weight, travel speed and acceleration, and established the vehicle instantaneous fuel 
consumption model in cold chain logistics. Many scholars have further constructed high quality 
derived models and relative heuristic algorithms for identification in cold chain logistics [18–20]. For 
instance, they investigated the influence of time window constraints in the process of cold chain 
logistics distribution–route optimization [21]. Anderson et al. [22] further explored the vehicle 
routing problem with time windows under the indistinct customer demand and established a 
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multi-objective indistinct probability constrained programming model for minimizing vehicle travel 
distance and delivery service delay in cold chain logistics. Chung et al. [23] fuzzified the demand 
and driving time, and constructed a chance-constrained pre-optimization model of variable 
compensation with regard to time window constraints. Qin et al. [24] optimized cold chain vehicle 
routing with the objective of minimizing vehicle travel distance and CO2 emissions. Even though 
many experts and scholars achieved fruitful achievements in the VRP issue in the past several 
decades, by reviewing the previous literature, we draw the conclusion that the academic research of 
VRP in cold chain logistics is relatively sufficient. What remains to be proved is that VRP has 
extensive application value in cold chain logistics.  

2.2. Research Considering Fresh Degrees 

Because of the perishability of products in cold chain logistics, customers have certain 
requirements for product freshness. In order to improve customer satisfaction, the freshness of 
products should be considered in the optimization of the cold chain logistics distribution route. 
Wang et al. [25] proposed that the freshness of perishable products should be taken as a criterion 
when measuring the optimal distribution route, and that the multi-distribution center cold chain 
vehicle routing problem be studied with the objectives of minimum transportation cost, vehicle 
travel time and product perishability. Yi et al. [26] introduced the freshness loss coefficient and 
established a multi-objective optimization model for the fresh agricultural products distribution 
route by considering customer satisfaction and the total cost. Drezner et al. [27] constructed a 
multi-distribution center vehicle routing problem model with respect to customer service time and 
product quality requirements. From the existing VRP model, considering fresh degree is relatively 
rare.  

2.3. Research Considering Carbon Emissions 

Due to the specialization of cold chain logistics, more fuel consumption is needed, and a larger 
amount of carbon emissions is generated in the process of transportation. Therefore, green vehicle 
routing optimization in terms of carbon emissions has become an important field of research. 
Recently, many scholars have begun to pay attention to VRP models considering carbon emissions. 
Ghannadpour et al. [28] used a multi-objective dynamic vehicle routing problem with fuzzy travel 
times and customer satisfaction to study the impact of carbon tax on carbon emissions in the cold 
chain distribution process. Then, Wang et al. [29] employed an adaptive genetic algorithm 
combined with greedy algorithm to investigate the impact of carbon tax on carbon emissions in an 
inventory routing problem. Shen et al. [30] explored the adaptive genetic algorithm, which can 
dynamically adjust the crossover and mutation probability, to survey the impact of the carbon 
trading mechanism on carbon emissions in multi-depot open VRP. Niu et al. [31] proposed a green 
open VRP with time windows by minimizing the comprehensive routing cost, including the fuel 
cost, carbon emissions cost and driver cost. Guo et al. [32] put forward a hybrid meta-heuristic 
algorithm to solve the on-line VRP for minimizing costs related to economy and emissions. 
Naderipour et al. [33] brought forth a cost function, including the driver cost and fuel cost in the 
time-dependent pollution-routing problem. Liao et al. [34] proposed a new comprehensive model 
for the measurement, evaluation and minimization of CO2, NOx and CO as three major gas 
emissions in the open time-dependent vehicle routing problem. Liu et al. [35] proposed a method for 
calculating carbon emissions and established an integer programming model based on the load and 
working time constraints of the open pollution routing problem. Fornell et al. [36] investigated the 
vehicle travel time and carbon emissions, and established a non-linear mixed integer programming 
model for vehicle scheduling and routing assignment in urban distribution using the improved 
multi-objective particle swarm optimization algorithm. Zeng et al. [37] taking Zhuhai Express 
Company as an example, established a distribution route optimization model by treating vehicle 
load as a factor affecting fuel consumption and CO2 emissions. Parasuraman et al. [38] constructed a 
distribution route optimization model with the lowest carbon emissions as the objective and based 
on the necessity of energy saving in cold chain logistics vehicle distribution. Wang et al. [39] 
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considered the differences in energy consumption between the transportation and unloading 
processes caused by the opening of the refrigerated door, and established the optimal distribution 
route model of fresh agricultural products in terms of carbon emissions and with the objective of 
generating the lowest cost.  

2.4. Research Considering the Optimization Algorithms 

In the mathematical field, VRP is a typical NP (Non-deterministic Polynomial)-hard problem 
[40]. As the number of nodes increases rapidly, an exact algorithm is rather difficult to employ to 
solve large scale VRP. Hence, the optimization algorithm could greatly offer help in cold chain 
logistics enterprises or the individual vehicle drivers, which make them better schedule the vehicle 
delivery with lower carbon emissions and fuel consumption. On the other hand, it could reduce the 
operation cost. Currently, it is greatly interesting research fields and has attracted many experts 
focusing on the research of VRP optimization algorithm [41]. The TS algorithm is a sub-heuristic 
algorithm that simulates human memory function. It has the characteristics of few parameters, 
simple structure, and robust global optimization ability [42]. The advantages of TS in real 
applications have also been demonstrated [43]. Shi et al. [44] created a classic two-step solution 
algorithm for the multi-trip VRPSD with soft time windows based on TS. Karaoglan et al. [45] 
designed a dynamic programming based heuristic algorithm for VRP with discrete split deliveries. 
From the calculated results, their optimization methods had a great effect on reducing carbon 
emissions and reducing logistics costs [46]. Even though the TS algorithm plays a pivotal role in the 
heuristic algorithm, it is difficult to use in the global search because of the shortcoming of TS 
algorithm. The combination with global research algorithm is proved to be an effective method. Li 
et al. [47] showed that a TS algorithm emerges as the most effective approach. Procedures based on 
pure genetic algorithms and neural networks are clearly outperformed, while those based on 
simulated or deterministic annealing and ant systems are not quite competitive. Guo et al. [48] 
designed a series of TS algorithms to solve the open VRP. They also compared and analyzed some 
other optimization algorithms, such as simulated annealing algorithm, genetic algorithm, ant 
colony optimization algorithm, and swarm optimization algorithm. 

In summary, few researchers have concerned the three factors of cost, fresh degrees, and 
environmental pollution within the same model to solve VRP in cold chain logistics. Thus, the 
carbon emissions and fresh degrees were considered during the vehicle routing optimization in this 
study. An LCFD-VRP model based on carbon emissions will be established. In addition, the 
algorithm based on IACA and TS will be proposed to solve LCFD-VRP. The effectiveness of the 
model and algorithm will be verified by simulating a real example. The simulated results of this 
study may offer management suggestions for cold chain logistics enterprises to effectively balance 
economic costs and environmental costs.  

3. Model 

3.1. Problem Description 

The distribution route optimization problem to carbon emissions of fresh agricultural products 
in the cold chain logistics can be described as follows. A distribution center of fresh agricultural 
products provides service for multiple customers. Given refrigeration cold chain transporting 
vehicles of the same type, it starts from the distribution center at a constant speed, stops at each 
customer point, and returns after completing all distribution tasks. Each location and demand of 
customers is known, and each customer point is reached by only one vehicle. At the same time, there 
is the service time constraint. When the vehicles depart the distribution center, it is set at 0. Products 
tend to undergo a certain degree of freshness loss in the process of distribution, which will produce 
the penalty cost caused by the decrease of customer satisfaction. The freshness of products in the 
distribution center is set at 100%. In order to meet the requirements of customers on products, the 
time window and the maximum load for transportation vehicles need to be maximized under the 
premise of considering the cost of carbon emissions and freshness punishment cost. During the 
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distribution process, a cold chain logistics enterprise should minimize the total cost so as to achieve 
the optimal distribution with a high-efficiency, low-cost routing strategy. 

Assumptions: 

(1) Each customer can only be distributed to by one distribution center (DC), and all vehicles have 
the same loading ability. 

(2) The fresh products would deliver from DC and then to customers, with the assumption that 
each route begins and ends at the same DC. 

(3) We do not need to consider the customer’s request ahead of time. The demand of the customers 
is known or can be estimated in advance. 

Notations: 

Firstly, a complete symmetric network graph G = [N, A] was defined. N = {0, 1, 2..., n, n+1} 
represents the whole set of nodes, where 0 and n+1 are the distribution center. So, h = 0 means that 
the vehicle starts from the distribution center, subsequently h = n+1 means that it returns to the 
distribution center. N = {1, 2. A= {(I, j): I, j∈ n, I ≠ j}}}is the set of routings [49,50]. Other descriptions 
about symbols in the model is explained as following (Table 1): 

Table 1. Symbols and descriptions in the model 

Symbols  Descriptions  

k
ijx  

0–1 are decision variables. If k car serves customer point i, and goes to 

serve customer point j, 
k
ijx = 1, otherwise

k
ijx = 0. 

dij The distance from customer point i to customer point j / km 
P1 The price of fresh agricultural products transported / (RMB t−1) 
P2 The price of fuel used by distribution vehicles / (RMB L−1) 

P3 
Real-time carbon trading prices on the carbon exchange 
/ (RMB t−1) 

P4 Fixed cost of the delivery vehicle / (RMB car number−1) 
Si Service time / min of the delivery vehicle at customer point i  

, ,i i il l    

Time window requirements of customer point i. Particularly,[ ],i il  

is the best receiving time for customers, and il is the latest receiving 
time that customers can tolerate. 

K  Distribution vehicle collection K = {1,2,3, ⋯,Κ}, where K represents 
the maximum number of vehicles in the distribution center 

Q Maximum load of the distribution vehicle / t 
qi Quantity demanded / t at customer point i  
ρ CO2 emissions index 
Fi Requirement of customers order i on fresh agricultural products 
v0 Delivery vehicle speed / (km h−1) 
∂ The freshness decreasing coefficient of produce 
θ Time window penalty coefficient 

3.2. Objective Function of the LCFD-VRP  

Based on the comprehensive considerations above, the LCFD-VRP model of cold chain routing 
optimization can be given as follows: 

1 2 3 4 5

0

m in N

i
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C C C C CC
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=

+ + + +=


 
(1) 

which is subject to: 
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Equation (1) indicates the objective function, which consists of the fixed cost, fuel cost, carbon 
emissions cost, time window penalty cost and freshness decline penalty cost. The objective is to 
obtain the minimum total distribution cost. 

Equations (2) and (3) represent, respectively, the basic conditions for delivery vehicles and 
customer acceptance of services, that is, each vehicle can only deliver goods once at the same time, 
and customer point i is served by only one vehicle. 

Equations (4)–(6) represent the limitation of vehicle load. According to Equation (5), when the 
vehicle reaches customer point j for service, its vehicle load Ukjjk is the total load at the departure time 
of vehicle k minus the total demand of customer points that have been served. Equation (6) suggests 
that the quantity of goods carried by each distribution vehicle when it sets out from the distribution 
center is equal to the total demand of the customer points for which the vehicle provides services. 

Equations (7)–(9) indicate the time limit. Equation (7) refers to τj is accumulation of time. It 
represents the accumulation of time when vehicle k reaches customer point j. 

Equation (8) aims to prevent drivers from driving in fatigue. The maximum driving time of a 
single trip is set as four hours, that is, the completion time of each vehicle distribution routing shall 
not exceed four hours. Equation (9) is the time window limit of each customer point, which requires 
delivery vehicles to arrive at customer point i before the deadline [li,lj] for service. 

3.3. Factors Considered in the Model 

3.3.1. Cost Profile 

The total cost of agricultural products’ cold chain logistics consists of the following parts: 
vehicle fixed use cost, costs generated by the vehicle brake fuel consumption and the refrigeration 
fuel consumption, carbon emissions cost, time window penalty cost and freshness penalty cost [51]. 
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3.3.2. Fixed Cost 

The fixed cost of the vehicle mainly includes the wear and tear, the depreciation cost in the 
driving process, and the driver’s salary for a single trip, etc. If the decision variable xk0j0jk = 1, it 
means that vehicle k travels from the distribution center to the customer point j (otherwise 0). Then 
sigma j = 1nxkj, where sigma indicates whether vehicle k is used, so the fixed cost of the vehicle is as 
follows [52]: 

1 0 4
1 1

K n
k
j

k j
C x P

= =

=  (10) 

3.3.3. Fuel Cost and Carbon Cost 

According to the requirements of green logistics, there is an increase in the carbon emissions 
cost except for the fuel cost, that is, the cost of carbon emissions index purchased by enterprises 
through carbon exchange. The expected calculation of fuel costs and carbon costs are based on fuel 
consumption. Fuel cost is fuel consumption times the price of oil. The carbon emissions cost is the 
product of the fuel CO2 emissions coefficient, fuel consumption and carbon trading price. The fuel 
consumption of the vehicle is related to the vehicle engine model, driving speed and load, and the 
specific parameters are shown in Table 2. The fuel consumption of delivery vehicle k from customer 
point i to customer point j can be calculated as follows [53]: 

Fkij = λ (bMV+ωγαv+ k
jU kγαv+βγv3) dij/v (11) 

Especially, λ= ξ/ (κψ), γ = 1/ (1 000ntfη), α = T + g sin ε + gCr cosε, β = 0.5CdPS 
In addition, the unit of vehicle fuel consumption is mainly related to the vehicle speed and load. 

This paper set the distribution vehicle on a horizontal road as v = v0. Both the vehicle acceleration T 
and road slope ε were zero, namely α = gCr. 

k
jU  was calculated as follows: 

( )
1 1

,
K n

k k k
j i i ij

k i
U U q x j N ′

= =

= − ∀ ∈  (12) 

The fuel cost was expressed as follows [54]: 

1

2 2
0 1 1

n n K
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+

= = =

=     (13) 

The carbon cost was expressed as follows [55]: 

1

3 3
0 1 1

n n K
k k
ij ij

i j k
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= = =

=  (14) 
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Table 2. Parameters and descriptions about the fuel and carbon cost. 

Parameter  Description 
ξ Fuel to air mass ratio 
κ Calorific value of the fuel engine / (kJ g−1) 
ψ Conversion coefficient / (from g s-1 to L s−1) 
b Engine friction coefficient 
M Engine speed 
ω Without loading in the vehicle / kg 
g Acceleration of gravity 
ε Road slope 

Cr Rolling resistance coefficient 
v Vehicle speed 

Cd Air resistance coefficient 
ntf Vehicle transmission efficiency 
η Fuel engine efficiency parameters 
τ Vehicle acceleration 
k
jU  Load when vehicle k reaches customer point j 

P Air density / (kg m−3) 
V Engine capacity / VL 
S Frontal surface area 

3.2.4. Penalty Cost for Freshness Degradation 

Fresh agricultural products are perishable due to variable factors, such as the metabolism of 
products in the process of distribution that can affect the freshness [56]. This results in the decrease 
of customer satisfaction. In this case, the logistics enterprises have to make appropriate 
compensations to customers. This requires that the establishment of the agricultural products cold 
chain distribution process be considered when the vehicle routing model for freshness decreases due 
to the penalty cost. 

The freshness of agricultural products is influenced by the temperature, their own 
characteristics and the place with partial coefficient. This study assumed that there was a constant 
environment temperature for the product in the process of transportation. So, the reduced coefficient 
of the product freshness could be considered as constant. The quality of fresh agricultural products 
[57] and the characteristics of a rendering index change over time. We assumed that customer order j 
required the product freshness in the distribution center to be 100%. When customer point j was 
served, the freshness of product jF  could be calculated as follows: 

( )max ,j j

jF
τρ

 −∂ = 
 (15) 

where the lj point j is the earliest time acceptable for the customer, and Tj is the time before the 
distribution vehicle reaches the customer’s deadline, which can be calculated as follows: 

{ }( )
1 0

/ max , ,
K n

k
j ij i ij i i

k i
x S d v j Nτ τ ′

= =

= + + ∀ ∈   (66) 

The penalty cost caused by the decrease in the freshness of agricultural products is proportional 
to the price of these products and customer demand, which can be calculated as follows: 

( )4 1
1

max ,0
n

i i i
i

C Pq F F
=

= −  (17) 



Sustainability 2019, 11, 6584 10 of 22 

3.2.5. Time Window Penalty Cost 

Each customer point has a corresponding acceptable service time range. Taking customer I as 

an example, the acceptable service time window is [ ],i il l
, suggesting that when the delivery vehicle 

arrives at the customer point before li, the customer will not be able to accept the service, and it has 
to wait until li. 

When the delivery vehicle arrives between 
,i il l   , the customer may accept the service, but 

the distribution company has to pay a certain penalty cost, which is proportional to the value of the 
goods and the length of the delay. 

When the delivery vehicle arrives beyond the period, the service will not be accepted. 
The calculation formula of time window penalty cost in this paper is [58]: 

( )5 1
1

m a x , 0
n

i i i
i

C P q lθ τ
=

= −  (18) 

where θ is the time window penalty coefficient, and 0 < θ < 1. 

4. Solving the Model Using IACATS 

Ant colony algorithm, introduced by Italian scholar Dorigo in 1991 [59], is especially applicable 
to solve global optimization problems. Since that, many experts and scholars have studied VRP 
issues and achieved fruitful achievements in the past two decades [60]. However, it has a poor local 
search ability and slow convergence speed [61]. In order to change this situation, the TS algorithm 
was combined to solve the local search ability. The TS is a neighborhood search algorithm based on 
the technology of TS, which gives an initial solution and produces the current solution of the 
neighborhood in the search for an optimal solution for the current solution. This process is repeated 
until the convergence condition is satisfied. On the other hand, the tabu list and the corresponding 
rule of the TS are used to avoid detours. To a certain extent, it can also avoid the local optimum, thus 
showing strong local search ability [62]. 

In this paper we employed the global search capability of IACA algorithm and the local 
optimization ability of the TS algorithm to solve the LCFD-VRP model. The efficiency of this 
algorithm is verified by using IACA algorithm in the global space of the whole distribution route 
optimization and using TS algorithm in the local space of a single vehicle distribution route 
optimization. 

4.1. Improved Ant Colony Algorithm 

Heuristic factors are the main factors influencing the selection of inspired ant nodes and the 
core content of ant colony algorithm. Heuristic factors of the model can be represented by the 
following functions [63]: 

j
ij

ij

q
d

ϕ =  (99) 

At the initial point, different path pheromone concentration of consistency, τij is ij (0) = C; here, 

C belongs to a constant value. At this point, the probability 
k
ijp  of ant k from customer i to select 

customer j is obtained by the following function formula: 

k
ijp = 

[ ] [ ]
1 ( )

,  allowed ij ij
k

is is
s J i

j
α β

α β

τ ϕ

τ ϕ
∈

       ∈


 

(100
) 
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or 
k
ijp = 0, other; τij denotes that Ant k on the edge (i,j) is the length of the path pheromone amount; 

k
ijp  refers probability of ant k moving from node i to neighborhood node j; both α and β are 

parameters supporting regulation, which describe the weight of accumulated pheromones and 
self-heuristics in the path of ant movement. ‘Allowed k’ represents the random value of ant k within 
the allowed range. 

According to heuristic information and pheromones, the ant applies a probabilistic decision 
mechanism to select the next mobile node. After the construction optimization solution is obtained, 
the specific evaluation of the solution is required, and the release amount of pheromone when 
updating is determined based on the evaluation results [64].  

In order to avoid stagnation, a scheme combining random selection and deterministic selection 
is selected in this study. The state transition probability is dynamically adjusted in the search 
operation. Based on ant k on node I, it can complete the selection of the next node by the following 
functions: 

j= ( )arg max
ks J i ij ij

α β
τ ϕ∈        , when qq0 

(21) 

or formula (20). Otherwise, Jk (i) specifically describes the set of nodes visited by the number Ant k 
after the visit of node I. The q parameter is a random number in the range of [0, 1]. Q0 can be 
determined before calculation. By adjusting this parameter, the algorithm can achieve a balance 
between diversified search and centralized search. At this point, when the ant selects the next node 
for transfer, a random parameter in the interval of [0, 1] will be generated, and the direction of ant 
transfer will be determined according to the size of this parameter. 

4.1.2. Resetting the Rules of Updated Pheromone 

In the process of calculation, to avoid premature convergence operation and lead to the result, 
which is not for the global optimal solution, all path pheromone values are required to be within the 

prescribed scope. We define this with [ ]min max,τ τ
. If pheromone values are below τmin, it is 

defined as τmin. While, if pheromone values are over τmax we defined as τmax. In this way, it can avoid 
the pheromone in a certain path more than any other path pheromone, which quickly avoids all ants 
close to the path. 

According to the initialization pheromone parameter values τij(t) = C, and its positioning for 
maximum τmax. After completing 1 cycle, the ants who find the shortest path have right to release the 
pheromones from their passed path and keep the below rules:  

min( ) (1 ) ( )ij ij ijt n tτ ρ τ τ+ = − + Δ
 (22) 

( )min / , min , 1, 2, ,ij kQ L L L k mτΔ = = = 
 

(211
) 

We place the parameter ijτ
in the space [ minτ , maxτ ], if ijτ

(t) < τmin, we define ijτ
(t) = τmin; 

while, ijτ
(t) > τmax,  we define ijτ

(t) = τmax, In the optimal solution is updated to simultaneously 
with tau tau min max parameter updating. 

max
1( )

1
t

L
στ

ρ
= ×

−   
max

min 5
ττ =

, p here refers pheromone volatility value, while, p refers to the 
value of pheromone residual coefficient. The σ is obtained through an experiment. Here, σ = n/20. N 
is the number of nodes.  
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4.2. Local Optimization and Improvement  

The design of tabu rules is the core of the TS. The selection of tabu length has great effects on 
algorithm performance. In order to prevent the loop search in the early stage of the algorithm and 
improve the stochastic diversity in the late stage of the algorithm, we add 2-opt tabu local research, 
based on an ant colony optimization algorithm. After all ants complete the optimal solution, local 
improvement is made to the optimal solution of each generation. This process happens before all 
path pheromones are updated. In this way, it will improve the convergence speed of the ant colony 
algorithm. Normally, there are two strategies to terminate the iteration, and either one can 
terminate. One is that the total number of iterations reaches the preset upper limit a; the other is that 
the iteration number of N remaining unchanged reaches the preset upper limit b. In this study, we 
take a = 5000 + 150N, b = 3000 + 5N. 

4.3. Calculation Steps of the Algorithm 

According to the basic framework of the IACA and TS, the IACA is used to optimize the whole 
distribution path in global space. On the other hand, the TS is used to optimize the distribution path 
of a single vehicle in local space. The IACATS algorithm can be described as follows.  

Step 1: Initialize. set the parameters of the Nc = 0, 
(0)ijτ

= maxτ , then carry out parameter 

initialization of
k
ijτ

, α, β, ρ. The initial point should be included in the current disaggregation model 
and then be evaluated. The value of output is defined as Z; 

Step 2: If the tabu list is not full, then improved ant colony algorithm is carried out. Except for 
the initial point, if it is not able to reach the vehicle quality time window required by vertex j in other 
remaining points, then it goes directly to the next step and calculate the total loading (Sum). On the 
contrary, if it is meet the requirements of vehicle quality and time window in the remaining points, 
it will select point j in a random manner to solve the transition probability Pkij parameter and 
combine this parameter with random number (0–1) for comparative analysis. If the requirements are 
met, transfer Ant k to Point j and place point j in the disaggregation model set. If the requirements 
are not met, the vertex needs to be selected again; 

Step 3: when all points are in the disaggregation model set, solve zki. Then record the number of 
ants as m←k; otherwise, there is k←k+1, and then skip to step 2 and re-operate;  

Step 4: if the Sum generated in step 2 is less than Q, select tabu local search mechanism to 
realize ant path optimization; 

Step 5: solve the objective function value and updated pheromone. If Nc = Nc max, then end the 
iterations. If not, then turn back step 2 and reserve the current non-inferior solution;  

Step 6: The next ant selects the different edges and update the tabu list. Given the edges (I,j) is  

the optimal path, it is analyzed to further solve ijτ
(t+n)= 

min(1 ) ( )ij ijtρ τ τ− + Δ
; given the edges (I,j) 

is the non-optimal path, it is analyzed to solve
( ) (1 ) ( )ij ijt n tτ ρ τ+ = −

;  finally, analyze all edges 

(I,j) and set 
min
ijτΔ ← 0, Nc ← Nc + 1 to update the tabu list; 

Step 7: If the Nc parameter value is lower than the set number of iterations, go to step 2; 
Step 8: If the Nc parameter value is lower than the set number of iterations, output to the 

optimal results. 
Step 9: End. The above calculation process in schematic illustration is in Figure 2.  
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Figure 2. Flowchart of the improved genetic algorithm. 

5. Case Study 

Zhoushan Dayang Refrigerated Logistics Co., Ltd., which provides the distribution service of 
fresh agricultural products for 191 residential communities in Zhoushan Archipelago District, 
Zhejiang Province, was taken as the subject of the case study to collect distribution service data 
because of the short distance among the residential areas there. If separate distribution was carried 
out for each community, the distribution cost of the logistics company would be increased, and the 
efficiency would decrease. Therefore, this study took all residents’ committees as the distribution 
centers, and the k-means clustering method based on distance was adopted to aggregate the rest of 
the 87 communities into 20 distribution points. To convert these distribution points’ actual latitude 
and longitude coordinates to rectangular coordinates, they were set as the origin coordination. Then 
the daily demand for fresh agricultural products was estimated by calculating the number of 
permanent residents in the area served by each distribution point. The service time was the total 
service time of the residential areas covered by each distribution point. The basic information of the 
distribution centers and points is shown in Table 3.  
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Table 3. Basic information of distribution centers and points. 

No. 
Horizontal 

Axis / m 
Vertical 
Axis / m 

Fixed 
Time 

Window 

Acceptable 
Time 

Window 

Quantity 
Demanded / 

t 

Service 
Time / 

min 
0 0 0 5:30—17:00 5:00–17:00 0 0 
1 −189.2 455 6:00—7:00 6:00–7:30 0.8 15 
2 103.8 1452 6:20—7:30 6:20–8:00 3.35 19 
3 1103.5 426 6:00—6:50 6:00–7:20 2.95 17 
4 1264.7 1289 7:00—8:00 7:00–8:20 2.4 11 
5 1221.2 −1842 6:40—7:30 6:40–8:00 2.75 14 
6 1436.6 −2025 6:00—7:00 6:00–7:40 3.3 20 
7 245.6 −672 6:30—7:00 6:30–7:30 2.8 15 
8 2350.0 −1189 6:20—7:30 6:20–8:00 3.25 10 
9 1148.7 −425 6:00—7:30 6:00–8:30 2.15 15 
10 1025.2 −27 6:20—8:00 6:20–9:00 3.05 18 
11 863.6 −1214 6:20—7:40 6:20–8:00 3.2 16 
12 1785.6 −957 7:30—8:50 7:30–9:20 3.5 11 
13 682.4 −3356 6:00—7:30 6:00–8:00 0.55 15 
14 134.6 −2879 6:40—7:50 6:40–8:30 2.7 19 
15 −485.4 −1689 6:20—7:00 6:20–8:00 1.7 14 
16 423.1 −2196 6:00—7:00 6:00–7:30 2.25 10 
17 444.3 −983 6:00—6:40 6:00–7:10 2.75 15 
18 1168.7 −1786 7:00—8:00 7:00–9:00 1.9 20 
19 −568.3 −622 6:00—6:50 6:00–7:20 3.15 14 
20 −722.4 −2089 6:50—7:30 6:50–8:10 1 11 

Parameter profile 

In this paper, the 6.8 m refrigerated vehicle of brand name “Futian ruiwo” was selected as the 
cold chain distribution vehicle, of which the emission parameters are shown in Table 4. 

Table 4. Emission parameters of the 6.8 m refrigerated vehicle. 

Parameter  Implication  Value  
ω Vehicle weight / kg 6350 
ξ Fuel-to-air-mass ratio 1 
b Engine friction coefficient 0.2 
M Engine speed 33 
V Engine capacity / L 5 
g Acceleration of gravity  9.81 

Cr Rolling resistance coefficient 0.01 
η Fuel engine efficiency parameters 0.9 
κ Calorific value of fuel engine / (kJ·g−1) 44 
ψ Conversion coefficient 737 
ntf Vehicle transmission efficiency 0.4 
Cd Coefficient of air resistance 0.7 
P Air density / (kg m−3) 1.2041 
S Frontal surface are / m2 3.912 

Considering the actual situation of logistics operation, the price of fresh agricultural products 
was set at 4000 Yuan/t. The time window penalty coefficient was 0.0005, the vehicle speed was 50 
km/h and its fixed cost was 500 Yuan per car every time. Moreover, the freshness degradation 
coefficient was 0.002. All customers ordered agricultural products with an acceptable freshness of 
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95%. In addition, the fuel CO2 emissions coefficient was 2.63 kg/L, the fuel price was 6.95 Yuan/L, the 
CO2 emissions price was 5 Yuan/kg and the biggest car load was 10 t. 

6. Results 

Based on above case study, related parameters of the improved genetic algorithm were set: the 
maximum number of iterations mg = 600. Using the MATLAB programming, the algorithm was run 
20 times, and the result showed that the average total cost was 3625.68 Yuan, the average total time 
was 482.06 min and the average CO2 emissions was 44.48 kg. One of the most optimal distribution 
schemes is to use six transport vehicles to perform the distribution task with a total cost of 3602.73 
Yuan. In addition, the total time spent was 477.33 min, and the total CO2 emissions was 43.02 kg. The 
specific distribution routing information is shown in Table 5. If the traditional method was 
employed, the distribution scheme would be as follows: eight transport vehicles would be used to 
complete the distribution task, and the total cost, total time and total CO2 emissions would be, 
respectively, 3840.55 Yuan, 505.12 min and 47.26 kg. In comparison, the improved genetic algorithm 
would reduce the dispatching of two refrigerated vehicles, cut the total cost by 4.94%, shorten the 
actual transportation distance by 5.50% and decrease the total CO2 emissions by 8.9%. 

Table 5. Optimization results of vehicle distribution routing. 

Number of 
Vehicles  

Distribution 
Routing  

Cost / 
RMB 

Loading 
Rate / % 

CO2 Emissions 
/ kg 

Total Time 
/ min 

1 0-19-2-8-0 528.22 96.87 9.23 63.78 
2 0-17-15-14-0 534.25 72.52 5.01 66.89 
3 0-1-10-6-20-0 658.72 83.20 8.96 83.56 
4 0-16-11-4-0 632.02 79.68 7.25 74.25 
5 0-13-5-12-0 589.36 68.79 7.95 105.23 
6 0-9-3-7-18-0 657.85 99.03 7.02 83.87 

6.1. The Influences of Different Parameters on the Stability Performance of IACATS 

In order to further investigate the influence of algorithm parameters on the model, we adjusted 
the values of α and β parameters here. The software Matlab 7.10.0 (R2010a) is used for programming 
and model solution analysis. The simulated results are shown in Table 6. Obviously, it can be seen 
that adjusting the values of α and β has no significant impact on the comprehensive cost. This 
suggests a good stability of IACATS. 

Table 6. Adjust α and β parameters and simulated results. 

（α,β） K Z 
（1,1） 4 3587 
（1,2） 3 3581 
（1,3） 3 3576 
（2,1） 3 3590 
（2,2） 3 3586 
（2,3） 3 3598 

6.2. Parameter Sensitivity Analysis 

In order to study the relationship of the change between the fuel price and CO2 emissions price 
and between carbon emissions and total cost in the optimization of cold chain distribution routing to 
fresh agricultural products, we adjusted different prices of fuel oil and CO2 emissions, as shown in 
Figures 3 and 4. 

It can be seen from Figure 3 that the total cost and fuel cost will rise with the increase of the fuel 
price. Meanwhile, the cost of freshness and CO2 emissions will decrease. Figure 4 shows that when 
the carbon price rises, the freshness degree will be decreased generally and the carbon emissions will 
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decline. Therefore, in order to encourage the adoption of low carbon cold chain logistics 
distribution, it is necessary to appropriately raise the fuel price or carbon price. It not only can 
reduce CO2 emissions and energy consumption, but also decrease enterprises’ total costs. These 
experimental results would offer useful information to the government when figuring out 
corresponding policies and regulations. Moreover, these simulated results would serve as a 
reference for the selection of vehicle routing optimization of low carbon cold chain logistics. 

 

Figure 3. The relationship between fuel price, total cost and carbon emissions. 

  
Figure 4. The relationship between CO2 emissions price, total cost and carbon emissions. 

6.3. Effectiveness Analysis of IACATS Algorithm 

In order to demonstrate the feasibility and superiority in the proposed algorithm, we compared 
it with the other heuristic algorithm. The evolution process is shown in Figure 5. It can be seen from 
Figure 5 that in the early operation stage of the algorithm, the cost objective function value of the 
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improved algorithm is smaller than that of the standard ant colony algorithm. However, in the 
process of evolution, the convergence rate of the former is faster than that of the latter, which 
indicates that the introduction of the TS can help to increase the “hybrid computing power” of the 
algorithm and promote the convergence rate. Moreover, the optimization result of the improved 
algorithm is closer to the global optimal, with a cost objective function value of 3650.79. It is 
obviously better than that of the standard colony algorithm (3840.55).  

 
Figure 5. Comparison of evolution process between standard and improved ant colony algorithm. 

In order to demonstrate the superiority of this method, intelligent algorithm (this work), 
Multiple Ant Colony Optimization Algorithm (MACOA) [65] and Non-dominated Sorting Genetic 
Algorithm (NSGA) [66] are selected in this paper to solve the problem respectively. We assumed the 
number of iterations as 100 times. The final result is as follows (Table 7). 

Table 7. Compared results to other well-known methods. 

Type Research Time/s Search Success rate/% 
Average Number 

of Iterations 
NSGA 2 722.6 76 48 
MACOA 2 692.8 85 30 

this work 2534.3 98 16 

By comparing the data in Table 3, it can be found that the IACATS algorithm proposed in this 
paper is better than NSGA and MACOA for solving the optimization problem of cold chain logistics 
distribution path considering the parameters of research time, search success rate or average 
iteration of number. Moreover, the proposed algorithm in this paper has great advantages over 
genetic algorithm and ant colony algorithm. For instance, average iteration of number decreases 
from 48 to 16. 

7. Discussion 

In the last two decades, the popular issues of greenhouse gas emissions reduction and the 
difficulty in preserving the nutritional characteristics of fresh food-stuffs during cold chain logistics 
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have attracted attention among the world. The above two issues are mainly involved in VRP. VRP is 
a vital problem and a crucial link in reducing the total cost of distribution of cold chain logistics. We 
used novel IACATS algorithm and MATLAB programming to solve LCFD-VRP model. Our results 
demonstrate that IACATS could reduce the dispatching of two refrigerated vehicles, thus lowering 
the total cost by 4.94%, shortening the real transportation distance by 5.50% and cutting the total CO2 
emissions by 8.9% compared with the traditional ant algorithm mode. Therefore, the LCFD-VRP 
model we proposed can effectively help to achieve the low carbon emissions and low cost of fresh 
agricultural products. This suggests that the proposed model and IACATS algorithm would be used 
to design and operate food distribution systems with high-quality fresh food and less environmental 
pollution. 

The VRP and its variants have been studied in many previous works [67–70]. However, few 
studies have considered routing optimization based on CO2 emissions and fresh food. In addition, 
the influence of the energy consumption of refrigeration equipment on carbon emissions is often 
ignored. This paper aims to deal with optimization of VRP with CO2 emission and fresh food. Most 
of the models only considered CO2 emissions from the generation of fuel consumption [71]. CO2 
emissions in this paper are derived from two parts: the generation of fuel consumption and the 
energy consumption of refrigeration equipment. In order to achieve the lowest cost as the objective 
function, we considered costs such as the fixed costs, carbon emissions cost, time window penalty 
cost and freshness penalty cost. These costs cover most of the costs in cold chain logistics. Even 
though we considered the above-mentioned cost factors in the proposed model, more cost factors, 
such as fresh food damage costs, fresh food shortage costs and waiting time costs, should be 
included in the future model from the perspective overall consideration.  

Since VRP is a typical NP-hard problem. The exact algorithm is rather important to successfully 
solve the VRP. In this paper, we employed the improved ant colony algorithm and the TS algorithm 
to solve LCFD-VRP model. The results of effectiveness and sensitivity indicated that combination of 
two algorithms exerted excellent effect based on the advantage of improved ant colony algorithm in 
global search and TS in local optimization ability. Compared with MACOA and NSGA methods, the 
results including research success rate and average number of iterations in our study are obviously 
better than of MACOA or NSGA. It is suggested that the combination of other various exact 
methods, approximation algorithms and heuristic algorithms is a useful method to solve VRP. Total 
CO2 emissions reduced by 8.9% in our study shows that LCFD-VRP model can effectively reduce 
carbon emissions. From the government’s consideration, this method could be promoted in other 
similar cold chain logistics to raise the awareness of low carbon logistics. On the other hand, from 
cold chain logistics enterprise’s consideration, this method should be introduced into the daily 
routing optimization of cold chain logistics, because it can reduce the operation cost and can fulfill 
enterprise’s social responsibility, which inversely improve the competitiveness of enterprises in the 
marketplace. 

Aiming at optimization of vehicle routing problem in cold chain logistics to fresh agricultural 
products, we used the routing data from Zhoushan Dayang Refrigerated Logistics Co., Ltd. as the 
practical sample. Normally, researchers have carried out multiple deposit distribution centers as the 
collect distribution service [72,73]. In this study, we employed one distribution center and another 
twenty distribution points as the collect distribution service because of small area of the selected 
sample. If we used more distribution centers, it would reduce the accuracy of the proposed model. 
Hence, depending on the kind of model we employed, we need to use the model according to the 
local environment to adjust it. This is another attractive topic to be carried out in the future, for 
instance, the area, population density and income level, etc.  

In this study, we obtained the overall optimization of cold chain logistics through different 
settings for parameter values. However, due to experimental limitations, extensive and 
comprehensive comparative experiments will need to be applied to the LCFD-VRP model to get 
better overall optimization results in future research. Even though it achieved good stimulation 
results, how to adjust the parameters of the algorithm and how to optimize the structure of the 
algorithm while ensuring higher accuracy were not considered in the constructed model or 
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proposed algorithm. Especially the uncertainty of customers’ demands (or satisfaction) was not 
considered in the LCFD-VRP model based on the background of a low-carbon economy. 
Furthermore, there will be a more complex environment in the real operation of routing problem. In 
addition, traffic jam situations can be employed in the distribution routing planning as the 
introduction of a road congestion index into the model will be better able to reflect the real feasible 
solution. Hence, further research is required to consider more factors in order to be more adaptable 
to real-life scenarios. 

8. Conclusions 

In this paper, the optimization of cold chain logistics routing problem was studies while we 
considered carbon emissions and product freshness. IACATS algorithm was proposed to effectively 
solve the LCDF-VRP model. According to the example, the effectiveness and applicability of the 
LCFD-VRP model was verified. Through the simulation value, it can be seen that the results of the 
optimization compared with the traditional algorithm reduce the CO2 emissions and raise the food 
fresh degree. The experimental results of this paper provide management suggestions for logistics 
enterprises to effectively balance economic costs and environmental costs in vehicle routing 
problems. 

The main conclusions are listed as follows: 
1) In view of the particularity in the cold chain logistics of perishable products, and the 

requirement of low carbon green logistics, the fixed cost, fuel cost, time window penalty cost, 
freshness degradation punishment and the cost of carbon emissions can minimize the total costs in 
the logistics distribution vehicle route optimization model. The model considering above factors 
seems to be more reasonable, which is similar to the real demand. 

2) Since the vehicle routing problem of logistics distribution is a typical NP problem, IACA 
algorithm based on the TS has been successfully designed to solve the LCDF-VRP model. IACATS 
could reduce two refrigerated vehicles, decrease the total cost by 4.94%, shorten the actual 
transportation distance by 5.50%, and cut down the total CO2 emissions by 8.9%. Therefore, the 
LCFD-VRP model can effectively help cold chain logistics enterprises to reduce the low carbon 
emissions and increase high quality fresh agricultural products. 

3) The case study shows that the optimization model and solving algorithm of cold chain 
logistics routing problem are effective at reducing carbon emissions and ensuring the freshness of 
products. It not only provides scientific theoretical guidance to cold chain logistics companies for 
further optimization of daily distribution routing, but also helps in solving the practical problems of 
agricultural products in the cold chain delivery. This method can also be helpful to the government 
to carry out incentive policies, and simultaneously promotes enterprises to exert their social 
responsibility and establish good impression to the public. 
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