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Abstract: Many key industrial and scientific processes, such as the generation of nuclear energy, are of
enormous social benefit as energy demand and consumption grow over time. However, a drawback
of several such processes is the production of hazardous waste materials, which often requires
transportation along highway networks to treatment or disposal facilities. This waste can represent
a safety hazard to civilians located along the transportation route. Most prior literature in this
domain considers risk within only a single facet, and thus several important risk factors may not be
considered. In our paper, we propose a multi-objective program to allow for the analysis and selection
of minimally risky routes for hazardous materials transportation. The model assesses risk factors
including the length of the selected route, the total population in areas surrounding the selected
route, and the likelihood of an accident occurring along the selected route. Our paper uniquely uses
geographic information systems (GIS) technology to model this optimization problem. This approach
allows us to model risk along multiple dimensions simultaneously. We collect empirical data to
test the model and present a case study for risk mitigation using a study area located in California.
We show that our multi-objective approach is effective in presenting the decision-maker with a
portfolio of solutions that perform well via each factor.
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1. Introduction

Industrial and scientific processes offer enormous promise to contemporary society but often
result in unusable and potentially dangerous byproducts. These substances, often dubbed hazardous
materials, present enormous logistical challenges for organizations that need to dispose of them without
subjecting human populations and the environment to undue risk [1–3]. Waste is often categorized as
hazardous if it meets any of four common criteria: ignitability, corrosiveness, reactivity, or toxicity [4].
Unfortunately, the generation of hazardous waste is an inherent problem in many industrial processes,
ranging from waste created by nuclear power plants [5] to the byproducts of manufacturing lines [6].

The safe disposal of these materials is crucial for ensuring that humans do not encounter potentially
dangerous and life-threatening chemicals. While highway infrastructure may ultimately allow for the
fastest viable transportation of these materials to their eventual disposal sites, it also poses significant
risks to human safety in the event of a traffic accident or unintended leakage [7]. In many cases, local,
state, and federal laws dictate that highway routing schemes for transportation of hazardous materials
must be designed to preserve human safety. These laws generally serve two purposes: first, to ban
transportation of hazardous materials along specific road segments, and second, to establish legal
liability of the transporter in the event of an accident. In the United States, the Hazardous Materials
Transportation Act (HMTA), enacted in 1975, is the most widely known such law on a federal level [8].

Sustainability 2019, 11, 6300; doi:10.3390/su11226300 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-2617-5143
http://dx.doi.org/10.3390/su11226300
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/11/22/6300?type=check_update&version=2


Sustainability 2019, 11, 6300 2 of 10

Additional restrictions are required by state laws, but it is often unclear how to reach optimal routing
decisions as each routing problem is unique and multi-faceted [9].

The parameters of this problem suggest that some hazardous waste must be transported from an
origin facility to some destination. For most types of hazardous waste, individual parcels or barrels
of waste are processed at three unique facilities [10]. The “generation node,” such as an industrial
facility, first creates hazardous waste. At this facility, some of the waste may be recycled or kept in
storage. The remainder of the waste is then transported to a treatment center, within which the waste
is chemically altered to mitigate some of its dangerous properties. Within this site, some of the waste
may, again, be recycled or kept in storage. Finally, the remainder of the waste is transported to a
disposal center, where it is safely processed. Figure 1 displays a schematic of this hazardous materials
management program.

As a result of this hazardous materials management scheme, many hazardous materials are
actually transported twice after they are created. The first time these materials are transported, they
are particularly dangerous, as they likely have not been processed in any way so as to make them less
harmful in the event of human exposure. The second time that these materials are transported, they
have been treated, so they often represent slightly less dangerous versions of the initial compounds,
although they may still threaten human safety.
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2. Literature Review

The objective of a hazardous materials management program is “to ensure safe, efficient and
cost-effective collection, transportation, treatment and disposal of wastes” [11]. Indeed, many local,
state, and national laws, such as HMTA, require that these materials be transported so as to avoid risks
to human safety [8]. The literature has discussed the concern over hazardous materials’ transportation
in previous years. The most similar work to ours [12] proposes considering both traffic considerations
and the extent of the exposed population. Past work has modeled the spread of hazardous waste from
a potential accident zone such as a Gaussian Plume [13]. Studies have also focused on the routing
problem from a profit-oriented perspective. For example, prior work has attempted to minimize the
various potential sources of costs to the transportation company [14].

Although the literature has established the potential severity of accidents involving hazardous
materials and has suggested some ways in which companies may transport these materials economically,
it has not established a method by which safe modes of transportation for these materials ought to be
selected. We acknowledge that profit-oriented perspectives are valuable, but we also note that the
enormous prevalence of accidents involving hazardous materials indicates the need for safer routes
for hazardous materials transportation. Since 2000, the Department of Transportation’s Office of
Hazardous Materials Safety (OHMS) has recorded nearly 300,000 incidents of hazardous materials
accidents along highway routes in the United States [15]. We argue that selecting for safer hazardous
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materials routes implies that companies may improve profit by preventing costly delays or eventual
lawsuits that may result from accidents in hazardous materials transportation; at the same time,
companies may preserve their goodwill by altruistically aiming to preserve human safety.

Previous research provides us with an excellent basis on which to build [4,11,13,14,16–18].
At present, much of the literature has focused on either the direct costs of hazardous materials
transportation or quantifying possible losses in the event of an accident. The state-of-the-art approaches
to routing often treat risk as a single measure, if risk is considered at all [19]. However, in practice,
risk is multi-faceted, and decision-makers are often faced with tradeoffs between several risk factors.
Thus, in this work, we believe that we can make a significant contribution by building an advanced
mathematical model involving multi-objective programming (MOP), which minimizes the risk of
transportation along highway networks. Using our model, the decision-maker can specify which risk
factors are most important to mitigate and a customized weighting scheme among the three objectives.

3. Materials and Methods

The formulation of our mathematical program is grounded in linear transportation or “resource
flow” models. Although we propose solving a series of models to allow for a multi-objective program
(MOP), each model will represent a version of the common “shortest-path” transportation model.
In each linear program, however, we will focus our model on a different objective function. In this type
of linear program, we interpret a highway network as an interconnected set of “nodes” or intersections
between various “arcs” or road segments.

Let N represent the set of all possible nodes within a selected study area. For each possible node k
within the study area, we introduce one flow conservation constraint in the model representing the net
flow at that node, or the sum of the inflow minus the sum of the outflow. We represent whether an
arc is active with a variable Yi j, which equals 1 if the arc from i to j is active and 0 otherwise. At the
vast majority of nodes, the sum of the inflow should exactly equal the sum of the outflow (inflow
minus outflow equals zero). Two exceptions occur at the initial supply or origin node, s, and the
final demand or destination node, t, at which we use right-hand sides of -1 and 1 to ensure that the
model must choose a path through the network. Additionally, a further property of this shortest-path
transportation model is that this constraint ensures binary or integer constraints are unnecessary, as
variables are all assigned a 0 or 1 value inherently as a result of the transportation formulation [20].
This facet of the model reduces its computational complexity and, therefore, its computation time. We
formulate Equation (1) below, representing the flow conservation constraint:

∑
i: (i,k) ∈ N

(Yik) −
∑

j: ( j,k) ∈ N

(
Ykj

)
=


−1 i = t, t
−0 i , s, t
−1 i = s, s

. (1)

Next, we consider each of three possible objectives that a decision-maker may consider as they
attempt to minimize risk in the transportation of hazardous materials along highway networks. The first
such source of risk concerns the distance that a vehicle carrying hazardous materials must travel from
its start node to its terminating node. The minimization of this function is important for several reasons.
First, in order to minimize costs, the decision-maker may look to avoid gas or labor costs associated
with longer routes. Second, it is also possible that longer routes impose additional risk, as they invite
further possibilities for traffic accidents or other spills of hazardous materials. Recognizing these
concerns, we formulate in Equation (2) the first of the three objectives, which computes D, the sum of
distances, di j, traversed along active arcs:

D =
∑

(i, j) ∈ N
Yi jdi j. (2)

The next objective concerns the possibility of exposing the civilian population to harmful hazardous
materials in the event of a traffic accident. Should an accident occur, the decision-maker should stipulate
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that as few individuals as possible be exposed to the hazardous materials. This objective serves an
altruistic purpose but may also limit the legal liability of the decision-maker or their organization in the
event of an accident. Recognizing these concerns, we formulate in Equation (3) the second objective,
which computes P, the sum of populations, pi j, potentially exposed along active arcs:

P =
∑

(i, j) ∈ N
Yi jpi j. (3)

Third, we consider an objective measuring the risk that an accident will occur along the selected
route for the transportation of hazardous materials. Due to the design of various roadways, traffic
patterns, and other factors, accidents are more likely when traveling along some roads than others [21].
For example, when comparing two roads of similar lengths, one may find that visibility is superior
on one road compared to the other, thereby minimizing the chance that an accident will occur.
The decision-maker may wish to minimize the risk of an accident so as to promote public safety and
ensure that the hazardous materials reach their destination successfully.

The first and simplest strategy to define this function is to use the raw number of hazardous
materials accidents along each road as representative of “accident risk” so that a road on which two
accidents have occurred is twice as risky as a road on which a single accident has occurred. We can
model this objective in the same structure as the previous two objectives, which is advantageous.
However, the disadvantage of this strategy is that it essentially assumes that each route is equally
utilized. A road on which two accidents have occurred may be twice as risky as a route on which one
accident has occurred if both routes have been used for the same number of journeys, but not if the
first route happens to be utilized twice as much.

As such, a second strategy is to calculate the proportion of drives along a particular route that
result in accidents. Assuming that these proportions represent independent probabilities, we can
calculate our objective function (the probability of at least one accident occurring) as one minus the
probability of no accidents occurring. After assigning each arc the empirically calculated probability of
an accident occurring, ai j, we compute in Equation (4) the probability of at least one accident occurring
between the initial node and the final node:

A = 1−
[∏

(i, j) ∈ N
(1−Yi jai j)

]
. (4)

However, note that Equation (4) represents a non-linear function, which requires the use of more
advanced solution techniques and almost certainly increases solve times. While various algorithms exist
to solve non-linear models, these methods are generally more complex than their linear counterparts.
To assuage this concern, we propose in Equation (5) a linearized function that equivalently minimizes
the same probability:

A =
∑

(i, j) ∈ N
−Yi jLOG

(
1− ai j

)
. (5)

To represent each of these objectives in a multi-objective formulation within the same model,
we must solve several models in sequence. First, subject to Equation (1), we minimize each of Equations
(2), (3), and (5) in the first stage of our process. In each solution, only one objective is considered,
and the other two are disregarded. We record the optimal values of each objective for reference in the
further stages of the optimization process.

Next, we define ϕD, ϕP, and ϕA in Equations (6), (7), and (8) as the percentage difference between
a solution and the optimum reached when minimizing an objective in isolation (denoted *):

ϕD =

(∑
(i, j) ∈ N Yi jdi j

)
−

(∑
(i, j) ∈ N Yi jdi j

)∗D(∑
(i, j) ∈ N Yi jdi j

)∗D (6)
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ϕP =

(∑
(i, j) ∈ N Yi jpi j

)
−

(∑
(i, j) ∈ N Yi jpi j

)∗P(∑
(i, j) ∈ N Yi jpi j

)∗P (7)

ϕA =

(∑
(i, j) ∈ N −Yi jLOG

(
1− ai j

))
−

(∑
(i, j) ∈ N −Yi jLOG

(
1− ai j

))∗A(∑
(i, j) ∈ N −Yi jLOG

(
1− ai j

))∗A . (8)

Next, the decision-maker specifies three weights for the different objectives in Equation (9), which
sum to 1. Weights wD, wP, and wA signify the relative importance of distance, population, and accident
risks, respectively. These variables are typically prespecified by the user and serve as constants in
the instantiated model rather than true decision-making variables. Setting a weight to 1 optimizes a
singular objective and produces the same optimal routing decision as solving that specific model in the
previous phase.

wD + wP + wA = 1 (9)

The weights are specified by the decision-maker and may vary depending upon the application.
For example, if the decision-maker is considering the transportation of particularly hazardous materials
and is concerned about the prospect of exposure, they may wish to put more emphasis on the accident
and population objectives. For instance, they may choose a weight of 0.40 for accidents, 0.40 for
population, and 0.20 for distance. On the other hand, a different use case may be if a decision-maker
has less hazardous materials but is more concerned with economic considerations. For instance, they
may choose weights of 0.10 for accidents, 0.10 for population, and 0.80 for distance. These specific
choices reflect the relative emphasis that the decision-maker wishes to place upon each factor. For the
purposes of our paper, we do not assume a particular emphasis; instead, we weight each factor equally
at one-third.

Finally, we define Z to evaluate solutions via the sum of the weighted deviations from the
respective optimal. Z is minimized to solve the multi-objective formulation:

Z = ϕDwD + ϕPwP + ϕAwA. (10)

Table 1 summarizes the full sequence of models to be solved in order to minimize the risk of
transporting hazardous materials along highway networks using our multi-objective formulation.

To test our model on a real case study, we acquired data on potential hazardous materials routes
in the United States from the U.S. Department of Transportation (DOT) [22]. The dataset included
the geospatial (GIS) data for all highway routes used for the transportation of hazardous materials
in the United States. Using ESRI ArcMap (Redlands, CA, USA) [23], we computed the length of
each relevant road segment in miles and established connectivity between each of the road segments.
We labeled each intersection or node with a unique number so as to delineate the features of the
transportation network.

We further acquired real data on historical accidents along hazardous materials routes in the
United States to inform our study [15]. This dataset included a web interface allowing access to
the date, time, location, and other details for each accident that had occurred in the United States.
For the purpose of our study, we restricted the temporal study period to the period from 2000 to
present. We further restricted the geographic area of study to a small region of California just outside
of Sacramento, as this region had a high prevalence of routes with which to inform our model.

In addition to data on the number of accidents that had occurred on each route since 2000, we
accessed data for the estimated number of routes that had occurred along each road segment over the
same time period [15]. Using these two measures, we estimated the probability of an accident on a
particular road segment as the number of total accidents since 2000 divided by the total number of
routes driven on that road since 2000.
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Finally, we acquired real data on population geography from the U.S. Census Bureau [24].
In particular, we obtained the estimated local populations in the state of California in vector data
format. We obtained raster data estimates of urban density (i.e., urban, suburban, rural) to build a
further understanding of the locations of population centers within our study area. We generated
one-mile buffers around each of the road segments to capture the segments of the population that
are likely to be affected by hazardous materials accidents. While the specific radius within which
hazardous materials may pose a danger to human safety depends on the specific materials and the
specific accident, a one-mile radius is a region within which hazardous residue from some accidents
may reach [13]. Using the technique proposed by Mennis [25], we employed a dasymetric estimation
procedure based upon urban density in order to estimate population geography as a raster surface. Using
this surface, we calculated the expected levels of population within one mile of each roadway in the
study. Essentially, using an approximation of a continuous surface representing levels of urbanization,
we allocate population totals within census groups in accordance with these levels of urbanization [25].
Each level of urbanization provides a weight used to determine the final allocation of the population in
the estimate. For our complete dataset, please see the attached supplementary materials.

We exported our dataset from ArcMap, where we solved the model using OpenSolver (https:
//opensolver.org/) [26]. OpenSolver is equipped with both linear programming (COIN-OR) and
non-linear programming (NOMAD) algorithms.

Table 1. Summary of model sequence in multi-objective formulation.

Step Objective Model Formulation

1 Distance

Minimize D =
∑

(i, j) ∈ N Yi jdi j subject to:∑
i: (i, k) ∈ N

(Yik) −
∑

j: ( j, k) ∈ N

(
Ykj

)
=


−1 i = t, t
−0 i , s, t
−1 i = s, s

And Yi j ≥ 0 ∀ i, j

1 Population

Minimize P =
∑

(i, j) ∈ N Yi jpi j subject to:∑
i: (i, k) ∈ N

(Yik) −
∑

j: ( j, k) ∈ N

(
Ykj

)
=


−1 i = t, t
−0 i , s, t
−1 i = s, s

And Yi j ≥ 0 ∀ i, j

1 Accidents

Minimize A =
∑

(i, j) ∈ N −Yi jLOG
(
1− ai j

)
subject to:

∑
i: (i, k) ∈ N

(Yik) −
∑

j: ( j, k) ∈ N

(
Ykj

)
=


−1 i = t, t
−0 i , s, t
−1 i = s, s

And Yi j ≥ 0 ∀ i, j

2 Multi-objective

Minimize Z = ϕDwD + ϕPwP + ϕAwA subject to:∑
i: (i, k) ∈ N

(Yik) −
∑

j: ( j, k) ∈ N

(
Ykj

)
=


−1 i = t, t
−0 i , s, t
−1 i = s, s

ϕD =
(
∑

(i, j) ∈ N Yi jdi j)−(
∑

(i, j) ∈ N Yi jdi j)
∗D

(
∑

(i, j) ∈ N Yi jdi j)
∗D

ϕP =
(
∑

(i, j) ∈ N Yi jpi j)−(
∑

(i, j) ∈ N Yi jpi j)
∗P

(
∑

(i, j) ∈ N Yi jpi j)
∗P

ϕA =
(
∑

(i, j) ∈ N −Yi jLOG(1−ai j))−(
∑

(i, j) ∈ N −Yi jLOG(1−ai j))
∗A

(
∑

(i, j) ∈ N −Yi jLOG(1−ai j))
∗A

And Yi j ≥ 0 ∀ i, j

4. Results

In total, our test area, located just outside of Sacramento, California, included 148 nodes and
364 arcs. We selected nodes 3 and 145 from our dataset as start and end nodes for our hazardous
material transportation problem, although a user could easily resolve the model for any arbitrary start

https://opensolver.org/
https://opensolver.org/
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and end nodes. Figure 2 displays the optimal routes, as selected by each of our single-objective models
and the multi-objective model, with each objective’s weight set to 1/3. The distance-optimal solution
simply chooses the physically shortest path through the transportation network, so its path stays as
straight as possible between the two nodes. The population-optimal solution chooses a very different
path from the distance-optimal solution, notably choosing a longer path to avoid traversing a busy city
center, where many people could potentially be exposed to hazardous materials. The accident-optimal
solution chooses road segments with low empirical probabilities of accidents, which leads it to travel
along a different set of roads than either of the previous two solutions. Finally, recognizing the results of
the prior three solutions, the deviation-optimal solution (i.e., the solution to the multi-objective problem
minimizing the deviations from the optima) chooses a route very similar to the distance-optimal route,
although it chooses a different set of roads in the northeastern corner of the map. While this results
in a slightly longer route than the distance-optimal solution, choosing this route involves avoiding a
road segment on which accidents are more likely and on which more civilians can be exposed in the
event of an accident. Interestingly, each of the four solutions offered a completely unique route, and a
manager would not know to examine and compare each of these routes without solving each of the
proposed models.

Table 2 compares the proposed model’s solutions at each of the one-risk optima to the risk posed
by deviation-optimal risk route. The sum of deviations for the deviation-optimal risk route totals
only 0.319, while the next least risky route totals 0.380. Importantly, none of the routes mitigates risk
completely; three of the routes merely pose an optimally low amount of risk for the one risk factor that
they minimize. While the deviation-optimal risk route is the only route suboptimal with respect to all
risk factors, it is the least risky overall. The distance-optimal and population-optimal optima perform
particularly poorly on both alternative measures. The accident-optimal solution actually does not
force the driver to traverse much greater distance, but a much larger population than optimal would
be exposed in the event of an accident. The multi-objective formulation actually addresses all three
objectives rather well, as it only deviates slightly from each of these objectives.
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Table 2. Relative performance of each model via each objective.

Distance
Objective

Population
Objective

Accident
Objective

Accident
Likelihood

Sum of
Deviations

Distance model 76.78 (100.0%) 1,020,315 (148.7%) 5.03 × 10−3 (129.7%) 0.107% 0.784
Population model 105.15 (137.0%) 686,385 (100.0%) 4.63 × 10−3 (119.4%) 0.116% 0.564

Accident model 78.66 (102.5%) 930,110 (135.5%) 3.88 × 10−3 (100.0%) 0.009% 0.380
Multi-objective model 83.36 (108.6%) 792,267 (115.4%) 4.19 × 10−3 (107.9%) 0.010% 0.319

5. Discussion

Our multi-objective model introduces some new insights and concerns for managers in planning
routes for hazardous materials transportation. Our multi-objective formulation shows the value of
various approaches to the hazardous materials routing problem. We considered three different criteria
in our model: the total distance traversed by the transport vehicle, the estimated population located
within one mile of selected road segments, and the empirical probability of an accident occurring
along the route. Importantly, when solving our transportation model to minimize each of these
objectives separately, we found three unique routes in our case study, indicating that routes may
vary considerably depending on manager preferences. Furthermore, our multi-objective formulation
yielded an additional route as a “compromise” between the merits of the aforementioned three routes,
satisfying each of the three objectives fairly well. Realizing that routes may differ to such an extent
heightens the value of our model, as even small changes in a manager’s preferences may actually
result in a very different optimal route. The proposed model presents clear advantages over traditional
routing optimization methods. The model allows weights to easily be assigned to multiple cost
criteria, and it recommends solutions equivalent or superior to those provided by solving a model
with a singular objective. The model is highly applicable to real-world scenarios in ensuring that
hazardous materials transportation is as safe as possible by minimizing multiple risks simultaneously
in a multi-objective formulation.

Our choice of a multi-objective formulation that incorporates spatial characteristics of the study
area is unique relative to the literature. Past work [9–11] has typically focused on either a single risk
factor or has used a single metric to represent risk in hazardous materials routing. A unique aspect of
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our paper’s contribution to the literature and practice is the potential for trade-offs between multiple
risk factors. As noted by [19], the risk incurred in hazardous materials routing is complex and can
manifest itself across several potential dimensions. Our work considers three key sources of risk with
its accident-, population-, and distance-based measures. A decision-maker faced with a hazardous
materials routing problem could use our model to understand the trade-offs between the different risk
factors facing them, thus allowing them to make a more informed decision. Additionally, augmenting
our work is the fact that we use a finely tuned geographic approach to model population risk [25]
with dasymetric modeling, as opposed to a coarser approach [19]. This level of specificity is likely to
improve the accuracy of our modeling over prior approaches. Our analysis implies that this distinct
consideration of these risk factors as separate indicators has the potential to improve decision-making
by allowing the manager a wide range of options so they can understand their alternatives and make
an educated decision.

6. Conclusions

This paper has presented novel multi-objective programs for choosing hazardous materials
transportation routes based on objectives including distance traversed, population surrounding
selected roads, and the risk of an accident occurring along the selected routes. The model should be
of great value to many practitioners, who may specifically use it to choose minimally risky routes.
Furthermore, the model should also be of great value to the research community, as it represents a
unique and valuable application of multi-objective programming for ensuring human safety along
hazardous materials routes.

Several limitations of our methodology are worthy of mention. One such consideration is that,
while our model computes the probability that at least one accident will occur along a given route,
it does not consider the severity of the observed accidents. It is likely that organizations are particularly
averse to severe accidents, and it is possible that the distributions of severe accidents are at least
slightly dissimilar to the distributions of all accidents. As such, future work may look to incorporate
this consideration into the model. In our formulation, we were unsure which types of accidents
were particularly off-putting for managers, so we considered each accident as equally important.
Furthermore, in future work, more criteria may be considered to enhance the faithfulness of the model
to reality. For example, another consideration is the potential inclusion of other sources of potential
harm, such as weather or natural disasters. While including too many criteria may lead to making the
model uninterpretable, managers may want to consider economic issues as well as the safety issues
specifically noted in this paper. The specific mix of objectives depends on the specific organization(s)
considering the use of the model.
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