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Abstract: In the context of developing countries, effective groundwater resource management is often
hindered by a lack of data integration between resource availability, water demand, and the welfare
of water users. As a consequence, drinking water-related policies and investments, while broadly
beneficial, are unlikely to be able to target the most in need. To find the households in need, we
need to estimate their welfare status first. However, the current practices for estimating welfare need
a detailed questionnaire in the form of a survey which is time-consuming and resource-intensive.
In this work, we propose an alternate solution to this problem by performing a small set of
cost-effective household surveys, which can be collected over a short amount of time. We try
to compensate for the loss of information by using other modalities of data. By combining different
modalities of data, this work aims to characterize the welfare status of people with respect to their local
drinking water resource. This work employs deep learning-based methods to model welfare using
multi-modal data from household surveys, community handpump abstraction, and groundwater
levels. We employ a multi-input multi-output deep learning framework, where different types of
deep learning models are used for different modalities of data. Experimental results in this work have
demonstrated that the multi-modal data in the form of a small set of survey questions, handpump
abstraction data, and groundwater level can be used to estimate the welfare status of households.
In addition, the results show that different modalities of data have complementary information,
which, when combined, improves the overall performance of our ability to predict welfare.

Keywords: deep learning; data fusion; groundwater risk management; Kenya; welfare; rural water supply

1. Introduction

Sustainability is a multidimensional and dynamic problem where the most severe challenges
often exist in the places with the least data. In rural Africa, the imperative for economic development
and poverty reduction is constrained by the variability and uncertainty in environmental systems.
Groundwater is the most widely available, water resource but it is poorly quantified in terms of its
availability in locations where bulk water users, such as irrigated agriculture or mining, may influence
and impact the use and quality for rural populations for drinking water or other household needs.
We explore how machine learning methods can fuse multiple streams of biophysical and social data to
understand and predict how the multidimensional welfare of people may be at risk from the temporal
and spatial variation in the use and distribution of groundwater in coastal Kenya. If the status and
changes in groundwater and welfare risks can be quantified this will permit policy and investments
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to find and maintain a more sustainable balance between the competing goals of economic growth,
environmental sustainability and poverty reduction.

1.1. Contributions of This Work

In this work, we employ a deep learning-based method to estimate the welfare status of households
using multi-modal data. Deep learning is a type of machine learning method based on artificial neural
networks (ANN) [1]. Machine learning is the scientific study of algorithms and statistical models that
can automatically detect patterns in data and use them to perform certain decision task [2]. In ML we
model the relationships within the input modalities of data with its output and they perform a certain
task relying on the patterns and inferences without using any explicit instructions. The final output of the
ML model incorporates both dynamical trend information and subtle correlations that may exist between
the various input modalities of the data. ANN derive their inspiration from the working of biological
neurons. Deep learning employs multiple layers of ANN to build a model which progressively extract
patterns from the input signal. Deep learning allows the output of the model to cope with signals that
are sampled at different times, and corrupted by varying degrees of artefact and noise. DNN can also
scale to the modeling of very large quantities of big data in a principled manner, where model structure
is learned directly from the data. Compared to prior deep learning-based studies, the proposed work
differs in two key ways: (1) with a primary motivation to generate data and tools required to inform
policies, interventions and investments related to drinking water management, we focus on predicting the
welfare status of people specifically with respect to drinking water resource, and (2) our model combines
household level socio-economic survey data with two other modalities of data such that the welfare can
be modeled with respect to their proximal drinking water resource. We use a deep neural network and
compare results with traditional machine learning methods. The importance of individual modality is
analyzed and it is observed that combining them improves performance.

1.2. Background

A reliable estimate of the welfare of people is important to inform a country’s development
policies, even more so for countries with constrained resources. Such information allows government
to efficiently allocate its resources and track progress of development activities. Nevertheless, many
countries lack the data and the tools required to monitor their resources and how they link to the
welfare of people [3], which substantially affects their ability to focus more on the areas or populations
with the highest need [4,5]. The welfare data of a population is generally collected using socio-economic
surveys consisting of a detailed questionnaire, which are often time consuming and resource-intensive.
Often these survey datasets are not in the public domain and have limited coverage [6,7]. Despite recent
global push to ramp up data collection within developing nations [3], the use of traditional household
surveys alone to close these gaps may not be cost-effective—it may require billions of US dollars to meet
the United Nations sustainable development goals target [8]. To mitigate this problem, researchers
have employed alternate methods to measure these outcomes using data from search engines [9],
social networks [10], or mobile phone networks [11].

Several studies have employed satellite photographs taken at night capturing the light emitted from
Earth’s surface (nightlights) for the same [12–15]. These exploit the observation that the well-off regions
tend to be brighter than the poor regions. These works suggest that there is a strong correlation between
the traditional economic productivity measures and nightlights [13,14]. In addition to the nightlights,
high-resolution daytime satellite imagery is also employed to predict poverty [7]. Here, a multi-step transfer
learning approach is used to obtain a noisy proxy for poverty, which is further employed to train a deep
learning model. This model is used to estimate average household expenditures/wealth at geographical
region roughly equivalent to villages and ward in rural and urban areas respectively.

Other studies have also shown that the digital footprints of mobile phone transactions and logs
correlate with the regional distribution of wealth [11]. Data from social networks and other sources
on the Internet have also been exploited to estimate the economic activity of geographical regions,
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especially in wealthy regions [10,16]. These studies employ data mining of tweets and the search
queries of individuals to estimate economic activity. The data and mobile phone-based methods have
shown promising results but they are less relevant to the developing world, especially for the poorest
and most marginalized populations [17]. The machine learning methods employing nightlights data
are more suitable in the developing world, but they can only estimate economic conditions of a broader
geographical region. In addition, those methods are known to be less effective at differentiating
between regions at the bottom end of the income distribution [7]. The transfer learning-based method
employing daytime satellite images can be employed in such cases, but it also provides economic
information on a geographical region [7].

1.3. Approach

Most of the existing methods neither incorporate fine grained household level information. Thus,
existing methods fail to use vital household level information that helps to understand the complex local
dynamics of welfare. Moreover, in absence of household survey data, it is difficult to assess if these
broad regional statistics indeed reflect the reality on the ground. Since the cost of performing periodic
comprehensive surveys is prohibitive, an alternate solution, proposed in this work, may be to perform
a cost-effective household survey. We also examine if the lack of detailed information that would have
otherwise been present in a comprehensive survey can be compensated for using additional related
datasets such as groundwater levels, and community handpump abstraction data. In addition, we try to
model welfare as opposed to poverty in most of the existing works. Welfare is measured as a composite
basket of assets, capabilities and consumables and differs from poverty which is commonly measured
by income or expenditure data. Human development is considered to be multidimensional quantity,
aligning to welfare estimates which can be complemented by, but are different to, poverty estimates.

The groundwater levels data, representing the state of groundwater resource, consists of water
level estimates obtained from a groundwater flow model developed as part of the wider research
program which this study is part of [18]. Similarly, the abstraction data, representing the demand,
consists of measured weekly community handpump abstraction data [19]. We attempt to model the
welfare status of people based on a combination of three factors—environmental state of resource,
demand, and socio-economic status of people. These factors are represented by water level, abstraction,
and socio-economic survey data respectively in a multi-input multi-output neural network.

The reason for employing groundwater is its important role in human welfare due to its potential
to provide, depending on geology, good quality drinking water in comparison to surface water, and its
natural buffering of dry periods [20,21]. Studies have found that people with access to groundwater
engage in productive uses such as irrigation and livestock watering which has benefits to their
livelihoods [22]. Households that practice irrigation are less likely to be poor compared to those that
do not use groundwater for irrigation [23]. The changing level of groundwater which may increase the
risk profile of a household subject to their access to, and use of, the groundwater resource. The degree
to which changing groundwater levels, over space and time, influence household welfare is not very
clear. This study aims to explore this relationship based on modeled groundwater levels [24].

The modeling using machine learning approaches is challenging due the different nature of
these datasets—while groundwater levels and abstraction are temporal data, socio-economic survey
represents the socio-economic status of people at a specific point in time. Hence, we have employed
a recurrent neural network (RNN) [1] for groundwater levels and abstraction, and a feed-forward (FF)
network for survey data. The reason for using RNN for groundwater levels and abstraction is because
these data are time-series and have temporal aspect. A RNN well known to deal with time-series
data because they can retain state from one iteration to the next by using their own output as input
for the next step [25]. On the contrary, the socio-economic data consists of a survey questionnaire
and hence does not have a temporal aspect associated with it. Thus, there is no need to employ
a RNN for this data, instead a normal feed-forward (FF) neural network can be used. However,
leveraging the recent advancements in the use of convolutional neural network (CNN) in the first layer
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of a deep learning model as a feature extractor [26], we employ CNN as first layer for all the modalities.
An extensive experimentation shows that the multi-modal data integration provides additional value
in characterizing the welfare status of households.

This work represents part of a wider study to understand the dynamic relationship between
groundwater levels and welfare of people to identify relevant data and develop tools to manage
drinking water resource [18,27]. The study area is in Kwale County, Kenya, south of Mombasa and
adjacent to northern Tanzania, as shown in Figure 1.

Figure 1. A map of the study area showing the locations of the sampled households and handpumps.

The County population of 880,000 people mostly live in rural areas (82%) with majority
(70%) living below the poverty line of less than USD 1.25 a day [28]. The study area includes the
long-established coastal tourism industry in Diani and the more recent mining and commercial sugar
production industries. By combining different types of data pertaining to household welfare with
groundwater levels this work attempts to predict changes in household’s welfare status. We show how
recent advances in machine learning methods can be applied as cost-effective and scalable methods to
track welfare of people.

2. Proposed Methods

In this section, we discuss the proposed methods to predict the welfare status of a household.
The block diagram depicting the objective of the proposed framework is described in Figure 2.
We predict the welfare status of a household based on three different modalities of data:
(a) socio-economic survey data, (b) groundwater levels, and (c) handpump abstraction data.
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The different modalities of data survey, groundwater levels and abstraction are represented as
xs ∈ Rm1 , xh ∈ Rm2 and xa ∈ Rm3 respectively. The abstraction and groundwater levels data are
time-series data while the survey data is a fixed set of questions for a particular household.

The problem here is multidimensional, whose inputs are non-Gaussian and may be correlated,
with varying degrees of noise and artefacts present in each signal. Therefore, we will model relationships
within different modalities of data using a multi-input multi-output neural network, a framework for
modeling multi-modal data. The final output of the model is a set of varying probabilistic indices
modeling the welfare that incorporate both dynamical trend information and subtle correlations that may
exist between the multidimensional data. There are a total of four welfare indices at the output of the
model, one for each modality of the data, and one final welfare for the joint model.

The multi-input multi-output framework of the neural network allows the uncertainty in the data
to be modeled explicitly, allowing the output of the model to cope with signals that are (a) sampled at
different times, and (b) corrupted by varying degrees of artefact and noise. In addition, the proposed
method is non-parametric, and therefore can scale to the modeling of very large quantities of big
data in a principled manner, where model structure is learned directly from the data, rather than by
imposing strong probabilistic modeling assumptions. Furthermore, the welfare status estimated at the
output of the model allow the relevant institutions and stakeholders to explore the status and risks
being faced by different households and act accordingly.

The block diagram of the proposed framework is shown in Figure 3. This framework consists of
three smaller sub-networks, one for each individual data modality. The different modalities (xs, xh, xa)
of the data are the inputs to each of the smaller sub-networks, and the output of all networks correspond
to welfare label (y). The embeddings from the penultimate layers of each of the smaller neural network
are concatenated and are fed to a series of fully connected layers, with welfare label (y) as the final
output. The resulting multi-input multi-output neural network architecture is jointly trained.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2

xs

CNN

MaxPool

Flatten

Dense

Dense

y

CNN

xh

MaxPool

LSTM

Dense

Dense

CNN

xa

MaxPool

LSTM

Dense

Dense

yConcatenation y

Dense

Dense

y

Fig. 2:Figure 3. The proposed multi-input multi-output neural network employing survey (xs), groundwater
levels (xh) and abstraction (xa) data to predicting welfare status of a household.
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The sub-network for the survey data consists of a one-dimensional CNN (1D-CNN) followed by
fully connected layers. A CNN is a sequence of layers, where each layer takes a multidimensional
array as input and gives a multidimensional as output. Mathematically, at each of the layer ys = c(xs),
where xs and ys are the input and output arrays respectively and c is a local function, consisting of
translation invariant operators and thus can be considered as a filter. The convolution operation is
generally followed by a pooling step which is computed over the input array in small sliding windows.
Among different types of pooling functions, e.g., averaging and sum, maxpooling is the one most
commonly used. This CNN module is followed by a maxpooling operator. Furthermore, a flattening
layer flattens the data before it is fed to a multi-layer FF network with two fully connected layers.
The multi-layer FF network consist of a cascade of perceptron layers. The individual perceptron layer
is defined as:

yp = σ(Wys + b), (1)

where W is the weight vector matrix, ys is the input vector, b is the bias, and σ is the activation function.
The last fully connected layer is connected to a SoftMax layer with two classes.

Since groundwater levels data is a time-series, Long Short-Term Memory networks (LSTM), a type
of RNN suitable for time-series data, is used to model the data. The sub-network for groundwater
levels data consists of a 1D-CNN followed by a LSTM layer further connected to a series of fully
connected layers. 1D-CNN in this sub-network can be considered to be an inbuilt feature extractor.
LSTM can learn long term dependencies in the time-series data and have the form of a chain of
repeating cells. Each LSTM cell has a forget gate ft, input gate it and cell state Ct. The forget gate
decides which information is discarded from the previous cell state. On the contrary, the input gate,
based on the current input decides which information is stored in the current cell state. Based on the
previous two steps, the cell state stores which information to forget and store. For a given time series
xh = {x1, . . . , xt, . . . , xm2}, as input, a LSTM employs following steps:

ft = σ1(W f ht−1 + W f xt + b f )

it = σ1(Wiht−1 + Wixt + bi)

Ct = ft × Ct−1 + it × σ2(Wcht−1 + Wcxt + bc).

(2)

Finally, an output gate modulated by the cell state computes the hidden layer state as:

ht = σ1(Whht−1 + Whxt + bh)× σ2(Ct), (3)

where σ1 and σ2 are two activation functions, sigmoid and tanh, respectively. W∗ and b∗ indicates the
weight matrices and the biases, respectively, and t represents the time index. Here ∗ can be f , i and c,
representing the parameters for forget gate, input gate and the cell state, respectively.

Since abstraction data is also a time-series, a LSTM sub-network, similar to the one used for
groundwater levels, is employed for modeling the abstraction data. The outputs of the penultimate
layers for survey, groundwater levels, and abstraction data, represented by ds, dh, and da respectively,
are concatenated, d = [ds, dh, da], and fed to a FF network with two layers. For reference, this entire
network is also compared to smaller sub-networks that consider individual datasets separately for welfare
prediction, here each individual dataset is modeled by the corresponding sub-network described above.

3. Experimental Setup

This section starts with the detailed description of the dataset along with the problem formulation.
Furthermore, we describe the details of various hyper-parameters of the proposed classifiers employed
in this work.
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3.1. Dataset Description

The dataset consists of three modalities: socio-economic survey, abstraction, and groundwater
levels. There are challenges to employ these datasets simultaneously in a single model. A detailed
description of these datasets and their limitations are as follows.

3.1.1. Socio-Economic Survey Data

The socio-economic data was collected as part of three rounds of longitudinal household surveys
between 2013 and 2016 with respect to a sample of 532 handpump locations [29,30]. The data collected
at each of the longitudinal survey is considered to be data belonging to one year. For each handpump
location, an average of six households are randomly selected, generating a sample of 3,500 households.
The survey captured information related to household demographics, welfare indicators and household
assets, health, drinking water supplies, waterpoint management, and subjective welfare assessments.
From these data a set of 29 indicators (xst ∈ Rn) are used to derive an asset-based multidimensional
welfare index with weights defined by principal component analysis (PCA) approach [29,31,32].
This approach differs from income or expenditure measures of poverty where a household would be
classified based on one dimension of well-being with a poverty line cut-off which in some cases may
be subjectively pre-selected. Welfare is a more inclusive concept acknowledging multiple dimensions
such as education, health, assets and other salient indicators.

For this study, the resulting welfare index, normalized between 0 and 1, is used to divide the
population into two halves—we consider households with welfare index less than 0.5 to be low-welfare,
and the rest high-welfare. These low-welfare vs. high-welfare households are considered to be ground
truth labels. A different subset of five questions (xs) assumed to represent the how well off a household
is, are used as inputs to train the models. Based on wider literature [29], we select five indicators at
the household level: (i) gender of head, (ii) dependency ratio (children over 15 years/total adults),
(iii) improved structure (walls are rendered), (iv) own cattle or oxen, (v) subjective perception of being
better off. These five questions are different from the 29 questions used to generate the labels to avoid
learning a trivial mapping function. The key motivation behind using fewer survey questions to model
welfare status is to ensure the proposed framework can be employed in resource-constrained settings,
where performing periodic comprehensive surveys may be unfeasible. A potential solution may be
asking a small subset of questions by mobile phone survey rather face-to-face interviews.

3.1.2. Groundwater Level Data

A groundwater flow model was developed to characterize the aquifer system of southern coastal
Kenya. Following the development of a conceptual model [18] a numerical model was constructed
using Modflow-2005, simulating the period 2010 to 2017 and eight future model scenarios [24].
As outputs of this model, estimated water levels of the aquifer system for the study area are available
at 10-day intervals during 2010–2016. For this study, we assume a time-series of past m2 intervals
of water levels at a household’s location to represent the state of drinking water supply for that
household (xh). Since we observed that for most of the temporal windows, the change in water levels
was very subtle, we use area under the curve as opposed to the raw values. This representation
of available water supply has its limitations. The water levels alone do not characterize household
water availability, accessibility, and reliability, which are all key factors as defined under sustainable
development goals [33]. A more nuanced approach would be to include additional data such as the
distance to the nearest operational handpump, cost (if any) of accessing the pump, quality of water,
etc. As one of the aims is to investigate whether a limited data set can provide useful extra information
about household welfare, we limit ourselves to using the modeled water levels to represent the state of
the water supply.
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3.1.3. Abstraction Data

GSM-enabled transmitters were installed on a sample of 300 operational community handpumps
to generate daily pump usage data [19,34]. For this study, the daily data over 2013-2016 is converted
into average weekly data. We assume a time-series of past m3 weeks of average weekly abstraction
(xa) represents the water demand of households using that pump. We note there are limitations to this
assumption: (1) handpumps abstraction data alone is not representative of the water demand because
people also use other sources of water (e.g., river, open wells, rain water, etc.), (2) the data represents
average abstraction of the pump which cannot be disaggregated into individual households using
the pump, (3) the data cannot be disaggregated into usage by types, i.e., household vs. irrigation vs.
livestock activities, and (4) the data has missing values due to many reasons, e.g., pump malfunction,
pump not being used temporarily due to availability of other resources (e.g., rainfall, school closures).
For this data, it is difficult to overcome the first three limitations but regarding missing data, we propose
some potential approaches in Section 4.2 to alleviate the problem.

Thus, each household specific example is represented by three types of data modalities—xs,
xa, and xh, which are the features, along with corresponding welfare label y. A collection of these
examples is used to train the machine learning approaches described in Section 2. We also use different
combinations of these feature to analyze their mutual benefits.

3.2. Model Parameters

In this section, we discuss the experimental setup along with the details of various parameters
used in the experiments. The 1D-CNN layers use 16 filter banks with kernel size/stride of 3/1 and all
the LSTM layers have 32 nodes. The maxpooling operator is employed with 3 steps and the last two
dense layers in each sub-network have 8 and 16 nodes. The concatenated representation is followed by
two dense layers with 32 and 16 nodes, respectively. The last fully connected layers of each submodel
and joint model are connected to a SoftMax layer with two classes.

All of the networks for this paper are trained using Keras [35] with Tensorflow [36] backend.
The rmsprop optimizer is used with an initial learning rate of 10−3. All the networks are trained for
100 epochs with a batch size of 32. The loss function used in all the sub-networks and the overall network
is binary crossentropy with accuracy as the metric for classification. The overall loss used is weighed by
0.8, 1, 0.5 and 0.5 for the overall network, sub-networks for survey, groundwater levels and abstraction
data, respectively. The 1D-CNN layers employ ReLU [1] as activation and sigmoid is used as activation at
the last layer of each of the network. The experiments with individual modalities of data employs each of
the respective sub-network. The socio-economic survey data used in all the machine learning experiments
xs is a set of five questions (m1 = 5). The data corresponding to past ten time-intervals of groundwater
levels data are used as xh (m2 = 10). Similarly, the data corresponding to the average handpump water
level abstraction for past eight weeks is used as xa (m3 = 8). All the hyper-parameters and dimensionality
of representations corresponding to both the xh and xa are obtained empirically.

In case of abstraction data, xa, when the data is missing for two consecutive days, we use the
average abstraction level for the following and previous 4 days. If the data for a particular handpump
corresponding to the respective household is unavailable, the data belonging to the nearest handpump
is used. However, as we vary the distance to the nearest handpump to a household with available
data, the number of households available to model varies.

The data corresponding to both xh and xa are normalized. The socio-economic survey data
is collected over three periods and attempted to cover the same households over time; however,
the households from one period to the other does vary. In this work, for most of the experiments, we
consider these households to be independent. In all experiments the distance of handpump used for
abstraction data is less than 0.5 km, resulting in 3259 households, unless stated otherwise. The year-wise
data split for low-welfare/high-welfare households is year one—583/620, year two—263/524 and
year three—350/919. We evaluate the performance using classification accuracy (CA) and area under
the receiver operating characteristic curve (AUROC) as metrics.
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4. Experimental Observations

This section provides a detailed explanation about various experiments starting with the year-wise
cross-validation, where the total data belonging to two years of survey is used to train the model and
the data belonging to the third year is used for testing. Furthermore, we evaluate the performance of the
proposed model when the data from nearby handpumps is used as abstraction data for the households
with missing abstraction data. The performance of the welfare prediction model is analyzed for various
sections of the geographical locations of households. Finally, a comparison of the proposed method
with the traditional machine learning methods is also provided.

4.1. Year-Wise Cross Validation

In this experiment we have employed a combination of two different years of survey data
(along with other two input modalities) as training data and the third year as testing. In addition,
we have also employed each one of the xs, xh and xa individually and in tandem with each other for
the same task. We have also pooled the survey data belonging to three years together for a three-fold
cross-validation. The results for these different experiments are shown in the form of CA and AUROC
(with 95% confidence interval (CI)) in Figure 4a,b respectively.
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Figure 4. (a) Classification accuracy, and (b) Area under receiver operating characteristic curve
(AUROC) using different modalities as input (x-axis blocks) and different years data as train/test.
The bars here represent 95% CI for five different trials except for the bars for Y1+Y2+Y3 (in both the
figures) where it is a three-fold cross-validation. Y1, Y2 and Y3 represents data for year one, two and
three respectively.
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It can be observed that there is complementary information in different modalities as evident
from the results for all the data (brown bars). These results are consistent when year one and year
two data is used for training and year three is used for testing, except a slight peak in the results for
socio-economic survey and groundwater levels data as input.

The results when years two and three are used for training are different from other results,
especially for the case of groundwater levels and abstraction data. One possible reason for this could
be the temporal information present in the abstraction and groundwater levels data. The testing
data here belongs to the previous year as compared to the training data, maybe the lag in temporal
dimension of groundwater levels and abstraction data results in bad performance. This observation
above is further strengthened by viewing the results using only the socio-economic survey data,
here the CI is much smaller for the year-fold validation as opposed to the CI for groundwater levels,
abstraction or groundwater levels and abstraction data.

4.2. Missing Abstraction Data

To deal with missing values in abstraction data, whenever household specific handpump
abstraction data is unavailable, for that household, we consider data from the next closest representative
handpump with available data. The AUROC results with 95% CI for a three-fold stratified
cross-validation of the total pooled dataset as we vary the distance (in kms) of closest handpump are
shown in Table 1. We observe that the proposed method performs almost similar in all the cases when
this distance is varied. One of the possible reasons could be the similarity between the average weekly
abstraction data for different handpumps over a region. It may be the case that the model is able to
capture the region-based variations which are not much different. However, in all these cases the use
of abstraction and the groundwater levels data improves the performance. This further supports our
claim that there is complementary information in the abstraction and groundwater levels data which
can assist in welfare prediction for a household.

Table 1. AUROC with 95% CI for different modalities data as input with the varying distance for the
handpump data used for the abstraction data. #HH here represent the number of households. SES,
Abs and HG represents socio-economic survey, abstraction and groundwater levels data.

AUROC

Distance #HH SES HG Abs SES + HG SES + Abs Abs + HG SES + HG + Abs

<0.2 2200 0.71 ± 0.009 0.65 ± 0.01 0.66 ± 0.012 0.72 ± 0.007 0.74 ± 0.005 0.67 ± 0.010 0.78 ± 0.014
<0.5 3259 0.72 ± 0.004 0.64 ± 0.007 0.64 ± 0.009 0.73 ± 0.008 0.73 ± 0.015 0.66 ± 0.008 0.77 ± 0.012
<1 3700 0.70 ± 0.007 0.63 ± 0.005 0.66 ± 0.011 0.71 ± 0.010 0.74 ± 0.008 0.67 ± 0.013 0.76 ± 0.009
<2 3700 0.71 ± 0.008 0.66 ± 0.011 0.65 ± 0.010 0.73 ± 0.005 0.73 ± 0.007 0.66 ± 0.007 0.76 ± 0.010
- 4204 0.72 ± 0.010 0.64 ± 0.009 0.66 ± 0.013 0.72 ± 0.009 0.74 ± 0.012 0.67 ± 0.005 0.77 ± 0.015

4.3. Location Based Performance

In an attempt to assess the differential value of the proposed model with respect to geographical
location of the study area, we disaggregate the model outputs by specific zones. Although there are
no physical boundaries separating these zones, the study area consists of three distinct zones based
on geographical characteristics livelihood activities—Ukunda (urban, tourism, some access to piped
water), coastal (rural, fishing, water drawn from shallow wells in a karstic coral aquifer), and inland
(rural, mining, and commercial irrigation, water from boreholes a sandstone aquifer). The total number
of households sampled in coastal, inland and Ukunda regions are 2355, 1361 and 488, respectively.
The AUROC (with 95% CI) plots for a three-fold stratified cross-validation, with different modalities
of data as input, for different regions are shown in Figure 5.
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Figure 5. AUROC (with 95% CI) for households at different geographical regions using different
modalities as input (x-axis blocks).

The benefits gained from the addition of water level and abstraction data to the socio-economic
data varies substantially over the three zones. Inland, the addition of the water level and
abstraction data raises the mean AUROC by only 3% (this reduces further if considering the 95% CI).
Also, compared to the other two zones the predictive power of the water level data and abstraction
data are very different, with the abstraction data being more useful, although still less useful than the
socio-economic data. In contrast, the addition of the water level and abstraction data is most beneficial
in predicting welfare in the Ukunda region, adding a further 8% to the AUROC.

Given their geography, the inland communities will arguably be more affected by their environment,
in particular the state of the aquifer than those in other area. Groundwater is not as easily accessible as it is
at the coast, with boreholes drawing water from 30 m to 40 m, as opposed to shallow dug wells less than
10 m deep. Inland households must be more resilient to changes in groundwater levels as if they are not,
the consequences will be more deleterious. Similarly, handpump density is much lower making the distance
to one’s second water sources much greater than at the coast. Thus, the other measures of welfare may have
groundwater levels and abstraction effects built into them. In addition, Figure 5 shows that for the inland
household abstraction alone is a better predictor of welfare than in other areas. Related research in the same
study area [27] showed that handpump use is closely linked to rainfall patterns and that household in this
area are more likely to harvest rainwater. This is consistent with there being a closer correlation between
handpump abstraction and other welfare-related factors implied by the higher ‘abstraction only’ AUROC in
this area relative to the coastal and Ukunda regions. This deserves further investigation beyond the scope of
this paper and these datasets.

4.4. Comparison with Other Techniques

The proposed method is also compared with the standard machine learning algorithms as shown
in Table 2. The metrics used for comparison are CA, AUROC, precision and recall, the results are shown
with 95% CI for three-fold stratified cross-validation for all the pooled data. The input data used for
this experiment consists of all three modalities of data. The methods used for comparison are K-nearest
neighbors (KNN), support vector machine (SVM), decision trees (DT), and random forest (RF) [2,37]:
the number of nearest neighbors chosen for KNN classifier are five; SVM are implemented with a radial
basis function (RBF) kernel; the criterion used for the DT is gini impurity with ten minimum samples
required for split. The RF classifier fits a number of DT classifiers on various sub-samples of the data
and employs averaging to improve the performance.
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Table 2. Comparison of the proposed method with the standard machine learning classifiers for the
data in terms of CA (%), AUROC, Precision and Recall. The data used in this experiment have all the
modalities as input.

KNN SVM DT RF MLP 1D-CNN Proposed

CA (%) 65.18 ± 1.3 71.63 ± 0.9 68.13 ± 0.7 69.18 ± 1.1 67.04 ± 0.93 70.19 ± 0.87 70.78 ± 0.30
AUROC 0.57 ± 0.02 0.59 ± 0.004 0.64 ± 0.011 0.67 ± 0.007 0.73 ± 0.009 0.74 ± 0.011 0.77 ± 0.012
Precision 0.58 ± 0.04 0.58 ± 0.006 0.65 ± 0.009 0.67 ± 0.005 0.71 ± 0.010 0.72 ± 0.008 0.79 ± 0.010

Recall 0.57 ± 0.03 0.59 ± 0.004 0.64 ± 0.007 0.69 ± 0.009 0.74 ± 0.007 0.73 ± 0.007 0.77 ± 0.009

In addition, we have also employed a standard machine learning classifiers, a multi-layer
perceptron (MLP) and 1D-CNN-based deep neural network [1]. The MLP employed here is a FF
network with four layers with 32, 16, 64 and 32 nodes with a dropout of 0.2 after each layer.
The 1D-CNN network consists of a 1D-CNN followed by a FF network, the CNN layer have
16 filterbanks with kernel size and stride of 3 and 1, respectively. This is followed by three FF layers with
32, 16 and 32 nodes, a dropout of 0.2 is used here as well. All other hyper-parameters in these networks
are similar to the proposed network. It can be observed that the proposed multi-input multi-output
neural network outperform the existing machine learning models for our task. It can be observed
that the proposed multi-input multi-output neural network is not only outperforming the traditional
machine learning methods, but is also better than a standard MLP and CNN-based classifier. In case
of AUROC, the proposed method results in a gain of 4.05% as opposed to the 1D-CNN-based model,
which is the best performing model among all other models. There could be two possible reasons
for better performance: (a) efficient modeling of time-series data in abstraction and groundwater
level data using LSTM, and (b) knowledge transfer in the multi-input multi-output deep learning
method employed. The proposed model is jointly trained, and hence different modalities will have
more interactions during the error backpropagation (in training). Thus, the network may learn hidden
representations which contain knowledge that is trained and used by different modalities of data.
The hidden representations trained this way will be better than the one estimated in a single model.

5. Conclusions and Discussion

In this work, we have demonstrated that a small set of survey questions along with groundwater
level and handpump abstraction data can be used to predict the welfare status of households.
Groundwater level and abstraction data alone perform worse as a predictor of welfare, as was
expected; however, abstraction is slightly more predictive than water level. Combining abstraction
and groundwater levels with survey data improves the performance; however, this gain varies across
different regions within the study area, in some areas adding little value. When used in isolation
abstraction and groundwater levels may not be what one would choose as an indicator of welfare
around which one might design programs and interventions. But the fact that they do have some
predictive power demonstrates that, in this locale at least, the water resources and water abstracted are
linked to household welfare.

Comprehensive household surveys, rightly so, remain popular tools for determining welfare.
Despite providing vital information, a major challenge with their use is that they are time-consuming
and resource-intensive. The proposed framework provides an alternative solution by using a relatively
small set of survey questions along with complementary available datasets, e.g., from groundwater
levels and handpump abstraction data, to estimate the welfare status of households.

We have shown here that, in conjunction with small set of socio-economic survey data, water
level and abstraction data provide useful additional information to characterize the welfare status of
households. This method may be useful to policymakers, especially when they must allocate scarce
resources efficiently, with only limited data available to inform their decision making. In future,
other modalities of readily available data can also be employed in this type of a model to further
improve the performance.
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We draw three main lessons from this work from modeling multiple streams of data in one of
the most intensively researched, rural study sites in Africa. First, the data requirements for machine
learning methods are large. The groundwater level, daily abstraction data from handpumps and three
panels of a large, longitudinal survey do not elicit clear and compelling results despite an extensive
portfolio of modeling treatments. Given advances in remote sensing technologies, data resolution and
multiple data sources, there is a strong case to conduct further work to validate the findings presented
here. The replicability of the field methods applied in this study are unlikely to be available in all but
the most strategic locations in Africa.

Second, the modeling has revealed a muted but intriguing signal that welfare may be associated
with the patterns of daily water abstraction from handpumps. This partly reflects the notion of
accidental infrastructure where one data stream may contain artefacts of useful information for other
purposes. There is insufficient evidence to claim any predictive power from handpumps as sentinels
of welfare, particularly given the multidimensional nature of welfare and poverty. However, it reflects
the spill-over effects of collating data in structured and continuous fashion at the interface between
biophysical and social systems.

Third, the interactions between groundwater and human welfare are dynamic and masked by
biophysical processes and social practices. Though we have evidence that drinking water is one
of four, dominant welfare priorities in the study area [38], it is ranked below education, energy or
sanitation. As we have noted, there are a range of confounding factors which reject any simple causal
relationship to hold between groundwater and welfare. The implication that abstraction from rural
handpumps is a proxy for the risk status of households may be substantiated by wider work in this
study area where it has been shown that dependency and use of handpumps is seasonal and that the
majority of the population depends on groundwater in times of dry spells [29,39]. The extent to which
handpump abstraction is a proxy for risk is therefore plausible and worthy of further exploration to
examine unknown aspects of distributional inequalities for different social groups access to and use
of handpumps.

In conclusion, we would identify three major limitations to this work which merit consideration
in future applications. First, the proposed method involved combining different modalities of data
to improve the performance, but it is challenging to combine the varying level of noise and conflicts
between modalities. One of the biggest challenges here is learning how to represent and summarize
multi-modal data such that the complementary information is emphasized and redundancy is reduced.
The multi-modal data is heterogeneous, and the relationship between modalities is open-ended
or subjective, which makes it challenging to translate (map) data from one modality to another.
Other challenges here include identifying the direct relations between elements and joining information
from two or more different modalities. Second, we would also like to point out that there are limitations
with the use of PCA-based method employed to generate ground truth labels for our task. Third, our
welfare is framed here by five socio-economic variables chosen based on judgement and published
literature. There are grounds to test and refine other risk proxies derived from both social and
biophysical sources of information in future work.
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