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Abstract: Takada’s group developed a method for estimating the yearly transition matrix by
calculating the mth power roots of a transition matrix with an interval of m years. However,
the probability of obtaining a yearly transition matrix with real and positive elements is unknown.
In this study, empirical verification based on transition matrices from previous land-use studies and
Monte-Carlo simulations were conducted to estimate the probability of obtaining an appropriate
yearly transition probability matrix. In 62 transition probability matrices of previous land-use studies,
54 (87%) could provide a positive or small-negative solution. For randomly generated matrices with
differing sizes or power roots, the probability of obtaining a positive or small-negative solution is
low. However, the probability is relatively large for matrices with large diagonal elements, exceeding
90% in most cases. These results indicate that Takada et al.’s method is a powerful tool for analyzing
land-use dynamics.
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1. Introduction

Land-use and land-cover change with natural processes and human activities, which
further depends on ecological, economic, political institutional, and social constraints [1]. Thus,
studying land-use/cover change (LUCC) may contribute to better understanding of the interaction
between environmental and human-driven processes and finding key processes within the local
human–environment system [2]. Several approaches were developed to understand, analyze and
evaluate LUCC [3–6]. Among them, the probability-based transition matrix approach has been used
to analyze, compare, and predict LUCC over specific periods with a stationary Markov model [7–10].
In this approach, two maps of a single site for two points in time are classified into the same set of
land-use/cover categories and the transition probabilities between the categories are estimated by
comparing these two maps [11]. The transition probability matrix, T, whose interval is m years, is used
to calculate the projection of the area of LUCC, xt+m as

xt+m = xt · T , (1)

where xt is a row vector representing the proportion of each category in time t.
The transition probability matrix is useful not only for extracting factors that lead to differences in

one time period at a site, but also for comparing the difference of land-use change among several time
periods [8]. Transition probability matrices are sometimes obtained by comparing aerophotographs or
satellite images of the target location, but in some cases, the intervals of the aerophotographs or satellite
images differ. For example, consider three aerophotographs of the same place taken in 2000, 2007 and
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2012. The LUCC transition probability matrix between 2000 and 2007 can be calculated by comparing
2000 and 2007 aerophotographs. In addition, the transition probability matrix between 2007 and 2012
can be calculated. These two transition probability matrices cannot be compared, because the former
matrix reflects LUCC in 7 years, whereas the latter matrix reflects LUCC in 5 years. Such mismatch
of aerophotograph or satellite image shooting interval might arise from unsystematic planning of
shooting interval. The same situation sometimes occurs for comparing LUCC in several sites, because
aerophotographs with the same interval are not always available.

To resolve this problem, the matrices should be adjusted such that they have the same interval.
Takada et al. [12] developed a method for estimating the yearly transition matrix by calculating the
power root of a transition probability matrix with any interval of the research period. Hereafter, Takada
et al. [12]’s annualizing method is referred as TAM for short. TAM has been used by many LUCC
researchers [13–17], etc. These studies dealt with various topics, such as agricultural land use, forest
management, climate change, deforestation, and urbanization, suggesting that TAM is useful for
obtaining the yearly transition matrix in LUCC analysis.

Theoretically, the number of solutions induced from mth power roots of an n× n matrix T is mn,
because they are calculated as

T
1
m = U


(λ1)

1
m 0

. . .

0 (λn)
1
m

U−1

U = (u1 · · · un) ,

(2)

where λi is the i-th eigenvalue of matrix T and ui is its corresponding eigenvector. The number of
mth power root of λi is generally m for each i and the total number of the combinations is mn [12].
The mn solutions include matrices with complex numbers or negative numbers. They are unsuitable
for land-use dynamics analyses, such as scenario-based simulation and future prediction. This problem
has been discussed in several studies [6,18–21]. However, the possibility of obtaining suitable yearly
transition probability matrices with TAM remains unclear.

The aims of this study are to (1) clarify the possibility of obtaining yearly transition probability
matrices with real field data set, (2) clarify the theoretical possibility of obtaining yearly transition
probability matrices, and (3) explain the difference between real and theoretical results and examine the
validity of TAM. In this study, we estimated the probability of acquiring a positive or small-negative
solution via TAM. Empirical verification was conducted with 62 transition matrices obtained from
previous land-use change studies. Monte-Carlo simulations were conducted with randomly generated
matrices and biased matrices to estimate the probability of acquiring suitable solutions. Furthermore,
we discuss the effectiveness of TAM.

2. Materials and Methods

2.1. Empirical Verification

In this study, the possibility of obtaining yearly transition probability matrices with actual
transition probability matrices was examined. From 34 previous studies on land-use change (Table 1),
62 transition probability matrices were obtained.
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Table 1. Data sources for empirical verification.

Data Source Country Geographical Place

Barima et al. 2010 [22] Ivory Coast Tanda
Bogaert et al. 2011 [23] Benin Banokoara
Chust et al. 1999 [24] Spain Minorca
Deng et al. 2009 [25] China Hangzhou, Zhejiang province
Ediger & Huafang 2006 [26] China Western Yunnan
Ferreira Filho & Horridge 2014 [27] Brazil Sao Paulo, Mato Grosso and nationwide
Flamenco-Sandoval et al. 2007 [28] Mexico Chiapas state
Freitas et al. 2010 [29] Brazil Sao Paulo state
Guan et al. 2011 [30] Japan Saga
Günlü et al. 2009 [31] Turkey Rize
Hall et al. 1991 [32] USA Minnesota
Hu et al. 2013 [33] China Fuzhou City
Jasinski et al. 2005 [34] Brazil Mato Grosso
Jia et al. 2004 [35] China Xinjian
Kane et al. 2014 [36] USA Phoenix, Arizona
LaGro Jr. & DeGloria 1992 [37] USA New York State
Mas et al. 2004 [38] Mexico nationwide
Matsushita et al. 2006 [39] Japan Lake Kasumigaura basin
Mendoza et al. 2011 [40] Mexico Lake Cuitzeo Watershed
Parès-Ramos et al. 2008 [41] Puerto Rico nationwide
Peña et al. 2007 [42] Spain Marina Baixa catchment
Pueyo & Alados 2007 [43] Spain Middle Ebro Valley
Rutherford et al. 2008 [44] Switzerland nationwide
Silva et al. 2011 [45] Portugal Agueda, Macao and Braganca
Solon 2009 [46] Poland Warsaw metropolitan area
Takada et al. 2010 [12] Japan Abukuma
Thomlinson et al. 1996 [47] Puerto Rico Luquillo
Weng 2001 [48] China Zhujiang Delta
Yu & Ng 2006 [49] China Panyu, Guandzhou
Yuechen 2008 [50] China 13 provinces in Northern China
Zarin et al. 2001 [51] Brazil Amapa state

These matrices were annualized with the software developed by Takada et al. [12] whose name
was “annualmatrix.exe” in the following URL, https://taktakada.github.io/esoftdownload.html, to
determine the number of positive and small-negative solutions. Among 62 transition probability
matrices used in the empirical verification, 48 matrices were supplied together with the initial and
final area size (or proportion) of each category (the row of “Area data” in Table 2). For these matrices,
the row vector of the final area size, v f in can be calculated as

v f in = vinit · T , (3)

where T is the transition probability matrix and vinit is the row vector of the initial area size. Assume
that T is a transition probability matrix in m years and A is a mth power root of the matrix calculated
by TAM. The row vector of the estimated final area size, vest would be calculated as

vest = vinit Am. (4)

Errors in the estimation of the annualization are calculated as the sum of differences in each
category between the real and estimated area sizes, using the following formula,

∑
|vest − v f in|

v f in
. (5)

https://taktakada.github.io/esoftdownload.html
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The Pearson’s correlation coefficient between the estimated error and study area was calculated
using statistical software R version 2.11.1 [52]. The Kendall rank correlation coefficient between the
estimated error and number of classes, and between the estimated error and study period was also
calculated using R version 2.11.1 as well as Kendall library [53].

2.2. Monte-Carlo Simulation

To estimate the probability of obtaining a positive solution of the power root matrix, we conducted
Monte-Carlo simulations using a randomly generated matrix. LUCC transition probability matrices
have the characteristic of all the row sums being always 1.0. Assume that P is a n × n transition
probability matrix and pij is an element of the P. The row sum

n

∑
i=1

pij = 1, (6)

for all j. In most LUCC studies, the total area or number of grids of the target area neither increases nor
decreases during the study period. Thus, randomly generated matrices should meet this requirement.
In this study, an n× n random matrix was generated based on the “broken stick” method proposed by
Takada et al. [54]. First, n− 1 random numbers were generated from the uniform distribution ranging
from 0 to 1 using R version 2.11.1 [52]. and then sorted in the ascending order. A line (stick) with
length 1 is broken into n pieces using the random numbers as breaking points. The lengths of broken
lines are used as n random numbers, whose sum is equal to 1. These random numbers are combined
to generate a row vector of n size, and its sum is equal to 1. For example, three random vectors whose
sizes were 3 and sum of the elements was 1.0, were generated as

v1 = [0.1, 0.4, 0.5],
v2 = [0.4, 0.3, 0.3],
v3 = [0.2, 0.2, 0.6].

(7)

This procedure was repeated n times and n row vectors were obtained. They were concatenated
to form an n× n matrix T as

T =

 0.1 0.4 0.5
0.4 0.3 0.3
0.2 0.2 0.6

 . (8)

The obtained random matrices were annualized with the software developed by Takada et al. [12]
to determine the number of positive and small-negative solutions. Monte-Carlo simulations were
conducted for matrix sizes ranging from 2 to 9 and power roots of 3, 4, 5, 7, 10, 13, 20, or 30, except
for a matrix size of 8 and power root of 20 or 30 and matrix size of 9 and power root of 20 or 30. The
simulation was repeated 1000 times in most cases. The procedure was repeated 100 times for matrices
with large sizes and power roots because the simulations were time-consuming. The probability of
obtaining a positive or small-negative solution was estimated by dividing the number of trials that
yielded a positive or small-negative solution by the total number of trials.

2.3. Biased Monte-Carlo Simulation

A fully random matrix was generated using the “broken stick” method. However, the transition
probability matrix analyzed for land-use change tends to differ from a random matrix. In many
cases, the diagonal elements of a transition matrix are relatively larger than non-diagonal elements
(e.g., [8,28,30,40,43,45,55–58]). This may be attributed to the generally constant land-use patterns
during the study period or the tendency of self-replacement probability to be high. To simulate a
transition probability matrix in land-use dynamics, we generated a series of biased random matrices
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(Hereafter, this type of matrix is referred to as a “modified random matrix”). Therefore, the “broken
stick” method was not adopted to generate modified random matrices,

The procedure is as follows. First, n random numbers were generated from the F distribution
with 1.0 and 0.0 degrees of freedom using R version 2.11.1 [52]. F distribution was used to simulate
a skewed distribution, in which the majorities of random numbers were relatively small, while the
minority of random numbers were relatively large. Then, the random numbers were combined to
produce a row vector v, which was corrected such that the sum of the row vector was one as

v′
i = vi − (∑ v− 1)

vi

∑ v
, (9)

where v′ is a corrected vector. This procedure was repeated n times. For each row vector that
constituted a random matrix, the largest element in the row vector was swapped with the element in
the diagonal position of the matrix. For example, three random vectors with a size of 3 and sum of
elements of 1.0 were generated as

v1 = [0.1, 0.3, 0.6],
v2 = [0.5, 0.2, 0.3],
v3 = [0.1, 0.2, 0.7].

(10)

These three vectors, v1, v2, v3 were combined as an 3× 3 matrix T

T =

 0.6 0.3 0.1
0.2 0.5 0.3
0.1 0.2 0.7

 , (11)

by swapping the first and third elements of v1, and by swapping the first and the second elements
of v2.

The same procedure was applied for the modified random matrices to obtain the probability of
obtaining a positive or small-negative solution by TAM.

3. Results

The size (number of categories) of the transition probability matrices ranged from 4 to 10 and the
study period ranged from 3 to 52 years among 62 transition probability matrices used in empirical
verification. A positive or small-negative solution was obtained from 54 of 62 matrices(87%) (Table 2).

Error estimation was conducted for 42 transition probability matrices, which were supplied
together with the initial and final area size of each category and an annual transition probability matrix
could be obtained. Estimated errors in transition probability matrices were smaller than 0.05, except for
data from Lopéz et al. [59] (No. 25 in Table 2) with 0.081 (Table 2). The Pearson’s correlation coefficient
between the estimated error and the study area was not significant (r = −0.16, p = 0.30). In addition,
the Kendall’s τ between the estimated error and the number of classes was not significant (τ = 0.213,
p = 0.07). Nevertheless, the estimated error and study period were significantly correlated (τ = −0.31,
p = 0.005).

The probability of obtaining a yearly transition matrix was estimated through Monte-Carlo
simulations using random matrices (Table 3).

The probability of obtaining a positive solution was very low for different matrix sizes and
power roots (Table 3), and it was almost zero for a matrix size greater than 4. The probability of
obtaining a positive solution did not increase linearly with the power root. Although the probability of
a small-negative solution with a random matrix was higher than that for a positive solution, it was
still less than 30% (Table 3). The probability of obtaining a small-negative solution increased with the
power root for matrix sizes larger than 4. However, the relationship between a small-negative solution
and the power root was not linear for matrix sizes of 2 or 3.
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Table 2. Empirical verification of obtainingpositive and small-negative solutions with transition
probability matrices from previous field studies.

No. Data Source Study Area
(km2)

No. of Classes First year Study Periods
(year) Area Data No. of Results ErrorsPositive Small neg.

1 Bogaert et al. 2011 [23] 192 4 1972 34 with 0 1 0.043
2 Chust et al. 1999 [24] 700 5 1984 8 with 0 1 0.0021
3 Deng et al. 2009 [25] 720 5 1996 10 with 1 0 1.1× 10−6

4 Deng et al. 2009 [25] 720 5 1996 4 with 0 1 0.00080
5 Deng et al. 2009 [25] 720 5 2000 3 with 1 0 5.6× 10−7

6 Deng et al. 2009 [25] 720 5 2003 3 with 1 0 1.1× 10−6

7 Ediger & Huafang 2006
[26]

42 4 1989 12 with 0 1 0.020

8 Ferreira Filho & Horridge
2014 [27]

248,000 4 1995 11 with 0 1 0.00075

9 Ferreira Filho & Horridge
2014 [27]

903,000 4 1995 11 with 0 0 –

10 Ferreira Filho & Horridge
2014 [27]

8,515,000 4 1995 11 with 0 1 1.0× 10−5

11 Flamenco-Sandoval et al.
2007 [28]

5755 7 1986 9 with 0 1 0.0020

12 Flamenco-Sandoval et al.
2007 [28]

5755 7 1995 5 with 0 1 0.0063

13 Flamenco-Sandoval et al.
2007 [28]

5755 7 1986 14 with 0 1 0.0068

14 Freitas et al. 2010 [29] 75 5 1962 19 with 0 1 0.024
15 Freitas et al. 2010 [29] 75 5 1981 19 with 1 0 0
16 Günlü et al. 2009 [31] 998 6 1984 23 with 0 0 –
17 Hu et al. 2013 [33] 12,104 5 1986 20 with 0 1 0.00011
18 Jasinski et al. 2005 [34] 900,000 5 2001 2 with 0 1 0.0024
19 Jia et al. 2004 [35] 312 8 1982 13 with 0 0 –
20 Kane et al. 2014 [36] 8 4 1915 34 with 1 0 0
21 Kane et al. 2014 [36] 8 4 1949 14 with 0 1 0.0014
22 LaGro Jr. & DeGloria 1992

[37]
1517 8 1968 17 with 0 1 4.9× 10−5

23 Li et al. 2004 [60] 49,286 7 1986 14 with 0 1 1.6× 10−6

24 López et al. 2001 [59] 188 8 1960 15 with 0 1 0.037
25 López et al. 2001 [59] 188 8 1975 15 with 0 1 0.081
26 Mas et al. 2004 [38] 1,932,465 7 1976 24 with 0 1 0.00034
27 Mas et al. 2004 [38] 1,938,326 7 1993 7 with 0 1 0.00028
28 Matsushita et al. 2006 [39] 2089 10 1979 11 with 0 1 6.2× 10−6

29 Matsushita et al. 2006 [39] 32 10 1990 6 with 0 0 –
30 Parès-Ramos et al. 2008

[41]
8607 6 1991 9 with 0 1 0.00096

31 Rutherford et al. 2008 [44] 29,613 5 1985 12 with 1 0 0
32 Silva et al. 2011 [45] 65 7 1990 13 with 0 1 0.016
33 Silva et al. 2011 [45] 122 7 1990 15 with 0 1 0.0067
34 Silva et al. 2011 [45] 115 5 1990 15 with 0 1 0.016
35 Solon 2009 [46] 379 6 1950 20 with 0 1 0.00087
36 Solon 2009 [46] 379 6 1970 20 with 0 1 5.7× 10−5

37 Takada et al. 2010 [12] 100 5 1947 15 with 0 1 0.0028
38 Takada et al. 2010 [12] 100 5 1962 13 with 0 1 0.011
39 Takada et al. 2010 [12] 100 5 1975 22 with 0 1 0.024
40 Tang et al. 2007 [61] 2017 7 1979 11 with 0 1 0.012
41 Tang et al. 2007 [61] 2017 7 1990 10 with 0 1 0.025
42 Weng 2001 [48] 15,112 7 1989 8 with 0 1 0.012
43 Yu & Ng 2006 [49] 1231 6 1988 5 with 0 0 –
44 Yu & Ng 2006 [49] 1231 6 1993 5 with 0 1 0.048
45 Yu & Ng 2006 [49] 1231 6 1998 4 with 0 0 –
46 Yuechen 2008 [50] 5,308,690 6 1989 10 with 0 1 0.0033
47 Yuechen 2008 [50] 5,308,690 6 1999 4 with 0 1 0.0050
48 Zarin et al. 2001 [51] 523 5 1976 15 with 0 1 0.0017
49 Barima et al. 2010 [22] ? 4 1986 16 without 0 1 *
50 Barima et al. 2010 [22] ? 4 1986 16 without 0 0 *
51 Guan et al. 2011 [30] 431 6 1976 11 without 0 1 *
52 Guan et al. 2011 [30] 431 6 1987 10 without 0 1 *
53 Guan et al. 2011 [30] 431 6 1997 9 without 0 1 *
54 Hall et al. 1991 [32] 409 6 1973 10 without 0 1 *
55 Hall et al. 1991 [32] 534 6 1973 10 without 0 1 *
56 Mendoza et al. 2011 [40] 4000 9 1975 11 without 0 1 *
57 Mendoza et al. 2011 [40] 4000 9 1986 10 without 0 1 *
58 Mendoza et al. 2011 [40] 4000 9 1996 4 without 0 1 *
59 Mendoza et al. 2011 [40] 4000 9 2000 3 without 0 1 *
60 Peña et al. 2007 [42] 641 7 1956 44 without 0 1 *
61 Pueyo & Alados 2007 [43] 457 5 1957 41 without 1 0 *
62 Thomlinson et al. 1996 [47] 43 7 1936 52 without 0 0 *

Note *: Error estimation was not conducted because area data were not available for the matrix.
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Table 3. Probability(%) of obtaining a positive and small-negative solution with random matrices.
Former: positive solution; latter: small-negative solution. Numbers with one decimal place indicate
results with 1000 trials and the others indicate results with 100 trials.

Matrix Size
Power Root

3 4 5 7 10 13 20 30

2 70.9, 13.0 59.1, 5.5 63.9, 12.7 60.0, 12.7 53.3, 6.2 56.0, 12.3 51.9, 4.7 51.4, 4.6
3 8.4, 24.0 6.6, 12.9 6.1, 17.5 5.2, 17.3 4.9, 16.5 4.7, 22.6 4.3, 26.9 4.3, 35.7
4 0.2, 7.6 0.0, 4.6 0.0, 5.4 0.0, 6.6 0.0, 9.4 0.0, 13.5 0.0, 21.1 0.0, 32.7
5 0.0, 1.6 0.0, 1.2 0.0, 1.4 0.0, 1.8 0.0, 4.5 0.0, 8.4 0.0, 15.8 0.0, 28.4
6 0.0, 0.1 0.0, 0.0 0.0, 0.0 0.0, 0.2 0.0, 1.2 0.0, 2.9 0.0, 10.2 0, 17
7 0.0, 0.0 0.0, 0.0 0.0, 0.0 0.0, 0.0 0.0, 0.9 0.0, 2.5 0, 6 0,14
8 0.0, 0.0 0.0, 0.0 0.0, 0.0 0.0, 0.0 0.0, 0.3 0,1 – –
9 0.0, 0.0 0.0, 0.0 0.0, 0.0 0.0, 0.0 0.0, 0.0 0,0 – –

In contrast, the probability of obtaining a positive solution with a modified random matrix was
generally higher than that with a random matrix (Table 4).

Table 4. Probability(%) of obtaining a positive and small-negative solution with modified random
matrices. Former: positive solution; latter: small-negative solution. Numbers with one decimal place
indicate results with 1000 trials and the others indicate results with 100 trials.

Matrix Size
Power Root

3 4 5 7 10 13 20 30

2 100.0, 0.0 100.0, 8.7 100.0, 0.0 100.0, 0.0 100.0, 8.0 100.0, 0.0 100.0, 8.9 100.0, 9.5
3 38.8, 61.1 35.5, 66.3 33.7, 66.0 32.7, 67.0 31.7, 69.0 31.0, 68,7 30.2, 70.4 29.7, 70.9
4 3.6, 94.4 2.8, 95.9 2.6, 96.4 2.3, 96.8 2.0, 97.3 1.8, 97.5 1.8, 97.5 1.7, 97.6
5 0.0, 93.1 0.0, 95.0 0.0, 96.2 0.0, 97.4 0.0, 98.2 0.0, 98.3 0.0, 98.4 0.0, 98.4
6 0.0, 90.4 0.0, 92.8 0.0, 94.4 0.0, 96.0 0.0, 97.4 0.0, 97.5 0.0, 97.6 0, 99
7 0.0, 86.3 0.0, 89.7 0.0, 91.1 0.0, 93.8 0.0, 96.0 0.0, 96.3 0, 96 0, 97
8 0.0, 78.4 0.0, 83.2 0.0, 86.7 0.0, 90.9 0.0, 92.9 0, 94 – –
9 0.0, 75.1 0.0, 79.1 0.0, 83.7 0.0, 87.8 0.0, 90.8 0, 93 – –

For a matrix size of 2, the probability was 100%. Similarly, the probability of obtaining a
small-negative solution with a modified random matrix was higher than that with a random matrix,
and exceeded 90% for matrix sizes greater than 4 (Table 4). However, the probability was zero for a
matrix size of 2 and the power root was odd.

4. Discussion

The possibility of obtaining yearly transition probability matrices with real field data set, random
matrices, and modified random matrices using TAM, was high (54 in 62 matrices; 87%, Table 2), low
(Table 3), and relatively high (Table 4), respectively. These results suggest that TAM may provide
suitable solutions using transition probability matrices with relatively large diagonal elements, which
is common in LUCC studies.

The low probability of obtaining a positive or small-negative solution from a random matrix,
especially for a matrix greater than 5 × 5 (Table 3), suggests that a yearly transition matrix with real
and positive elements cannot always be derived from a transition matrix. However, the probability
of obtaining a positive or small-negative solution from a modified random matrix (relatively large
diagonal elements) exceeded 90% in most cases (Table 4). The diagonal elements of the transition
probability matrix tend to be relatively large in land-use dynamics analysis because land-use patterns
are fairly constant over a short period. Consequently, TAM should derive yearly transition matrices
from the transition probability matrices for land-use analysis.

In cases where the target location experiences drastic changes and the self-replacement rate is
low, the diagonal elements of the transition probability matrices tend to be not relatively large. In
the empirical verification, annual transition probability matrices were not obtained from No. 9, 16,
19, 29, 43, 45, 50, and 62 matrices in Table 2. These matrices were from studies on urbanization
(No. 43 &45; [49]), rapid agricultural or industrial land-use change (No. 9; [27], No. 19; [35],
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No. 29; [39], No. 50; [22]) and long-term studies (No. 16; [31], No. 62; [47]). For these types of
studies, it is possible that TAM cannot obtain an applicable solution of yearly transition matrix.

The estimated error with area projection between real and annualized transition probability
matrices was lower than 0.05 in most cases (Table 2). The estimated error did not correlate with the
study area size and the number of classes, but it was negatively correlated with the study period.
TAM includes errors attributable to calibration, in which negative elements close to zero are treated as
zero [12]. Nevertheless, these results indicated that the calibration error is small and independent of
study area size and number of classes.

We could not calculate the annual transition probability matrix from several large (containing
many classes) and long-term matrices, such as [55,56,58,62], because their estimated time of calculation
exceeded a month. For example, even with the newest PC (AMD Ryzen5 3600x, 3.8GHz) configuration,
the calculation of an annual transition probability matrix from the transition probability matrix from
Ojeda-Revah et al. [62], whose matrix size (number of categories) was 10 and study period was 24 years,
was estimated to consume more than 1000 days. Please note that TAM will check all the possible mn

solutions for n× n transition probability matrix whose duration is m years. Therefore, other algorithms
will be needed to speed up the calculation for large and long-term transition probability matrices.

5. Conclusions

In this study, empirical verification based on transition matrices from previous land-use studies
and Monte-Carlo simulations were conducted to estimate the probability of obtaining an appropriate
yearly transition probability matrix with TAM. This study has revealed that (1) the possibility of
obtaining yearly transition probability matrices with real field data set is high, (2) the theoretical
possibility of obtaining yearly transition probability matrices is low, as shown in Monte-Carlo
simulation with random matrices, and (3) the difference between real and theoretical results may be
explained by high possibility of obtaining yearly transition probability matrices in Biased Monte-Carlo
simulation, suggesting that the possibility of obtaining yearly transition probability matrices is
high when the diagonal elements of the transition probability matrix were relatively larger than
non-diagonal elements. The diagonal elements of the transition probability matrix tend to be relatively
large in most cases in LUCC studies. However, the diagonal elements of the transition probability
matrices tend to be not relatively large in cases where the target location experiences drastic changes
such as urbanization, rapid agricultural or industrial land-use change and long-term research. For
these types of studies, TAM may not be able to obtain an applicable solution of yearly transition matrix.

This study suggests that TAM is applicable for many transition probability matrices and may
contribute to land-use dynamics analysis as a powerful tool.
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