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Abstract: This study used crop budgets to assess the impact of declining groundwater levels on the
economic value of irrigation water in the Wadi Zabid region of Yemen. The study found that returns
to land and water were highly sensitive to changes in groundwater depths over time and the free
availability of spate water for irrigation. Crops differed in the amounts of irrigation water applied and
in their returns to land and water. Banana had the highest irrigation requirement, but also delivered
the highest return to land. Banana’s return to water was greater than that of date palm and feed
sorghum, but lower than that of mango and food sorghum.

Keywords: economic value of irrigation water; crop budgets; residual value; water reallocation;
Wadi Zabid

1. Introduction

Agricultural irrigation is the world’s largest consumer of freshwater across all economic sectors,
accounting for 90% of freshwater utilized globally [1]. However, irrigation efficiencies are low. In large
open-canal irrigation systems, some 70% of irrigation water does not reach the intended crop [2,3].
Nonetheless, to achieve water and food security goals in a sustainable manner, water use has to be
better optimized. Moreover, to advance sustainable agriculture, approaches are needed that integrate
environmental, economic, and social justice concerns [4]; see also http://asi.ucdavis.edu. One such
approach is integrated water resources management (IWRM). IWRM is a process by which water is
allocated between different uses and users in a coordinated, balanced manner [5].

According to the World Bank [6], Yemen’s freshwater resources are among the lowest per capita
in the world. In addition to limited freshwater supplies, the country has a growing population. Water
scarcity has been further exacerbated by government policies aimed at boosting the agricultural sector,
such as low-interest loans and cheap, subsidized diesel fuel. In addition, the government’s institutional
capacity to implement water laws has remained weak [7]. Due to this combination of factors, Yemeni
farmers have become increasingly dependent on groundwater for irrigation.

Since 1970, Yemeni lands irrigated from wells expanded 10-fold, from 40,000 ha to 400,000 ha
in 2008, and the number of wells rose from just a few thousand to 50,000 over the same period [3].
In addition, the number of harvesting and diversion structures has increased in upstream areas, which
has led to reduced surface flows, dried-up wells, and water being lost from dam reservoirs through
evaporation [8]. As a result, groundwater levels have rapidly dropped. In some cities, such as Sana’a,
wells more than 1000 m in depth are sometimes needed to access the water required [9].

Agriculture is Yemen’s third largest economic sector, after services and industry (including oil). It
contributes some 20% of the country’s gross domestic product (GDP), although the sector’s importance
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is greater than its sheer size, as agriculture provides food and income for a large segment of Yemenis,
especially rural populations [6]. Agriculture is also the country’s largest user of freshwater, accounting
for 93% of freshwater consumption on an annual basis. This substantial utilization of water for
agriculture raises the question of whether water is being allocated to its highest value uses and if
farmers are stimulated to use water efficiently. In other words, is water being utilized in such a way as
to accrue the greatest benefits to society?

Conceptually, a better understanding of the economic value of water is important to support
policymaking for the development, conservation, and allocation of water across places, uses, users,
and time periods [10]. Indeed, water allocation decisions are particularly key in areas where water is
scarce and there is growing demand and competition for access to water [11]. More efficient allocation
of water to those crops that can generate the greatest value for society, and the economy can help
optimize basin management as well [12]. Estimating the value of irrigation water serves not only to
guide allocations of water between different crops, it can also guide the allocation of water to different
production and/or irrigation techniques within a single crop type. Calculations of the economic value
of irrigation water are useful both in regions with and without abundant water resources, as such
calculations enable comparisons of farming profitability between regions with scarce water resources
or where only rain-fed agriculture is possible versus where irrigation water is abundant. This provides
an indication of the economic effect of increased irrigation [13].

The current study sought to estimate the economic value of water for irrigation of a set of dominant
crops. The aim of the study is to support water resource management and improve water allocation
efficiency [14,15]. A measure of the value of water in alternative uses can substantiate policy decisions
related to the development, allocation, and use of water resources [10]. In a market system, water’s
value is represented by its price, with the price steering allocations to those uses that offer the greatest
economic returns [10].

This paper argues that changing groundwater levels and the freely available spate water for
irrigation in the Wadi Zabid region of Yemen are propelling changes in the production value of water
and hence changes in cropping patterns. Specifically, the sensitivity of the value of water to the
increased depth of groundwater pumping is investigated in the midstream, downstream, and coastal
areas of the study region. To that end, we posed three research questions: (1) What is the cost of
pumping one unit of groundwater from different depths? (2) What is the economic value of water in
terms of the production of major agricultural crops? (3) What impacts have declining groundwater
levels had on the value of water for particular crops and hence on cropping patterns?

This is very novel research, as it clarifies the impact of spate water availability and groundwater
extraction from different (declining aquifer) depths on economic returns to land and water for different
crops, both now and in the future. Part of this study’s novelty and importance lies in the location
of the study area, as Wadi Zabid, Tihama Plain, Yemen, is not a data-rich environment. Combining
the various elements to demonstrate that returns to land and water are highly sensitive to changes
in groundwater depths over time, and the availability of spate water for irrigation is an important
advancement of current work in this field.

Study Region

The current study focused on the Wadi Zabid region of Yemen. The wadi is one of the catchments
of the Tihama coastal plain. The plain is considered one of Yemen’s most fertile areas. Agriculture here
provides for a large part of Yemen’s food needs from cereals, vegetables, and fruits. The area is also
characterized by good groundwater aquifers, which are recharged during the rainy season. The wadi
originates in the western highlands of Ibb and Dhamar governorates, passes through the highlands
of the Jabal Ras directorate, and continues through Al-Jarrahi, Zabid, and Al-Tuhita directorates,
discharging into the Red Sea in heavy rainfall years. This study covered the plains area of the wadi,
which is divided into a midstream, downstream, and coastal area (about 46 km by 20 km altogether).
The center of the study region has the coordinates 317,122UTM-E and 1,564,732UTM-N (Figure 1).
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(Agricultural Research and Extension Authority 2006). 
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be estimated as 430,514 in 2016 (see https://www.worldometers.info).  
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along the coast to about 350 mm midstream in the wadi (near the foothills). Groundwater is the 
primary source of irrigation water, although spate flows are available in some parts of the wadi. Rules 
established under Sheikh Al-Jabarti more than 600 years ago gave the upper riparian area first 
priority for spate water use. Spate waters are divided among three groups in the midstream area of 
the wadi, with no water rights reserved for the downstream and coastal areas.  
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to fodder crops and crops such as cotton, Jasminum sambac, and henna.  
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Figure 1. Soil map of Wadi Zabid map showing the division study area, the farms that were randomly
selected for farmer interviews, and the representative farms chosen to calculate the economic value of
irrigation water. Source: extracted from national soil map of Yemen sheet D38A, 1:500,000 (Agricultural
Research and Extension Authority 2006).

In the study region, agricultural land use increased from 10,509 ha in 1972 to 27,786 ha, in 2014,
according to remote sensing image analysis [16]. The population was 312,408 at the time of the latest
census, which was 2004 [17]. Using a yearly population growth rate of 2% to 3%, the population can be
estimated as 430,514 in 2016 (see https://www.worldometers.info).

Residents of the region depend mainly on agriculture for their livelihoods, in addition to raising
livestock and fishing. Rainfall on the Tihama plain is very scarce, ranging from 100 mm per year
along the coast to about 350 mm midstream in the wadi (near the foothills). Groundwater is the
primary source of irrigation water, although spate flows are available in some parts of the wadi. Rules
established under Sheikh Al-Jabarti more than 600 years ago gave the upper riparian area first priority
for spate water use. Spate waters are divided among three groups in the midstream area of the wadi,
with no water rights reserved for the downstream and coastal areas.

Wadi Zabid is known for its variety of crops, including vegetables (e.g., onions, tomatoes, okra,
legumes, zucchini, hot pepper, and mulukhiyah), fruits (e.g., banana, mango, date palm, watermelon,
cantaloupe, guava, papaya, and citrus), and cereals (sorghum, millet, maize, and sesame), in addition
to fodder crops and crops such as cotton, Jasminum sambac, and henna.

The number of wells in the study region has increased significantly over time, from 859 in 1975
with abstraction rates of 81.7 Mm3/yr [18] to 7802 in 2008, with abstraction rates of 444.2 Mm3/yr [19].

https://www.worldometers.info
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2. Materials and Methods

2.1. Methods

The residual value method was applied to estimate the economic value of water, based on crop
budgets at the farm gate. This method, a deductive approach, is the most commonly used technique
for water valuation [20]. Young and Loomis [21] presented extensive information on methods for
calculating the economic value of water.

Nevertheless, the current study derived the value of water based on crop budgets (as in the
Appendix A), which were represented by the net profit from crop production divided by the quantity
of irrigation water applied. The net profit is the total revenue earned from a crop minus the total
(variable) costs incurred for its production, including the cost of irrigation [22,23].

The economic value of groundwater in irrigated agriculture was estimated separately for the
midstream, downstream, and coastal areas of the study region. This enabled us to understand and
compare the impact of declining groundwater levels on the profitability of crops in the various areas,
due to the increased cost of pumping from greater depths.

2.2. Data Collection

A field survey was carried out in mid-2016 by two teams of four multidisciplinary researchers.
The first team conducted questionnaire-guided interviews and discussions with farmers. The second
team carried out an investigation of well water levels (measured by electronic gauge) and well yields
(estimated by a hydrogeologist in the region). Changes in well depths and spate water availability
were observed across the wadi. Seventy-nine farms in the midstream, downstream, and coastal areas
were randomly selected to conduct the farmer interviews (Figure 1). We expected to find differences
between farms in the quantities of agricultural inputs used and outputs produced. So, the plan for
the field survey was to examine in detail changes in crop budgets on each farm—that is, the sum
total of the inputs used subtracted from the earnings from the crops produced on that single farm.
These results would enable us to estimate the sensitivity of returns to land and water to changes in the
groundwater pumping depth.

Unfortunately, during the survey, we faced various obstacles in collecting the required data.
The hard daily life circumstances experienced by the farmers at the time of the field survey in mid-2016
affected their responses during the interviews. Indeed, farmers were confronted with numerous
hardships associated with the unstable political situation in the country at the time. Moreover,
post-harvest losses in the study area are high; this was especially due to the high temperatures, which
can reach 40 ◦C, and the farmers’ lack of cold storage facilities.

Illiteracy was another obstacle. Half of our farmer respondents were illiterate (Figure 2a).
Therefore, many were not accustomed to precisely calculating inputs and outputs. Furthermore,
the majority of the region’s farmers were smallholders. Some 56% of farms occupied 3.6 ha or less
(Figure 2b). This raised another hurdle, as some of these smallholders were discreet about sharing
privileged information about the specifics of their farming operation, considering this information
a trade secret. Although farmers were reluctant to talk, we were able to convince them to talk by
explaining that the results can later be used to improve agricultural practices in the region. However,
not all farmers gave complete answers to all the questions. They elaborated more in regard to the costs
of production and costs of pumping, but gave incomplete answers regarding production and revenues.
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Some of these obstacles were alluded to previously by Hellegers and Perry [24] (p. 33):

It is important to note that such returns are difficult to compute precisely in the absence of a
major modelling exercise. First, the precise technical coefficients (yield/ha, water use, etc.)
will vary across farms and by year. Second, some inputs are difficult to capture accurately
because they are not monetized (like family labor), or may be subject to distortions due to
taxes or subsidies.

To overcome the limitations of the collected data, crops were chosen in the study region for which
complete data were available from representative farms, omitting farms for which exaggerated values
were collected (very high and very low figures). Out of the 79 farms from which data were collected,
five representative farms were selected for calculation of the crop’s budgets and the return to land
and water. Data from 50 farms of the 79 farms were used to calculate the cost of diesel to pump one
cubic meter of groundwater from various depths. Nonetheless, many of the farmers interviewed
were unable to specify crop production values in terms of quantity (kg) and price (US$ per kg), as
they had sold the product in a different way, such as per tree, basket, carton, or bundle. Information
related to weight (kg) could be gathered from a few farms (six farms out of 79 farms) and from two key
informants. Thus, we calculated estimates based on the data that were provided. For example, banana
production was estimated by multiplying the number of cartons produced per hectare according to the
farmers by the average weight per carton. Other crop production figures were similarly obtained.

2.3. The Cost of Pumping One Unit of Groundwater

We calculated the cost of diesel to pump one cubic meter of groundwater from various depths
based on data collected in mid-2016. From the results of the questionnaires and discussions with
farmers, from 50 of the 79 farms, we first calculated the cost of groundwater pumping per hour (US$/hr)
from a certain depth at each farm. This was done using the farmers’ responses in regarding (i) pumping
depths (the number of pipes installed in the well and the length of each pipe), (ii) the number of
operating hours obtained using 20 liters of diesel (this is one drum, which represents a unit of volume
for diesel in Yemen), and (iii) the price of per drum of diesel. After that, the cost of pumping one cubic
meter of groundwater (US$/m3) from a certain depth on each farm was calculated based on the cost of
groundwater pumping per hour (US$/hr) at that depth and well yield (m3/hr).



Sustainability 2019, 11, 6476 6 of 19

2.4. To Calculate the Returns to Land and Water

As the study region spans a relatively small, 46 km by 20 km area, crop budgets were assumed
to be similar; that is, farm-to-farm differences in inputs for and earnings from particular crops were
taken to be minimal. A more significant difference was the depths from which groundwater had
to be pumped for irrigation and the availability of spate water, according to farms’ location in the
midstream, downstream, or coastal area. The average pumping depths for midstream, downstream,
and coastal areas were obtained from the contour map of pumping depths. The map was drawn using
the kriging interpolation method based on well information from the field visit, groundwater-level
measurements, and the drilling depth of 248 wells, alongside well information obtained from farmers.
Spate water availability was also known, which was determined by a field visit and descriptions of
water distribution rules and spate water rights from the literature, as found in Tipton and Kalmbach [25]
and IIP [26]. Spate water availability was determined as follows: (i) traditional rules dictate that only
the three groups in the midstream (around the constructed weirs) had spate water rights, so the farmers
downstream and in the coastal area had no spate water rights; (ii) the number of days that spate water
was available annually (days/yr) was known; (iii) discussions with farmers indicated that they did not
use groundwater for irrigation during the periods in which spate water was available.

2.5. The Effect of Increased Groundwater Pumping Depth on the Economic Value of Water

An Excel spreadsheet was used to build an economic model for investigating the impact of
changes in groundwater pumping depths (mbss) on net returns to land (US $/ha) and the value of
water (US $/m3). As noted, to calculate the value of water, we subtracted the cost of all production
inputs (including the cost of irrigation) from the total income from production and divided the result
by the total volume of water applied. This represents the net profit gained by farmers from each unit
of water applied.

3. Results

3.1. Pumping Costs

Figure 3 depicts the relation between the dependent variable (diesel consumption) and the
independent variable (pumping depth) using different functions: (1) a linear function, (2) a power
function, and (3) an exponential function. We see that the cost of pumping increases rapidly with
increasing depth. This is best expressed using the exponential function as follows:

Y = 0.0495e0.0163X R2 = 0.5856
e = 2.71828183

where Y is the cost of pumping one unit of groundwater in US $/m3 and X is the groundwater pumping
depth (mbss).
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Figure 3. Cost of diesel to pump one unit of groundwater from different depths (US $/m3), 2015/2016.

The R squared of 0.59 is within the 0–1 range (1 being a perfect explanation). Capital costs (or
fixed costs), such as well drilling and the purchase of a pump and engine, are not included. In addition,
maintenance materials costs are not included. These additional costs are assumed to be low and
without major fluctuations across the farms, as they are located within relatively small areas of the
study region.

Table 1 presents the differences found in (i) depth of groundwater pumping levels and (ii) spate
water availability across the study region. The difference in the groundwater (pumping) levels across
the study region resulted in differences in the cost of pumping one unit of groundwater. These
differences were especially marked in the downstream area compared to the midstream and coastal
areas. Pumping costs downstream were double those in the midstream and coastal areas, namely, US
$0.23/m3 versus $0.12/m3 and $0.10/m3, respectively. A future scenario in which groundwater depths
increase further would lead to a proportional increase in the cost of pumping one unit of groundwater,
as shown in Figure 3 (exponential function), Figure 4A–C, and Figure 5A–C.

Table 1. Average pumping depth of groundwater and spate water availability in three areas of the
Wadi Zabid region, 2016.

Midstream Downstream Coast

Depth of groundwater pumping (mbss) * 55 95 40
Spate water availability (%) # 40 0 0

* Depth according to measuring well water levels from a survey done in mid-2016 for the purpose of this study.
# As a percentage of the total irrigation water applied on an annual basis. Spate water was distributed according to
Sheikh Al-Jabarti rules between three groups located in the midstream. Recently, many violations of these rules
have been observed, with some asserting that the rule is socially unjust. For details, see [25–28].
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Figure 4. Economic returns to water in the midstream (A), downstream (B), and coastal areas (C) of
Wadi Zabid using groundwater pumping depths in 2016 compared to a future scenario with an up to
50-m increase in groundwater pumping depths.
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Figure 5. Economic returns to land in the midstream (A), downstream (B), and coastal areas (C) of
Wadi Zabid using groundwater pumping depths in 2016 compared to a future scenario with an up to
50-m increase in groundwater pumping depths.
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3.2. Returns to Land and Water

Table 1 shows the pumping depths for wells in the study region. Average spate water availability
is known from the field survey and literature describing local water distribution rules and spate water
rights [25,26]. On average, freely available spate water makes up 40% of the total water applied for
irrigation in the midstream area of the wadi, while the downstream and coastal areas had no spate
water rights.

The crop budget analyses indicate that irrigation water was the most expensive crop input, which
was mainly due to the high cost of the diesel fuel needed for groundwater pumping (Table 3). This was
true for all crops and all areas studied, except for sorghum in the midstream area of the wadi and in
the coastal area, where the cost of irrigation ranked second after the cost of land preparation and labor.
Irrigation was the most costly input in the downstream area of the wadi, as the depth of groundwater
pumping was greatest here, averaging 95 mbss.

In the downstream area, annual irrigation pumping costs varied from US $745/ha for date palm
to US $9501/ha for banana. The lowest irrigation pumping costs were found in the midstream area,
varying annually between US $233/ha for date palm to US $2970/ha for banana. The volumes of water
applied annually for irrigation varied between 3200 m3/ha for sorghum and 40,800 m3/ha for banana.

Table 2 compares these quantities to the amounts of irrigation water applied in other regions and
worldwide. These quantities span a considerable range, which is linked to the different agriculture
practices and irrigation methods used. We see that the amounts of irrigation water applied for banana
cultivation in Wadi Zabid (Yemen) and Wad Madani (Sudan) are high compared to the other regions.
A reason could be that both use basin irrigation, which is supplemented by freely available spate water
(in Wadi Zabid) and shallow groundwater (near the Nile River in Wad Madani).

Table 2. Amounts of irrigation water applied (m3/ha) for the dominant crops in Wadi Zabid (2016), and
in other places and worldwide.

Place Banana Mango Sorghum(Feed and Food) Date Palm

Wadi Zabid 1 29,000–70,000 * 4000–27,000 500–5000 4000–25,000
Taiz 2 16,800 18,800 6700 NA

Hadramout 2 27,037 26,339 NA 1000
Wad Madani/Shendi 1 60,000 7000–18,000 5000 5000–7000

Worldwide 12,000–22,000 4 11,200–17,000 5 4500–6500 4 15,000–35,000 3

Notes: NA: not available. * For 12 to 18 crops per year. Sources: 1. Field surveys conducted for this study in
Yemen in mid-2016 and in Sudan in mid-2018; date palm is only in Shendi. 2. Hellegers et al. [3]. 3. In Algeria
Abdelouahhab and Arias-Jiménez [29]. 4. Brouwer and Heibloem [30]. 5. Johnson and Parr [31].

For all crops, the highest returns to land and water were registered in the midstream area of the
wadi followed by the coastal area (Table 3, Figure 4A–C and Figure 5A–C). In contrast, the lowest
returns were found in the downstream area of the wadi.

Over the entire study region, the crops providing the highest returns to water were as follows:
sorghum (food), mango, banana, sorghum (feed), and date palm. For these same crops, returns to water
in the midstream area were, respectively, US $0.31/m3, $0.25/m3, $0.19/m3, $0.17/m3, and $0.13/m3.
In the coastal area, returns to water were slightly lower ($0.02/m3) than in the midstream area, but
the lowest returns to water were found in the downstream area. For the same crops as mentioned
above, the returns to water in the downstream area were US $0.15/m3, $0.09/m3, $0.03/m3, $0.01/m3

and $–0.03/m3, respectively (Table 3 and Figure 4A–C). Date palm was unprofitable, representing a
loss to the farmers in downstream area of the wadi.



Sustainability 2019, 11, 6476 11 of 19

Table 3. Crop budgets in three areas of the Wadi Zabid region, with calculated returns to land and water and total amounts of irrigation applied, 2016.

Banana Mango Date Palm Sorghum (Food) Sorghum (Feed)

Cost of production (US$/ ha/yr)

Seeds or saplings * 69 78 39
Land preparation and labor 1038 632 600 857 519
Fertilizer 195 70 0 156 208
Pesticides 363 137 130 0 0

Cost of irrigation pumping **
Midstream (40% spate water) 2970 737 559 328 233
Downstream (0% spate water) 9501 2357 1788 1048 745
Coastal area (0% spate) 3876 961 730 428 304

Total input costs
Midstream 4635 1575 1289 1419 999
Downstream 11,166 3195 2519 2139 1511
Coastal area 5541 1800 1460 1519 1070

Value of production

Product (tons/ha/yr) 33.33 8 13.33 3.70 0
Price (US$/kg) 0.37 0.51 0.17 0.58 0
By-product (US$/ha/yr) 0 0 0 649 1558

Total returns (US$/ha/yr) 12,461 4099 2272 2812 1558

Net returns or returns to land
(US$/ha/yr)

Midstream 7826 2524 982 1394 559
Downstream 1295 904 −247 673 47
Coastal area 6920 2299 812 1294 488

Total irrigation applied (m3/ha/yr) 40,800 10,119 7680 4500 3200

Returns to water (US$/m3)
Midstream 0.19 0.25 0.13 0.31 0.17
Downstream 0.03 0.09 −0.03 0.15 0.01
Coastal area 0.17 0.23 0.11 0.29 0.15

* Date palm and mango saplings were not included as their life span is very long, some 100 years and 40 years, respectively. ** The average groundwater pumping depths in the midstream,
downstream, and coastal areas were 55, 95, and 40 mbss, respectively.
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Crop rankings according to their returns to land were different. Ordered from the highest to lowest
returns, the crops ranked as follows: banana, mango, sorghum (food), date palm, and sorghum (feed)
across most of the study region. The only exception was in the downstream area, where sorghum (feed)
ranked higher than date palm. In the midstream area, the annual returns to land were US $7826/ha,
$2524/ha, $1394/ha, $982/ha, and $559/ha, respectively, for the above-mentioned crops. In the coastal
area, too, returns to land were relatively high, although a little less (by approximately 7% to 17%) than
in the midstream area. Downstream, returns to land were lowest, being some 52% to 125% less than
returns in the midstream area. As noted, farmers here faced losses in data palm cultivation (see Table 3
and Figure 5A–C). Our discussions with farmers indicated that the dominant crops in the midstream
area were banana, mango, and sorghum, while in the downstream area they were mango, sorghum,
and to a lesser extent date palm. In the coastal area, the dominant crops were date palm and sorghum.
Groundwater in the coastal area was not particularly deep. However, banana and mango were rarely
cultivated here due to the high salinity of some wells. Sorghum, which is a drought-resistant crop,
was cultivated across the entire study region, as were vegetables. However, vegetable cultivation had
decreased in recent years due to marketing difficulties resulting from the unstable political situation in
the country. In addition, vegetables are particularly vulnerable to post-harvest losses (spoilage) when
exposed to Tihama’s high temperatures. As noted, cold storage facilities are largely absent, which is in
part due to fuel shortages and electricity blackouts.

3.3. Sensitivity of Economic Returns to Land and Water to Falling Groundwater Levels

Increasing water scarcity is clearly apparent in the study region, and is observable in the
continually falling groundwater level over the previous decades. Table 4 presents the water levels
found in previous well inventories and the forecast for 2066. In the midstream, downstream, and
coastal areas, groundwater level depths were, respectively, 20 mbss, 8 mbss, and 0.5 mbss in 1972.
Recently, in mid-2016, average water levels were found to be at depths of 50 mbss, 90 mbss, and 35
mbss, respectively. Assuming continuation of the current trend over the coming five decades (to 2066),
a serious groundwater level drawdown is to be expected. In Wadi Zabid, we foresee on average
50-mbss drop of the groundwater table over the next 50 years below the current levels.

Table 4. Average groundwater depths in the study region of Wadi Zabid in previous decades and
expected levels in 2066.

Year
Groundwater Levels in Wadi Zabid (mbss)

Midstream Downstream Coast

1972 1 20 8 0.5
1987 2 25 40 10
2008 3 30 75 18
2016 * 50 90 35

Predicted 2066 100 140 85

Sources: Data analysis in Al-Qubatee, et al. [16] based on 1. well inventory Tesco-Viziterv-Vituki, cited in Tipton
and Kalambach [18], 2. well inventory 1987 DHV [32], and 3. well inventory NWRA [19]. * Based on a field survey
measuring well water levels for the purpose of this study.

The expected drop in groundwater levels will be reflected in higher pumping costs to use
groundwater for irrigation. It will also impact returns to land and water, as shown in Table 5,
Figure 4A–C, and Figure 5A–C. These effects will be felt throughout the region of study.
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Table 5. Economic returns to land and water calculated for the midstream, downstream, and coastal areas of Wadi Zabid. In the current scenario, the average
groundwater pumping depths are 55 mbss, 95 mbss, and 40 mbss, respectively. For the future scenario, a 50-m drop in groundwater depths was assumed, creating
groundwater depths of 105 mbss, 145 mbss, and 70 mbss, respectively.

Crops

Returns to Land (US$/ha/yr) Returns to Water (US$/m3)

Midstream Downstream Coast Midstream Downstream Coast

Current Future Current Future Current Future Current Future Current Future Current Future

Banana 7826 4086 1295 −10,668 6920 2039 0.19 0.10 0.03 −0.26 0.17 0.05
Mango 2524 1597 904 −2063 2299 1089 0.25 0.16 0.09 −0.20 0.23 0.11

Sorghum (food) 1394 981 673 −646 1294 755 0.31 0.22 0.15 −0.14 0.29 0.17
Sorghum (feed) 559 266 47 −892 488 105 0.17 0.08 0.01 −0.28 0.15 0.03

Date palm 982 278 −247 −2499 812 −107 0.13 0.04 −0.03 −0.33 0.11 −0.01
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Midstream in the wadi. Returns to land and water show the lowest sensitivity to a drop in the
groundwater level in the midstream area of the wadi compared to the other two areas. For the greatest
groundwater pumping depth, returns to the dominant crops will be 30% to 72% less than the 2016
levels (Table 5).

Downstream in the wadi. The highest sensitivity was found in the downstream area, where a further
drop in the groundwater level (assumed at 50 mbss in 50 years) would result in a 196% to 2013%
reduction in returns to land and water, compared to returns in 2016. Thus, all crops would become
economically unprofitable—that is, generating losses for farmers. Initially, sorghum (food) would
continue to return some profit, until a 30-m drop in groundwater pumping depth is reached. Mango
would also continue to be profitable, until a 10-m drop in the groundwater pumping depth is reached.

Coastal area. reductions in the economic returns to land and water here due to a further drop
in the groundwater pumping depth were calculated as between 42% and 113% for the dominant
crop. The date palm is very common in the coastal area due to its tolerance to salinity from other
dominant crop.

The crops most vulnerable to continually falling groundwater levels—that is, those crops showing
the greatest declines in returns to water across the entire study region—were ranked as follows: date
palm, sorghum (feed), banana, mango, and sorghum (food) (Figure 4 and Table 5). Crops showing the
greatest declines in returns to land (due to the groundwater level dropping by more than 30 m under
current depths) in the midstream area of the wadi were sorghum (feed), date palm, sorghum (food),
mango, and banana. For the coastal area, the ranking was similar, but with date palm coming first.
In the downstream area, the crops ranked as follows from highest to lowest declines in returns to land:
banana, date palm, mango, sorghum (feed), and sorghum (food) (Figure 5A–C and Table 5).

4. Discussion

The cost of pumping one unit of groundwater differed across the study region due to differences
in the groundwater level and thus in groundwater pumping depths. With increasing groundwater
level depths, pumping costs will dramatically rise. Indeed, the cost of pumping represents a primary
production cost for most crops in the study region. Our analysis found this cost to be of foremost
significance in diminishing returns to land and water in the context of a falling groundwater table.
The cost of pumping certainly plays a large role in determining cropping patterns in Wadi Zabid. Any
incentive that reduces the cost of pumping—for example, an energy subsidy (e.g., for diesel fuel or solar
panels)—would dramatically increase returns to land and water. Furthermore, it could be expected
to initiate a change in cropping patterns toward crops with higher water requirements. Hellegers,
Perry, and Al-Aulaqi [33] observed that direct incentives to farmers in the form of high diesel subsidies
and support for more efficient irrigation techniques encourage groundwater abstraction rather than
reducing irrigation demand. In contrast, raising the cost of inputs, such as energy, is an effective way to
reduce demand for irrigation [3,34]. This is confirmed by the results of the current study, as the highest
returns to land and water for the major crops were found in the midstream wadi area. The reason why
is that farmers in the midstream area did not rely exclusively on groundwater for irrigation, but also
had access to freely available spate water, unlike farmers in the downstream and coastal areas.

Midstream farmers would continue to make a profit from cultivating all crops, despite the
expected increase in groundwater level depths. In contrast, downstream farmers were found to have
the lowest economic returns to land and water, due to their total dependence on groundwater for
irrigation. Moreover, in the downstream area, groundwater had to be pumped up from much greater
depths: twice the depths in the midstream and coastal areas. Furthermore, no spate water reaches the
downstream area.

In the downstream area, returns to land and water showed the highest sensitivity to and greatest
impact of further drops in groundwater levels. In the coastal area, most crops would still continue
to return some profit in the scenario of further drops in the groundwater level, except for date palm,
which would become unprofitable if the current groundwater level dropped by more than 40 m.
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However, a further drop in groundwater levels in the coastal area would also lead to seawater intrusion.
This would likely degrade water quality and risks rendering entire groundwater aquifers unfit for
agriculture. Field surveys show that seawater upconing has already occurred on one date palm farm
in Al-Fayza village, leading to the dying out of all the trees on the affected farm [35,36].

Although sorghum was found to deliver the highest return to water, farmers in the midstream
area of the wadi preferred banana, which also delivered a high return to water, although less than
sorghum, and also delivered the highest return to land. While banana had the highest return to
land, it also required application of the largest amounts of irrigation water of all the crops examined.
Discussing the larger issue of the value of cash crops versus food security crops for developing
countries, Achterbosch et al. [37] indicated that as long as a balance is maintained, cash crops do have
an important role in ensuring food security at both the micro and macro levels. That is because
cash crops provide the income that households need to purchase other essentials required for their
well-being and food security. However, these authors did note that the economic and environmental
risks associated with cash crops should be guarded against and mitigated.

In regard to government incentives, Young and Loomis [21] noted that some developing country
governments have sought to keep the prices of agriculture products low in order to ensure low food
prices for consumers. However, intentionally keeping prices of agriculture products low could disrupt
the working of the market, diminishing the economic value of water. In fact, the current study found
the opposite. Government incentives, particularly subsides on fuel, contributed to lower production
costs (represented by the cost of the irrigation applied) below their costs at the global level (in a free
market context). Thus, farmers earned more profit (i.e., returns to land and water were greater), and
therefore, the economic value of water was higher in such cases than it would have been without such
incentives. In fact, these policies encourage the expansion of agricultural lands and irrigation demand,
rather than their reduction. In developed countries, production inputs such as fuel and labor are more
expensive, and the prices of outputs are higher as a result.

The pumping depths were calculated based on the field measurements and information on the
wells collected during the field survey and farmer interviews. The well yield data were verified by
comparing them with figures from the nearest wells for which data were available from other studies
in the region, the data of the well inventories of NWRA [19] and DHV [32]. The average was found
to be within the same range, between 6 l/s and 11 l/s. The availability of the spate water for the
entire midstream region was assumed in this study to be equivalent to that of the group with the
highest water rights, although other groups had less water rights. Moreover, even within the different
water rights groups, there were differences between farms as stipulated by traditional spate water
distribution rules. In fact, there is no recent, accurate map of spate water distribution in the midstream
region. Thus, there is also a diminution in the returns to land and water for the farms in the midstream.
The extent of that diminishment depends on the percentage of irrigation provided by spate water on
the various farms. Among midstream farms with less spate water rights, the returns to land and water
would be approximately equal to the returns of the farms in the coastal areas. This is because there
were no substantial differences between the two areas in depths of groundwater pumping.

5. Conclusions

The current study found that due to differences in groundwater depths, the cost of pumping
one unit of groundwater was different in the midstream, downstream, and coastal areas of the study
region of Wadi Zabid. Groundwater levels were found to be especially deep in the downstream area of
the wadi compared to the midstream and coastal areas. Pumping costs in the downstream area were
double those in the midstream and coastal areas. The continuing fall of the groundwater level here
will result in a rapidly increasing cost of pumping one unit of groundwater. The highest returns to
land and water were found in the midstream area of the wadi, followed by the coastal area. Returns
were lowest in the downstream area because of the greater groundwater pumping depths and lack of
freely available spate water for supplementary irrigation.
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Throughout the study region, crops ranked as follows, from highest to lowest returns to water:
sorghum (food), mango, banana, sorghum (feed), and date palm. Regarding returns to land, the ranking
was banana, mango, sorghum (food), date palm, and sorghum (feed), except in the downstream area,
where sorghum (feed) came before date palm. The dominant crops in the midstream area were banana,
mango, and sorghum. In the downstream area, they were mango, sorghum, and to a lesser extent, date
palm. In the coastal area, the dominant crops were date palm and sorghum. Banana and mango were
rarely cultivated in the coastal area because of the high salinity of some wells. Sorghum, which is a
drought-resistant crop that requires the lowest quantities of irrigation water, was cultivated over the
entire region.

A future scenario that assumes a continuing drop in groundwater levels would have significant
impact on economic returns to land and water, particularly in the downstream area of the wadi. Here,
all the cultivated crops would become economically unprofitable for farmers. A falling groundwater
table would have the least effect on returns to land and water in the midstream area because of the
more moderate pumping depths here, as well as the free availability of spate water. In the coastal area,
although the immediate impact on economic returns would also be low, further falling groundwater
levels would threaten aquifer quality due to the risk of seawater intrusion.

Regarding water reallocation, this study found sorghum (food) to provide the highest return to
water but only a moderate return to land. Nonetheless, this crop has social benefit (food security),
and requires less irrigation water application. Sorghum varieties for both food and feed are known to
be drought-resistant crops [38–40]. To encourage the reallocation of water to crops with low water
requirements, such as sorghum, government incentives would need to be oriented toward supporting
the marketing of drought-resistant crops to assure profitable sale prices for farmers within the wadi.
In addition, support for other less thirsty crops, such as peanuts and sesame, which can be cultivated
with sorghum in mixed cropping, intercropping, and crop rotation systems, could enhance returns to
land. Banana provides a moderate return to water and the highest return to land, but it also has a high
annual requirement for irrigation water. Therefore, a groundwater balance study is recommended
to further investigate the effect of banana farming on groundwater aquifers. Neighboring countries
such as Saudi Arabia, according to Ouda [41], have adopted agricultural policies oriented toward food
self-sufficiency (e.g., stimulating production of wheat, vegetables, and fruit). Their encouragement
and support of farmers has enabled them to achieve wheat self-sufficiency, with surpluses for export.
However, those policies have also resulted in the depletion of scarce groundwater resources. Irrigation
water demand increased almost threefold, from some 8 km3 in 1980 to some 22.3 km3 in 1994. The effect
of excessive extraction of groundwater for irrigation is reflected in the decline in groundwater levels.
In some aquifers, groundwater has declined by more than 200 meters in the past two decades [42]. It is
worth mentioning here that the reduction of post-harvest losses is a promising strategy for increasing
marketable output. Post-harvest losses of fruits and vegetables reach some 50% [43], and for cereal
grains reach up to 60% [44]. Agricultural extension offering farmers training and best practices for
reducing these losses could be particularly important in regions such as the study area, where illiteracy
is high and environmental conditions are harsh. Appropriate harvesting, handling, packaging, storage,
and transportation can make important inroads in reducing produce losses. Indeed, preserving an
existing crop constitutes a more economically and environmentally effective option than seeking to
produce more agricultural produce in an area with such scarce water resources. Another policy that
could be considered is e.g., the encouragement of fishing to reduce the stress on scarce water resources,
especially in view of the study region’s coastal proximity. Moreover, water and food production-related
policies could be reoriented toward support for the marketing of agricultural products at profitable
prices for farmers rather than economic incentives that do not considerably reduce water demand.
As suggested by the region’s farmers, any reallocation of water should consider the whole catchment
of Wadi Zabid, including the upstream area, where cash crops are cultivated [35].
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Appendix A

Crop budget formula used

Gross production value (US$/ha/yr) = yield × price.

Farmers often sold their products in different units than in kilograms, such as by maad (a
locally used unit) or by number of trees, bundles, baskets, or cartons. These units were converted to
conventional values where appropriate.

Costs of production * (US$/ha/yr) = seed or sapling cost + fertilizer cost + pesticide cost +

land preparation and labor cost + irrigation water costs (all units in US$/ha/yr)

Cost of irrigation water (US$/ha/yr) = unit cost of pumping water (US$/m3) from a
particular depth (US$/m3) ×water quantity applied for irrigation (m3/ha/yr)

Unit cost of pumping water (US$/m3) = diesel consumed to pump one unit of
groundwater (l/m3) × cost of one liter of diesel (US$/l)

Net production value or net return to land (US$/ha/yr) = gross production value
(US$/ha/yr) − costs of production (US$/ha/yr)

Value of water or net return to water# (US$/m3) = net production value or net
return to land (US$/ha/yr)/water quantity applied for irrigation (m3/ha/yr)

* Not including fixed costs.
# Including the cost of irrigation. The value of water (without including irrigation cost) = the

value of water (including irrigation cost) + (unit cost of pumping water × percentage of groundwater
applied for irrigation).
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