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Abstract: We present a study conducted to obtain optimum tilt angle and orientation of a solar
panel for the collection of maximum solar irradiation. The optimum tilt angle and orientation were
determined using isotropic and anisotropic diffuse sky radiation models (isotropic and anisotropic
models). The four isotropic models giving varying optimum tilt angles in the range of 37 to 44◦.
On the other hand, results of the four anisotropic models were more consistent, with optimum tilt
angles ranging between 46–47◦. Both types of models indicated that the collector tilt should be
changed four times a year to receive more solar radiation. The results also indicate that the solar panel
should be installed with orientation west or east of due south with a flatter tilt angle. A 15◦ change
in orientation west or east of due south results in less than 1% reduction of the total solar radiation
received. For a given optimum tilt angle, the effect of photovoltaic/thermal (PV/T) orientation west or
east of due south on the outlet temperature was determined using a one-dimensional steady state
heat transfer model. It was found that there is less than 1.5% decrease in outlet temperature for a PV/T
panel oriented up to 15◦ east or west of due south from March to December. This result indicates that
existing roofs with orientations angles up to 15◦ east or west of due south can be retrofitted with a
PV/T system without changing the roof shape.

Keywords: optimum tilt angle; solar PV orientation; solar radiation; isotropic models; anisotropic
models; PV/T system

1. Introduction

Solar energy has been recognized as an indigenous and unlimited source of energy. Solar energy
boosts sustainability and energy security, leads to pollution reduction, keeps fossil fuel prices lower
than otherwise, and lowers the cost of mitigating climate change [1].

The quantity of solar energy received by a photovoltaic (PV) panel is determined by the local
insolation and influenced by the orientation and tilt angle of the PV panels [2–5]. Proper installation
of a PV panel, through appropriate inclination and orientation, should maximize the solar radiation
received. Tracking systems that follow the course of the sun are used to maximize daily solar energy
received by PV panels. However, because these devices are expensive and need energy for their
operation it is recommended to find the best tilt and orientation angles. The tilt angle can be corrected
from time to time, for example, seasonally [6]. Generally, it is recommended that a PV system should
be installed with a tilt angle which is equal to the latitude of the site [2,7].

Models have been proposed by several authors for the determination of the best (optimum) tilt
angles. Although the models use the same technique of determining ground reflected and beam
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radiation they do differ in the way they convert the diffuse component value of a horizontal surface
to that of a tilted surface [6,8–10]. The diffuse component is assumed to be anisotropic or isotropic.
In isotropic models the intensity of the diffuse radiation is assumed to be uniformly distributed over
the sky dome. On the other hand, anisotropy of the diffuse radiation in the circumsolar region (sky
near the solar disk) plus isotopically distributed diffuse component from the rest of the sky dome is
assumed in anisotropic models [10].

Solar radiation prediction on inclined surfaces using both isotropic and anisotropic models has
been presented by many researchers [2,6,11–20]. Benghanem [6] conducted a case study for Madinah,
Saudi Arabia. He found that the yearly optimum tilt angle was about the same to latitude of the site.
This fixed tilt angle reportedly resulted in about 8% loss of collected energy when compared to the
energy collected by tilting the PV monthly. Ulgen [21] reported seasonal variation of the optimum
tilt angle for a solar collector in Izmir, Turkey. For winter months, December, January, and February,
the optimum tilt angle was found to be 55.7◦. For spring months, March, April, and May, the optimum
tilt angle was 18.3◦. For summer months, June, July, and August, the optimum tilt angle was 4.3◦

and, finally, for fall months, September, October, and November, the optimum tilt angle was 43◦.
Beringer et al. [22] conducted an experimental case study of optimum tilt angle of PV systems for
Hannover, Germany. They determined that there was a small difference in the performance of PV cells
at various tilt angles. They reported a difference of only 6% between yearly average and the summer
season, and 10% for the winter season and the yearly average. They reasoned that this was due to the
temperature that affects the performance of an open circuit voltage. The reduction in performance
of the PV cells was due to higher temperature. Hachem et al. [23] also came to a similar conclusion,
and reported that the annual electricity generation of the building integrated photovoltaic/thermal
(BIPV/T) system was not significantly affected by a tilt angle that ranged between 30◦ and 50◦ for the
latitude considered (45◦ N).

The effect of tilt angle and air pollution on the amount energy collected by a photovoltaic module
was investigated by Asl-Soleimani [24] for Tehran, Iran. They found a 30◦ tilt angle to be the optimum,
which is about 5◦ less than the latitude of the city. Also, they reported that the energy output of the
modules was reduced by more than 60% due to the influence of air pollution.

Several researchers have used TRNSYS (Transient System Simulation Tool) simulation to investigate
the effect of PV tilt angle and orientation on their performance. The performance of mono-crystalline
silicon PV modules at various tilt angles and orientation was investigated using TRNSYS simulation for
Cairo, Egypt, by Hussein et al. [25]. They found that south-facing optimum tilt angle to vary between
20–30◦. The impact of PV orientation and tilt angle on grid-connect PV performance in maritime
climatic conditions was investigated using TRNSYS by Mondol et al [7]. They found that south-facing
orientation and a tilt angle of 30◦ leads to maximum PV output, while east and west orientations with
90◦ tilt lead to minimum PV output. The monthly optimum tilt angle varied from 10 to 70◦ [7].

The negative impact of rising temperature on PV output has been reported by many researchers [26,27].
As mentioned previously, Beringer et al. [22] reported that the temperature effect resulted in little
differences in the performance (power output) of solar cells at various tilt angles. Circulation of
air or water behind PV modules eliminates the heat, leading to enhanced performance of PVs.
Photovoltaic/thermal (PV/T) systems enhance the electrical performance and provide thermal energy
for use of space heating or domestic hot water heating. As a result, since the mid-1970s, PV/T systems
have been researched intensively [28–46].

The potential of water-based PV/T systems was evaluated by Kazem for the case of Sohar,
Oman [47]. He reported that the evaluated PV/T system showed better electrical performance during
the testing period, with 6% higher power than a conventionally installed PV panel. Ramos et al. [48]
used TRNSYS to evaluate PV/T systems for space and domestic hot water heating application in
various European cities. They found that 60% of the heating demand can be met in Seville, Rome,
Madrid, and Bucharest. PVT systems coupled with borehole thermal energy storage systems (BTES)
were studied by Aldybyan and Chiasson [42], who reported electrical energy efficiency improvements
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of the PV/T cells by up to 4.7%. Abudullah et al. conducted a review of solar PV/T systems with
different absorber designs and analyzed their potential performance and production efficiency [49].
They reported that water-based PV/T systems have better performance as compared to the air-based
PV/T systems. Chen and Dai [50] compared the performance of flat plate solar thermal collectors to
that of a PV/T collector and found that the PV/T collectors showed a delay on the dynamic response.
They attributed this to the additional thermal capacity and thermal resistance of the PV/T systems.

In recent years, researchers have experimentally and numerically investigated the effect adding different
types of nanoparticles has on the heat transfer characteristics of the fluid in PV/T systems [51–53]. Ali et al.
reported that nano-SiC resulted in higher convective heat transfer as compared to nano-CuO and
nano-alumina [52]. Ali et al. [53] reported that adding nanofluid/nano-phase change material (PCM) to
PV/T system resulted in electrical and thermal efficiencies of 13.7%, 13.2%, 72%, and 71.3%, respectively.

Buildings in geographical sites with low solar radiation and ambient temperatures require space
heating for most of the year. Thus, PV/T systems that allow air circulation for removal of heat can be
useful and cost effective [54]. This conclusion is relevant to Canadian climatic conditions. Because of
air circulation, thermal energy extraction, and enhanced performance, a PV/T system can lead to a
quicker payback time as compared to a PV system alone. The most current practice of installing PV/T
systems is as separate systems on rooftops, treating them as distinct systems from the building envelop.
They are usually attached to the outer layer of the construction, requiring additional mounting systems.
This leads to longer payback time. Integrating PV/T systems to the building envelope in a system
known as building integrated photovoltaic thermal (BIPV/T) system has the possibility to meet all the
building envelope needs such as thermal insulation and mechanical resistance [23]. BIPV/T systems
have several functions including electricity and thermal energy production. BIPV/T can also improve
the cost effectiveness of building construction as compared to add-on PV/T systems [23].

In summary, the orientation and tilt angle of a solar panel are important parameters that influence
the output of the system and thus have been applied to solar thermal panels. However, there is limited
work on optimizing the PV/T orientation and tilt angles for application in climatic conditions of the
Greater Toronto Area (GTA), Canada. Specifically, the thermal output of a PV/T system has not been
reported for GTA application. The potential of coupling a PV/T system to an air source heat pump will
also be assessed.

The objective of this work was to determine optimum tilt and orientation angles of a PV/T systems
for application in the Greater Toronto Area (GTA), Canada. The optimum tilt angles and orientations
will be determined using four isotropic and four anisotropic models for the GTA climatic conditions.
In addition, we intended to examine the influence of orientation of a PV/T system on the outlet
temperature of the cooling air using a one-dimensional steady state heat transfer model.

2. Models for Determining Insolation on Tilted Surfaces

The overall solar radiation received on a surface is composed of (1) beam radiation, (2) diffuse
radiation, and (3) reflected radiation [6,8,55]. The beam radiation and the diffuse radiation on a
horizontal surface with correlation procedures are used to obtain insolation on tilted surfaces [8].
The monthly average daily total radiation on a tilted surface (HT) is obtained from the direct beam (HB),
diffuse (HD), and reflected components (HR) of the radiation on a tilted surface. Thus, for a surface
tilted from the horizontal, the incident total radiation (HT) is given by [7,21,55]:

HT = HB + HD + HR (1)

where HB is the daily beam radiation received on a tilted surface and is expressed as [7]:

HB =
(
Hg −Hd

)
Rb (2)

where Hg, Hd, and Rb are the monthly mean daily global, the monthly mean daily diffuse radiation
on a horizontal surface, and the ratio of the beam radiation on a tilted surface to that on a horizontal
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surface, respectively. Rb, the ratio of the beam radiation on the tilted surface to that on a horizontal
surface, is expressed as [8]:

Rb =
cos(θ)
cos(θz)

(3)

where θ is the angle of incidence of beam radiation and cos(θ) is expressed as [8]:

cos(θ) = sin(δ) sin(φ) cos(β) − sin(δ) cos(φ) sin(β) cos(γ)
+ cos(δ) cos(φ) cos(β) cos($)

+ cos(δ) sin(φ) sin(β) cos(γ) cos($)
+ cos(δ) sin(β) sin(γ) sin($)

(4)

where ϕ is the latitude of the location, δ is the declination, ω is the hour angle, β is the tilt angle, and γ
is the surface azimuth angle (Figure 1).
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Figure 1. Zenith, slope, solar altitude angle, and surface azimuth angles for a tilted solar panel.

The value of cos (θz) is obtained by setting β = 0◦ in Equation (4) [8].

cos(θz) = cos(δ) cos(φ) cos($) + sin(δ) sin(φ) (5)

The declination, δ, is expressed as [8]:

δ = (23.45) sin
(
360

284 + n
365

)
(6)

where n is the nth day of the year. In this study, the values proposed by [8] were used.
The daily ground-reflected radiation is expressed as [7,21]:

HR = Hgρ

(
1− cos(β)

2

)
(7)
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where β is the tilt angle of the solar panel from horizontal and ρ is the ground reflectance (ground
or surface albedo). Its value varies from 0.2 for a snow-free surface and 0.6 with fresh snow [55].
The sky-diffuse radiation is expressed by [7,8,21]:

HD = RdHd (8)

where Rd is the ratio of the average daily diffuse radiation on a tilted surface to that on a horizontal
surface. Four isotropic and four anisotropic models proposed by various investigators [11–19] were
used to calculate global radiation on tilted surfaces from the available data on a horizontal surface.

2.1. Isotropic Models

Rd =
1 + cos(β)

2
Liu and Jordan [12] (9)

Rd =
3 + cos(2β)

4
Badescu [13] (10)

Rd = 1−
β

180
Tian [14] (11)

Rd =
1
3
(2 + cos(β)) Koronakis [15] (12)

2.2. Anisotropic Models

Rd =
Hb
H0

Rb +

(
1−

Hb
H0

)(
1 + cos(β)

2

)1 +

√
Hb
Hg

sin3
(
β

2

) Reindl et al. [16] (13)

where Hb is the daily beam radiation incident on a horizontal surface, Hg is the daily global radiation
incident on a horizontal surface, H0 is the extraterrestrial daily radiation incident on a horizontal
surface, and Rb is the ratio of the average daily beam radiation incident on an inclined surface to that
on a horizontal surface given by Equation (3).

Rd =
Hb
H0

Rb + Ω cos(β) +
(
1−

Hb
H0
−Ω

)(
1 + cos(β)

2

)
Skartveit and Olseth [17] (14)

where

Ω =

[
Max

[
0,

(
0.3− 2

Hb
H0

)]]
(15)

Rd = 0.51Rb +
1 + cos(β)

2
−

1.74
1.26π

(
sin(β) −

(
β
π

180

)
cos β−π sin2

(
β

2

))
Steven, M.H. Unsworth [18] (16)

Rd =
Hb
H0

Rb +

(
1−

Hb
H0

)(
1 + cos(β)

2

)
Hay [19] (17)

3. Thermal Energy Generated by a PV/T Module

In this section, analytical expressions for the outlet air temperature (Figure 2) and the mean air
temperature flowing behind the PV/T panels will be developed. These models will be used to assess
the influence of orientation angle on the outlet temperature. Figure 2 illustrates the PV/T system
schematically. The outlet and mean temperature of the air in the duct will be determined using energy
balance equations with the following assumptions:

(1) 1D steady state heat transfer,
(2) heat loss of the PV module through radiation is neglected, and
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(3) negligible heat capacity of the PV/T system compared to the heat capacity of the air.
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recovery system.

For the PV cell:
αc(1− ηel)Ibdx = hw(Tc − Ta)bdx + hc(Tc − Tair). (18)

For the back insulation surface:

Ub(Tb − Ta) = hc(Tair − Tb). (19)

For the air stream flowing in the duct:

maCp
dTair

dx
dx = hc(Tc − Tair)bdx + hc(Tb − Tair)bdx. (20)

Combination of the above three equations gives:

dTair =
hcb

maCp

(
(αc(1− ηel)I + hwTa)(hc + Ub) + TaUb(hc + hw)

(hc + hw)(hc + Ub)
+ Tair

(
hc(hc + Ub) + hc(hc + hw) − 2(hc + hw)(hc + Ub)

(hc + hw)(hc + Ub)

))
. (21)

The solution to this equation is:

Tair = −

(
A− e−Bx(A+BTa)

)
B

(22)

where

A =
hcb

maCp

(
(αc(1− ηel)I + hwTa)(hc + Ub) + TaUb(hc + hw)

(hc + hw)(hc + Ub)

)
(23)

B =
hcb

maCp

(
hc(hc + Ub) + hc(hc + hw) − 2(hc + hw)(hc + Ub)

(hc + hw)(hc + Ub)

)
. (24)

At the outlet, i.e., x = L:

Tair = −

(
A− e−BL(A+BTa)

)
B

. (25)
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The mean air temperature is given by:

Tm =
1
L

L∫
0

Tairdx = −
A
B
−

(
A + B

(
Ta − TaeBL

))
−AeBL

B2L . (26)

4. Determination of Heat Transfer Coefficients

The average convection heat transfer coefficient due to wind was determined using the following
equation [8]:

hw = 2.8 + 3vw (27)

where vw is the velocity of wind obtained from the measured data for GTA from the National Climate
Data and Information Archive 2011 [56].

The conduction heat loss through the backside insulation is given by:

Ub =
kins
δins

(28)

where kins and δins are the thermal conductivity and thickness of the insulating material, respectively.
The convective heat transfer coefficient between the PV panel and the air, and between the back

insulation and the air was assumed to be the same, hc, and it was calculated using the correlation
developed [57] and used by [58].

hc =
k

DH

(
0.0182Re0.8Pr0.4

(
1 + s

DH

L

))
(29)

where k is the thermal conductivity of the air and DH is the hydraulic diameter of the channel and S is
given by [58]:

S = 14.3 log
( L

DH

)
− 7.9 for 0 <

L
DH
≤ 60 (30)

S = 17.5 for
L

DH
> 60.

The hydraulic diameter DH is determined using the cross-sectional area, A, and the wetted
perimeter, p, of the PV/T channel, as follows [59]:

DH =
4A
p

. (31)

5. Methodology

The total solar radiation on a tilted surface was computed for different tilt angles (varied from 0 to
90◦ in steps of 1◦) for each month of the year for GTA. The average daily total radiation on a surface
was calculated using Matlab R2010a (MathWorks®). Data of monthly average daily global irradiation
(Hg), diffuse irradiation (Hd), and beam irradiation (Hb) on a horizontal surface were obtained from
Meteonorm global meteorological database version 7 for GTA (latitude = 43.7◦ N, longitude = −79.2◦ E,
elevation = 157m). The solar reflectivity (ρ) was assumed 0.2 for spring, summer, and fall seasons and
0.6 for winter months. The daily extraterrestrial radiation, H0, was calculated using Equation (32) [8].

H0 =
86400Gsc

π

(
1 + 0.033 cos

(
2π

n
365

))(
cos(φ) cos(δ) sin($ss) +

π
180

$ss sin(φ) sin(δ)
)

(32)

where Gsc = 1367 W/m2 is solar constant, and the sunset hour angle, ωss, is given by [8]

$ss = cos−1(− tan(φ) tan(δ)). (33)
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The outlet air temperature (Tairout) and the mean temperatures (Tm) were computed in Matlab®

environment for the climatic data of GTA of 2011 using Equation (25) and Equation (26) using the
average monthly climatic data [56].

6. Results and Discussion

6.1. Daily Total Solar Radiation

Figures 3 and 4 show the average daily total solar radiation on a south-facing surface obtained
using isotropic (Equation (10)) and anisotropic (Equation (16)) models when the angle of the tilt varied
from 0 to 90◦ in steps of 1◦. The optimum tilt angles and the monthly average daily total solar radiation
on the optimum tilted surface are given in Table 1. Equations (10) and (16) were chosen because
Badescu’s model (Equation (10)) is preferred for estimation of solar radiation incident on a tilted surface
with the smallest statistical errors among all models and close agreement with measured data [59].
Similarly, the model by Steven and Unsworth (Equation (18)) has been found to be a simple model,
which agrees well with integrated values of irradiance results for various locations [18].
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Equation (10) [13].
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Figure 4. Monthly average daily solar radiation availability of tilted surfaces using an anisotropic
Equation (16) [18].

The optimum tilt angle in summer is small and it increases for spring and fall seasons reaching
maximum for winter months. All models indicated that the radiation on the collector surface is
maximum in July and minimum in December (Table 1). Both models (isotropic and anisotropic)
showed that a unique optimum tilt angle exists for each month of the year that corresponds to the
maximum solar radiation received. Generally, isotropic models predicted optimum tilt angle was
between 5◦ (June) and 71◦ (January). Anisotropic models, generally, predicted optimum tilt angles
between 10.4◦ (June) and 70◦ (January). All isotropic models predicted a lower tilt angle than the
latitude. This result is in agreement with the results of [60]. Anisotropic models predicted slightly
higher tilt angles than the latitude. Figure 5 shows the seasonal average tilt angles. Isotropic models
indicate the seasonal optimum tilt angle to be between 63–68◦, 30–37◦, 13–23◦, and 38–48◦ for winter,
spring, summer, and fall, respectively (Figure 5). Anisotropic models indicate the seasonal optimum
tilt angle to be between 66–69◦, 40◦, 27◦, and 50–53◦ for winter, spring, summer, and fall, respectively
(Figure 4). These results are in fair agreement with the suggestion of [8] who recommended that a tilt
angle that exceeds the latitude by 10–15◦for winter months and an inclination of 10–15◦ less than the
latitude for summer months to maximize the insolation received by PV panels. The trend showing low
optimum tilt angle for summer and high tilt angle for winter is in agreement with the results of [6]
and [12].
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Table 1. Optimum tilt angle (βopt in degrees) and monthly average daily solar radiation on a tilted surface (HT in kWh/m2/day) for each month of the year for a
south-facing solar collector in the Greater Toronto Area (GTA), Canada.

Month
Isotropic Models Anisotropic Models

Equation (9) Equation (10) Equation (11) Equation (12) Equation (13) Equation (14) Equation (16) Equation (17)

HT βopt HT βopt HT βopt HT βopt HT βopt HT βopt HT βopt HT βopt

January 3.28 66 3.16 71 3.22 71 3.38 71 4.08 72 3.99 70 4.68 68 3.99 68

February 4.19 60 4.02 60 4.08 64 4.30 64 4.93 65 4.84 63 5.63 63 4.84 63

March 5.74 47 5.53 42 5.54 49 5.86 52 6.63 54 6.57 53 7.56 52 6.57 52

April 6.31 31 6.16 23 6.01 26 6.39 36 6.90 39 6.87 38 8.48 40 6.87 40

May 7.58 22 7.50 18 7.33 16 7.63 25 8.04 28 8.04 28 9.51 29 8.04 29

June 8.18 16 8.12 12 7.97 5 8.21 18 8.56 23 8.56 23 10.4 23 8.56 23

July 8.58 19 8.51 15 8.34 12 8.61 21 9.05 25 9.06 25 10.66 25 9.06 25

August 7.76 27 7.65 22 7.50 23 7.81 29 8.39 33 8.39 33 9.63 33 8.39 33

September 5.88 35 5.72 29 5.63 34 5.96 38 6.61 43 6.58 42 7.79 43 6.58 43

October 4.35 45 4.18 40 4.17 47 4.44 49 5.12 54 5.05 52 6.10 53 5.05 53

November 2.36 51 2.24 46 2.26 54 2.44 56 2.84 61 2.77 57 3.75 60 2.77 60

December 2.12 64 2.03 68 2.07 69 2.20 69 2.59 71 2.51 68 3.31 68 2.51 68
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Figure 5. Optimum seasonal tilt angles.

Noorian et al. [10] evaluated isotropic and anisotropic models against measured data for Karaj,
Iran. Their reported relative root mean square error (RMSE) values predicted by anisotropic models
given by Equation (13), Equation (14), Equation (16), and Equation (17) for the south-facing surface.
The RMSE were 10.87%, 10.16%, 47.18, and 10.37%, respectively. These RMSE values were smaller than
those predicted by isotropic models, except for the one predicted by Equation (16). This suggested that
the predictions of anisotropic models were more accurate than the predictions of isotropic models,
except for Equation (16). In this work, the RMSE values for the south-facing surface predicted by
isotropic models given by Equation (9), Equation (10), Equation (11), and Equation (12) were 13.4%,
13.95%, 13.95%, and 14.89%, respectively.

Table 2 gives the optimum seasonal tilt angles. Both types of models, isotropic and anisotropic,
indicate that the collector tilt should be changed four times a year for maximizing output. Generally,
the seasonal optimum tilt angles obtained with anisotropic models are more consistent (Table 2).
For example, in spring (March, April, and May), the four anisotropic models indicate that the tilt
angle should be around 40◦ while the four isotropic models gave different tilt angles in the range of
27–37◦. For summer (June, July, and August) isotropic models gave different tilt angles in the range
of 13–23◦, while the four anisotropic models gave same the tilt angle around 27◦. For winter the tilt
angles obtained using the four isotropic models were in the range of 63–68◦, while anisotropic models
gave the tilt angle in the range of 66◦ and 69◦.

Table 3 gives the yearly average optimum tilt angles. Again, anisotropic models gave consistent
results of the yearly average optimum tilt between 46◦ and 47◦. More difference was seen between the
four results obtained using isotropic models. The yearly average optimum tilt angles predicted by
isotropic models varied from 37 to 44◦.
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Table 2. Seasonal average optimum tilt angle for south-facing solar panels in GTA.

Month Season
Isotropic Models Anisotropic Models

Equation (9) Equation (10) Equation (11) Equation (12) Equation (13) Equation (14) Equation (16) Equation (17)

β opt (o) βopt (o) β opt (o) βopt (o) βopt (o) β opt (o) βopt (o) βopt (o)

December
winter 63.33 66.33 68.00 68.00 69.33 67.00 66.33 66.33January

February

March
Spring 33.33 27.67 30.33 37.67 40.33 39.67 40.33 40.33April

May

June
Summer 20.67 16.33 13.33 22.67 27.00 27.00 27.00 27.00July

August

September
Fall 43.67 38.33 45.00 47.67 52.67 50.33 52.00 52.00October

November

Table 3. Yearly average optimum tilt angles for south facing collectors for GTA obtained using isotropic and anisotropic models.

Isotropic Models Anisotropic Models

Equation (9) Equation (10) Equation (11) Equation (12) Equation (13) Equation (14) Equation (16) Equation (17)

βopt 40.25 37.17 39.17 44.00 47.33 46.00 46.42 46.42
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6.2. Energy Losses

Table 4 compares the energy loss when the solar panels are adjusted seasonally with the result
obtained when the tilt is kept to the yearly optimum, using isotropic models (Equations (9)–(12)).
All the four isotropic models indicate that the maximum loss of energy occurs in September when
using seasonally adjusted panels. The last row of Table 4 give the energy loss in July (maximum
insolation) when the tilt is kept to the yearly optimum.

Table 4. Loss of energy under different tilt conditions of solar panel for isotropic models. SL: Energy
loss when using the seasonal adjustment. YL: Energy loss when using fixed angle throughout the year
calculated only for the maximum insolation (July). Y. Avg.: Yearly average. HT: Daily global radiation
on a tilted surface. S: Seasonal.

Equation (9) Equation (10) Equation (11) Equation (12)

Month HT S HT SL (%) HT S HT SL (%) HT S HT SL (%) HT S HT SL (%)

December 2.12
3.20

2.03
3.07

2.07
3.12

2.20
3.30January 3.28 −2.5 3.16 −2.8 3.22 −3.1 3.38 −2.4

February 4.19 −24 4.02 −24 4.08 −24 4.30 −23

March 5.74
6.54

5.53
6.40

5.54
6.29

5.86
6.63April 6.31 6.16 6.01 6.39

May 7.58 −14 7.50 −15 7.33 −14 7.63 −13

June 8.18
8.17

8.12
8.09

7.97
7.94

8.21
8.21July 8.58 −5 8.51 −5.2 8.34 −4.8 8.61 −4.6

August 7.76 7.65 7.50 7.81

September 5.88
4.20

−29 5.72
4.05

−29 5.63
4.02

−29 5.96
4.28

−28
October 4.35 −3.4 4.18 −3.1 4.17 −3.6 4.44 −3.6

November 2.36 2.24 2.26 2.44

Y. Avg. 5.53 5.40 5.34 5.60
YL (%) 37 37 36 35

Table 5 compares the energy loss when the solar panels are adjusted seasonally with the result
obtained when the tilt is kept optimum each month using anisotropic models (Equations (13)–(17)).
Similar to the isotropic models, the anisotropic models also show that the maximum loss of energy
is in September when using seasonally adjusted panels. Similar to the isotropic models, anisotropic
models indicate that the maximum loss of energy occurs in July when the yearly fixed panel tilt angle
is used as compared to the monthly optimum tilt (Tables 4 and 5 last rows).

Table 5. Loss of energy under different tilt conditions of solar panel for anisotropic models. SL: Energy
loss when using the seasonal adjustment. YL: Energy loss when using fixed angle throughout the year
calculated only for the maximum insolation (July). Y. Avg.: Yearly average. HT: Daily global radiation
on a tilted surface. S: Seasonal.

Equation (13) Equation (14) Equation (16) Equation (17)

Month HT S HT SL (%) HT S HT LS (%) HT S HT SL (%) HT S HT SL (%)

December 2.59
3.87

2.51
3.78

3.31
4.54

2.51
3.78January 4.08 −5.1 3.99 −5.3 4.68 −3 3.99 −5.3

February 4.93 21.5 4.84 −22 5.63 −19 4.84 −22

March 6.63
7.19

6.57
7.16

7.56
8.52

6.57
7.16April 6.90 6.87 8.48 6.87

May 8.04 −10.6 8.04 −11 9.51 −10 8.04 −11

June 8.56
8.67

8.56
8.67

10.40
10.23

−1.6 8.56
8.67July 9.05 −4.2 9.06 −4.3 10.66 −4 9.06 −4.3

August 8.39 8.39 9.63 8.39

September 6.61
4.86

−26.5 6.58
4.80

−27 7.79
5.88

−25 6.58
4.80

−27
October 5.12 −5.1 5.05 −5 6.10 −3.6 5.05 −5

November 2.84 2.77 3.75 2.77

Y. Avg. 6.14 6.10 7.29 6.10
YL (%) 32.1 32.6 31.6 32.6
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6.3. Effect of Panel Orientation

Figure 6 shows the optimal tilt angle for a given panel orientation (Equation (10)). The graph is
symmetric to due south (0◦), and the peak is at due south. The graph also indicates that, in case of
geometrical constraints imposed by the particular building, the angle the solar panel could be installed
with orientation west or east of due south for optimum output. In the case when angle deviates from
due south, the panel should be adjusted to a flatter tilt.Sustainability 2017, 9, x FOR PEER REVIEW  14 of 20 
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Figure 6. Yearly optimal tilt angle for different orientations (Equation (10)).

Figure 7 shows the yearly mean daily average solar radiation on a tilted surface. The graph
indicates that the maximum (5.4 kWh/m2/day) solar radiation is received when the solar panels are
oriented due south. This is in agreement with the results of [61]. The maximum value is reduced by
2.6% when the orientation is 30◦ west or east of due south (Table 6).

Table 6. Daily global radiation on a tilted surface for different panel orientations (east or west of south),
(γ: orientation).

γ −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

HT 5.258 5.300 5.335 5.364 5.385 5.397 5.402 5.397 5.385 5.364 5.335 5.300 5.258

When the solar panel is oriented 15◦ west or east of due south, the reduction from the maximum
value is only 0.6%. This indicates that in case of geometrical constraints imposed by a building the
solar panel could be installed with orientation 15◦ west or east of due south without causing significant
reduction in the maximum solar radiation received. It is noted that all istoropic and anistropic models
showed that maximum solar rdaiation is received when the solar panels are oriented due south
regardless of the season, with tilt angle adjustment. These results indicate that the solar panels could
be (1) seasonally adjusted by mechanical means for seasonal optimization or (2) by a single-axis tracker
to optimize the monthly solar energy received.
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Figure 7. Yearly average solar radiation on a tilted surface for different orientations (Equation (10)).

6.4. Outlet and Mean Temperatures

As mentioned in Section 5, the outlet air temperature (Tairout) and the mean temperatures (Tm)
were computed in Matlab® environment for GTA climatic conditions of 2011 using Equation (25) and
Equation (26). Average monthly climatic data as shown in Table 7 were used. The solar intensity
obtained for optimum tilt angle at a given orientation, calculated using Equation (13), were used.
Table 8 gives the physical properties of air and the assumed design parameters (V, kins, δins).

Table 7. Average monthly climatic data.

Month January February March April May June July August September October November December

Avg. T (◦C) −12 0.14 4.76 3.43 9.78 18 28.6 23.08 11.14 9.5 12.1 5.6

Wind v (m/s) 3.07 1.96 3.13 7.42 6.98 2.44 4.91 4.7 6.4 10.5 5.12 5.83

Tairout (◦C) 1.18 17.4 21.6 12.1 20.4 44 44.7 38.6 20.6 14.2 17 9.6

Tm (◦C) 3.87 12.7 17.3 10.1 18 37.1 40.8 34.8 18.4 13.2 15.9 8.7

Table 8. Parameters used for computing the outlet and mean temperatures. Physical properties
obtained from [62].

αc ηel ma [kg/s] Cp [J/kgK] ρa [kg/m3] V [m/s] ν [m2/s] k [WmK] kins [W/mK] δins [m]

0.9 0.15 3 1007 1.1614 1 15.89 × 10−6 0.0263 0.035 0.03

Figure 8 shows variations of outlet, mean, and inlet temperatures for a south-facing PV/T panel.
The seasonal outlet temperatures are 11 ◦C, 12 ◦C, 19.2 ◦C, and 6.3 ◦C for winter, spring, summer, and
fall, respectively. There is a significant temperature output for winter season. This thermal energy can
be used in a variety of ways. The most logical use would be the coupling of the PV/T system to an air
source heat pump in order to enhance the coefficient of air source (COP). It should also be noted that
the extraction of heat from the back side of the PV/T enhances its electrical performance by keeping the
PV/T cool. The relatively lower outlet temperatures in fall and spring is probably caused by higher
convection due to higher wind velocities (reaching up to 7 m/s for spring and up to 10.5 m/s for fall)
which has a cooling effect on the PV panels.
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Figure 8. Average monthly variation of the outlet, mean, and inlet temperatures.

Figure 9 shows the effect of a PV/T orientation on the outlet temperature from the duct. The effect
was examined by varying the orientation angle from 0◦ (south-facing) up to 45◦ east or west of due
south. Higher outlet temperature decrease with increasing orientation angle was observed for two
winter months, January and February. The highest temperature decrease, 49.6%, was found to be for
January when the PV/T system was oriented at 45◦ west or east of due south. There was less than 1.5%
decrease in the outlet temperature for a PV/T system oriented up to 15◦ east or west of due south from
March to December. This can be of particular advantage in case of retrofit applications, i.e., almost all
of the thermal energy can be recovered without altering the shape of the roof (i.e., for roofs oriented up
to 15◦ east or west of due south).
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7. Conclusions

In this study, the optimum tilt angle and orientation of a PV/T system for the collection of maximum
solar radiation were determined using isotropic and anisotropic diffuse sky radiation models. The effect
of PV/T orientation on the outlet temperature was examined using a 1D steady state heat transfer
model. The most important findings are:

• Generally, the seasonal optimum tilt angles obtained with anisotropic models are more consistent
suggesting that the predictions of anisotropic models were more accurate than the predictions
of isotropic models. These finding are in agreement with the findings of other researches who
reported that, in general, the RMSE values predicted by anisotropic models were smaller than
those predicted by isotropic models.

• Both types of models indicated that the panels should be seasonally adjusted for better performance.
Isotropic models gave widely varying optimum tilt angles in the range of 37 to 44◦ and the four
anisotropic models gave optimum tilt angles between 46–47◦.

• In case of geometrical constraints imposed by a particular building, the PV/T system could be
installed with orientation west or east of due south with a flatter tilt angle without significant
effect on the performance.

• The reduction of the total solar radiation received on a solar panel oriented 15◦ west or east of
due south is insignificant (less than 1%). The reduction in solar radiation received increases
with increasing orientation west or east of due south. This result also indicates that a single-axis
tracking system could be installed to obtain monthly optimum angle.

• There is less than a 1.5% decrease in the outlet temperature for PV/T oriented up to 15◦ east or west
of due south from March to December. This indicates that existing roofs within the mentioned
orientations angles can be retrofitted with a PV/T system without changing the roof shape with
minimal reduction in the outlet temperature.

• There is a significant temperature output for the winter season. This thermal energy can be used
to substantially enhance the COP of an air source heat pump by coupling it in the winter season.
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Abbreviations

Nomenclature
b width of a collector [m]
Cp specific heat capacity of air [J /kgK]
DH hydraulic diameter [m]
HB daily beam radiation incident on an inclined surface

[kWh/m2/day]
Hb daily beam radiation incident on a horizontal surface

[kWh/m2/day]
hc convection heat transfer in the air channel [W/Km2]
HD daily sky-diffuse radiation incident on an inclined

surface [kWh/m2/day]
Hd daily sky-diffuse radiation incident on a horizontal

surface [kWh/m2/day]
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Hg daily global radiation incident on a horizontal surface
[kWh/m2/day]

H0 extra-terrestrial daily radiation incident on a
horizontal surface [kWh/m2/day]

HR daily ground reflected radiation incident on an
inclined surface [kWh/m2/day]

HT daily global radiation on a tilted surface
[kWh/m2/day]

hw wind convection heat transfer coefficient [W/Km2]
I solar radiation intensity [W/m2]
k thermal conductivity of air [W/mK]
kins thermal conductivity of insulation material [W/mK]
L length of the collector [m]
ma mass flow rate of air [kg/s]
n nth day of the year
p wetted perimeter of a channel [m]
Pr Prandtl number
Rb ratio of average daily beam radiation incident on an

inclined surface to that on a horizontal surface
Rd ratio of average daily sky-diffuse radiation incident

on an inclined surface to that on a horizontal surface
Re Reynolds number
Ta ambient temperature [◦C]
Tair air temperature [◦C]
Tb backside temperature [◦C]
Tc Photovoltaic (PV) panel temperature [◦C]
Tm mean temperature [◦C]
Ub backside heat loss [W/Km2]
v velocity of air inside the duct [m/s]
vw wind velocity [m/s]
Greek symbols
αc PV panel absorptance
αs solar altitude angle
ηel electrical conversion efficiency of a PV panel
γ surface azimuth angle [◦]
β surface slope from the horizontal [◦]
δ declination [◦]
δins insulating material thickness [m]
ϕ latitude [◦]
θz zenith angle and the sun’s position relative to the

north-south axis, [◦]
ρ ground albedo, ground reflectivity
ρa air density [kg/m3]
ωss sunset hour angle [◦]
Γsc solar constant [W/m2]
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