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Abstract: Baidu heat maps can be used to explore the pattern of individual citizens conducting their
activities and their agglomeration effects at the city scale. To investigate the spatiotemporal pattern of
population aggregation and its relationship with land parcel attributes in small cities, we collected
Baidu heat map data for a weekday and a weekend day in Shehong County and used Getis–Ord general
G and the raster overlay methods to analyze population aggregation spatiotemporal characteristics.
Chi-squared and Pearson correlation tests were used to analyze the correlation between population
aggregation and land parcel attributes against three types of land parcel divisions: land use parcels,
road network blocks, and grids. The results showed that, (1) for most hours of the workday, the degree
of population aggregation was greater than on the weekend, and the fluctuation magnitude on the
workday was higher as well. (2) On the weekday, people clustered and dispersed faster than on
the weekend. (3) On the weekday and weekend, the spatial position of people aggregation was
highly overlapping. (4) The correlation between the degree of population aggregation and the type
of parcel was not significant. (5) Regarding different parcel unit sizes, the correlations between
population aggregation degree and point of interest (POI) density, floor area ratio, and building
density were significant and positively correlated, and the correlation coefficients increased as the
grid size increased.

Keywords: spatiotemporal behavior; Baidu heat map; Getis–Ord general G; correlation analysis;
small city

1. Introduction

Presently, big data are widely used in urban mobility studies to examine the pattern of urban
population spatiotemporal dynamics. However, most of these studies have been conducted in large
cities, and small cities are rarely examined [1]. Small cities are an important part of the urbanization
process and they have begun to face “urban diseases” in China, such as traffic congestion (Figure 1) [2,3],
environment pollution [4], lack of infrastructure [5,6], and so forth. Therefore, it is necessary to examine
the distribution law of small urban populations.

The rapid development of big data technology has led to various applications in urban studies and
has provided insightful results for urban research. Studies using heat maps are especially interesting,
given that heat maps can provide an overall visualization that shows the geographic aggregation of a
phenomenon. Heat maps show locations with densities of geographic entities, and the “heat” refers
to the concentration of the geographic entity within any given spot. Many location-based services
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(LBSs) provide open-access heap map data online. Hence, it is one of the most easily accessed big data
sources for studying urban activities.
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At present, urban studies about spatiotemporal population activities can be divided into six
categories: (1) Studies on temporal and spatial characteristics of population behavior. Ma et al. [7],
Kim et al. [8], and Goulet-Langlois et al. [9] studied the spatiotemporal travel patterns derived from
smart-card data. Gonzalez et al. [10], Ahas et al. [11], Calabrese et al. [12], and Hoteit et al. [13] estimated
individual human mobility patterns through mobile phone data. Zhiqiang and Zhongnan [14] used
Baidu heat maps to study the population aggregation intensity, location, time, and gravitational
centers in Shanghai central urban areas. He et al. [15] used Baidu heat maps and a spatial quantitative
analysis method to analyze the spatial and temporal characteristics of population aggregation in
Wuyi Square in Changsha City. Jianwei et al. [16] studied the changes of population aggregation
area, spatial position of population aggregation, and gravitational center of population using Baidu
heat map data and obtained the spatial position and variation law of population concentration in
the central city area in Nanchang City. Lucang [17] analyzed the spatial and temporal characteristics
of the population aggregation in Wuhan on typical days (weekdays and weekends). (2) Studies on
urban space and vitality. Reades et al. [18] analyzed the space of city usage with mobile phone
data. Ahas et al. [19] researched seasonal tourism space consumption patterns of a city using mobile
phone data. Zhang et al. [20] estimated large pedestrian flow in urban areas based on a hybrid
detection approach. Langford [21] used open access ancillary data to estimate small area population.
Thom et al. [22] detected spatiotemporal anomalies through visual analysis of geolocation twitter
messages. Li et al. [23] used Baidu heat maps to identify the urban centers of 658 cities in China and
analyzed the urban center area, the average distance between urban centers, and the intensity of urban
activities. Zhongnan and Yihui [24], using Baidu map heat maps, studied the urban space usage
around the metro stations along the Shanghai Metro Line 10 and analyzed the relationship between the
station and the surrounding space. Lin and Jiang [25] explored the location and vitality of historical
streets using Baidu heat maps. Lihua et al. [26] used Baidu heat map and point of interest (POI) data to
study the population distribution and the spatial distribution of a commercial layout and analyzed the
layout characteristics of the community business center. (3) Analyses of urban land use and functional
areas. Bingrong et al. [27] and Xin et al. [28] determined occupational function area using Baidu
heat maps and analyzed the job housing balance. Roth et al. [29] utilized an “Oyster” card database
of individual person movements in the London subway to reveal the structure and organization of
the city. Pei et al. [30] classified land use based on aggregated mobile phone data. Wang et al. [31],
Kang et al. [32], and Yao et al. [33] analyzed the classification of urban functions and the identification
of urban land use through Baidu heat map and POI data. Zhou et al. [1], based on the characteristics
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of the population activity curve, used a K-means aggregation algorithm to classify suburban village
spaces. Xinyi et al. [34] and Weijing and De [35] used mobile phone positioning data to exploring the
urban spatial structure of Shanghai Central City. (4) Studies of people’s emotions. Hao et al. [36] used
twitter data streams and three novel time-based visual sentiment analysis techniques to analyze the
visual sentiment of people. (5) Social network and security studies. Calabrese et al. [37] described a
real-time urban monitoring system which used the Localizing and Handling Network Event Systems
(LocHNESs) platform developed by Telecom Italia for the real-time evaluation of urban dynamics
based on the anonymous monitoring of mobile cellular networks. Stepanyan et al. [38] employed
longitudinal probabilistic social network analysis (SNA) techniques to identify the patterns and trends
of network dynamics. They explored the associations of student achievement records with the observed
network. Mora et al. [39] researched the possibilities offered by social networks in the field of sport to
aid city management. Gerber [40] researched investigating the use of spatiotemporally tagged tweets
for crime prediction. (6) Tool and method developments. Ke and Jonikristian [41] presented a novel
spatiotemporal feature representation. Tauno and Jaak [42] developed a tool called “ClustVis” for
visualizing the clustering of multivariate data using principal component analysis and heat maps.
Wang et al. [43] modified the original density-based spatial clustering of applications with noise
(DBSCAN) to make it able to determine the appropriate eps values according to data distribution
and to cluster when the density varied among the dataset. Jordi et al. [44] developed a tool for an
interactive heat map viewer for the web. Zhang et al. [45] proposed an algorithm based on message
passing between data points, which mainly achieved clustering through the similarity between data.

Overall, existing urban studies based on big data are still in the initial stage. Researchers usually
reclassify population concentration into high aggregation, moderate aggregation, and low concentration
and discuss their spatial and temporal characteristics. The reclassification method and criteria are
relatively simple and arbitrary. Moreover, in most of the articles on large cities and megacities, few,
if any, have focused on small cities, which may have very different population aggregation patterns
compared with larger cities. This work used the Getis–Ord general G analysis method to explore the
spatiotemporal characteristics of population aggregation, using Shehong County of Suining City in
Sichuan Province as the study area. Then, the correlations between population aggregation and parcel
attributes were examined.

2. Study Area and Methods

2.1. Study Area

Shehong County is a typical small city located west of the Fujiang River in Suining City, Sichuan
Province, China. The built-up area of Shehong County was used as our study area (Figure 2). The study
area is about 9.7 km in length and 3.7 km in width, with a total area of 22.6 km2. There are 17
communities in the study area, with a population size of 256,000, including 217,000 nonagricultural
population and 28,000 agricultural population.

The city is a typical monocentric small city with one city center (red spot in Figure 3b), located at
the old town center. Limited by hilly terrain and the Fujiang River, the city’s development took place
mainly in two directions: north and south (Figure 3). The old town center was converted into a new
high-density city center with mixed commercial and residential land use. However, its original street
structure remained untouched, although there were some minor renovations. The leading industries
are wineries and aluminum–magnesium manufacturing. Two industrial development clusters are
located in the south and the north at the two ends of Taihe Avenue.
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2.2. Data and Preprocessing

2.2.1. Data

The data used in this paper include Baidu heat map data, POI data, urban land use data,
and building data for Shehong County. Among them, Baidu heat map data were collected from a
Baidu map using Python programming language. POI data were collected from a Baidu map using the
LocoySpider 8.5 web crawler software.

A Baidu heat map is a big data visualization product launched by Baidu in 2014. When a person
uses some mobile APPs, the software provider obtains the user’s geographic location, provided that
the user has agreed to their data collection policy. In such a way, Baidu collects user tracking data
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and provides or exchanges these data to its cooperating companies (Figure 4) [46]. Based on the
geographical data of hundreds of millions of mobile phone users on their LBS platform, a Baidu heat
map shows the changes in population aggregation in successive time spans and different regions
based on Baidu users’ location information [14]. We collected Baidu heat map data for a weekday and
a weekend day. For each day, data were collected at an interval of 1 h from 7:00 a.m. to 11:00 p.m.
In total, 34 groups were collected (Figure 5).
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Figure 5. Baidu heat map examples.

In a geographic information system, a POI may be a building, a shop, a station, a road, and so
forth [47]. We collected 6735 POIs for Shehong County from a Baidu map in 2018. The POI data were
in tabular format, which included the Baidu coordinates, addresses, and names of the POIs.

The land use data were divided into 8 categories and 35 subcategories according to the “Code
for classification of urban land use and planning standards of development land” (GB 50137–2011).
Building data included the outlines and floors of all buildings, which were collected from local agencies.

2.2.2. Data Preprocessing

The land use and building data were AutoCAD format files. We converted them into shape files
using ESRI ArcGIS software tools, as shown in Figure 6. The WGS_1984_UTM_Zone_48N coordinate
system was used as the default coordinate system in this paper. The crawled Baidu heat map data had
no coordinate system, so they were converted into the WGS_1984_UTM_Zone_48N coordinate system
using the georeferencing tool in ESRI ArcGIS. In a Baidu heat map, the value of the pixel indicates
the magnitude of the population aggregation. The grid score of a Baidu heat map image is used to
represent population aggregation in successive analyses.
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The POI data in the Baidu coordinate system were converted into the WGS_1984_UTM_Zone_48N
coordinate system by the universal coordinate converter and ESRI ArcGIS conversion and projection
tool. Final Baidu heat map, POI, land use, and building data are shown in Figure 7.
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interest (POI) data.

2.3. Methods

2.3.1. Getis–Ord general G

The distribution of features in space can be divided into aggregation, discrete, and random
patterns (Figure 8) [48]. The degree of agglomeration can be judged according to the spatial correlation.
There are many spatial correlation analysis methods, among which the Getis–Ord general G method
is suitable for analyzing population agglomeration of Baidu heat maps. Using the pixel values of
Baidu heat maps to discuss population aggregation degree may result in high-value pixel aggregation
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(representing high-density human aggregation trends) or low-value pixel aggregation (low-density
human aggregation trends). In the Getis–Ord general G, z-scores are positive for high-density human
aggregation and negative for low-density human aggregation [48].
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The equation of Getis–Ord general G can be expressed as [48]

G =

∑n
i=1
∑n

j=1 wi, jxix j∑n
i=1
∑n

j=1 xix j
, ∀ j , i (1)

where xi and x j are attribute values for features i and j, respectively, wi, j is the spatial weight between
features i and j, n is the number of features in the dataset, and ∀ j , i.

The ZG-score for the statistic was computed as

ZG =
G− E(G)√

V(G)
(2)

where

E[G] =

∑n
i=1
∑n

j=1 wi, j

n(n− 1)
, ∀ j , i (3)

V[G] = E
[
G2
]
− E[G]2. (4)

In the above equation, the only difference between the numerator and the denominator is the
weight (wi, j). Getis–Ord general G only handles positive values. Therefore, if the weight is binary (0/1)
or always less than 1, the range of general G will be between 0 and 1.

Five scores can be obtained using the Getis–Ord general G tool in ESRI ArcGIS: general G
observations, general G expectations, variance, z-scores, and p-values (Figure 9). In the ESRI ArcGIS [48],
Getis–Ord general G is an inferential statistic, so the result must be interpreted under the null hypothesis.
If the p-value returned by this method is small and statistically significant, the null hypothesis can be
rejected. If the null hypothesis is rejected, the sign of the z-score will become very important. If the
z-score is positive, the observed general G index will be larger than the expected general G index,
indicating that the high value of the attribute will be clustered in the study area. The larger the z-score,
the higher aggregation of the high value. If the z-score is negative, the observed general G index will
be smaller than the expected general G index, indicating that the low value of the attribute will be
clustered in the study area. The lower the value agglomeration, the higher the aggregation degree.
If the z-score is close to zero, there is no obvious aggregation within the study area.
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Baidu heat map data indicate the high and low densities of population aggregation by the high and
low pixel values. Using the pixel value of a Baidu heat map to discuss the degree of aggregation may
result in high-value pixel aggregation (high-density population aggregation trends) or low-value cell
aggregation (low-density population aggregation trend). When the p-value is statistically significant,
the high/low aggregation analysis can distinguish whether the space is high- or low-value agglomeration
according to the z-score being positive or negative (when the z-score is positive, the space is high-value
agglomeration; when the z-score is negative, the space is low-value aggregation).

Based on the general understanding of the pattern of crowd activities in a city, the activities of the
citizens manifest a cyclical pattern on a weekly basis. The distributions of people on weekends (Saturday
and Sunday) and weekdays (Monday–Friday) show particular differences [14,49]. Therefore, we selected
a weekday and a weekend day with similar weather to examine the variation characteristics of the
population aggregation pattern in Shehong County.

2.3.2. Raster Data Overlay

A Baidu heat map represents dynamic time data. To analyze the total population aggregation in a
certain period of time in the city, we needed to overlay all the Baidu heat maps in the time period and
then find the average to obtain the distribution of people aggregation in this time period. The equation
used is as follows:

HI =
n∑

i=1

hi/n (5)

where HI denotes the average population aggregation degree in the I time period; hi represents the
aggregate degree at time i in the I time period, such as 7:00, 8:00, and 11:00 a.m.; and n represents the
number of times a Baidu heat map was collected during the I time period. For example, if a Baidu heat
map were collected every hour to find the average aggregation degree of a certain city within 24 h,
then n = 24.

We used Equation (5) to calculate the heat map of all workdays and weekends in Shehong County
and used the natural break method to classify the calculated pixel values into 10 categories, for which
the higher the value, the greater the aggregation degree.

2.3.3. Chi-Squared and Pearson Correlation Coefficient Tests

In order to reveal the relationship between people aggregation and land use, we analyzed
correlations and significances between population aggregation degree and parcel attributes.
Among them, the population aggregation degree was represented by the average population
aggregation degree during the main activity time of the working day (7:00 a.m. to 11:00 p.m.),
which reflected the overall situation of the population aggregation at the main activity time. Land



Sustainability 2019, 11, 6276 9 of 19

parcel attributes include land type, POI density, floor area ratio, building density, land area, and so on.
In addition, different land parcel division methods may affect the correlations between population
aggregation degree and land parcels, so we divided the land parcels into three dimensions: land use
parcel, road network blocks, and grids (Figure 10). We used ESRI ArcGIS to extract people aggregation
and land parcel attributes and then performed data correlation analysis in IBM SPSS.
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The Baidu heat score of the population aggregation degree is a quantitative variable, and the land
type is a categorical variable, so the correlations between them should be calculated by a chi-squared
test, Pearson x2. The equation is [50]

x2 =
∑ (A− E)2

E
=

k∑
i=1

(Ai − Ei)
2

Ei
=

k∑
i=1

(Ai − npi)
2

npi
(i = 1, 2, 3, . . . , k) (6)

where Ai is the observation frequency of the i level, Ei is the desired frequency of the i level, n is the
total frequency, and pi is the desired frequency of the i level. The expected frequency Ei of the i level
is equal to the expected probability pi of the total frequency n × i level, and k is the number of cells.
When n is relatively large, the x2 statistic approximates the chi-squared distribution of k-1 (the number
of parameters used in calculating Ei) degrees of freedom.

Because parcel attributes such as POI density, floor area ratio, building density, and land area are
all continuous variables, the correlations between the population aggregation and parcel attributes can
be tested by the Pearson correlation coefficient tests. The Pearson correlation coefficient between two
variables is defined as the quotient of the covariance and standard deviation between the two variables:

ρX,Y =
cov(X, Y)
σXσY

=
E[(X − µX)(Y − µY)]

σXσY
. (7)

The Pearson correlation coefficient varies from−1 to 1. In the behavioral sciences [51], 0.00≤ |r|≤ 0.09
indicates no correlation, 0.1 ≤ |r| ≤ 0.3 indicates a weak correlation, 0.3 < |r| ≤ 0.5 indicates a medium
correlation, and 0.5 < |r| ≤1 indicates a strong correlation.

3. Results

3.1. Temporal Characteristics of Population Aggregation

To analyze the temporal characteristics of the population aggregation pattern in Shehong County,
the z-scores of all time slots for the two days were represented by lines and the time variance of
aggregation for two days were obtained (Figure 11).
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3.1.1. Workday

On the workday, at the 0.01 significance level, the z-score of the Getis–Ord general G was between
18.16 and 31.72, which means that the aggregation of the population in Shehong County was clustered
into a high-value gathering trend on the workday; that is, a high-density people concentration had a
tendency to gather. The z-score at 7:00 a.m. was 18.16, which was lower than the other times on the same
day, indicating that the distribution of the population in Shehong County was more dispersed than at
other times. By 8:00–9:00 a.m., the z-score rose rapidly and reached a peak, which was coordinated
with the morning commuting time. From this, the following inferences can be made: in the morning,
as people move from home to work place, the population aggregation degree quickly increased and
reached the first peak of clustering of the working day. At 10:00–11:00 a.m., the population aggregation
degree was in a stable state and then gradually declined, forming a trough at 1:00 p.m. Since 1:00 p.m.
is a lunch break, some people may return to their homes to rest at noon, resulting in a decrease in the
population aggregation degree. At 2:00 and 4:00 p.m., there were two population aggregation peaks.
The population aggregation degree was reduced around 6:00 p.m., which is consistent with off-hours.

3.1.2. Weekend

At the 0.01 significance level, the z-score of the Getis–Ord general G on the weekend was between
17.50 and 28.56, which means that a high-density people concentration had a tendency to gather
on the weekend. We found that 7:00 a.m. was the lowest for the population aggregation degree.
After 7:00 a.m., the population aggregation degree gradually increased, and two gentle peaks occurred
at 11:00 a.m. and 12:00 p.m. From then until 5:00 p.m., the population aggregation degree was relatively
stable and gradually decreased at 6:00 p.m. However, there was still a high degree of population
aggregation around 10:00 p.m.

3.1.3. Comparison of the Workday and the Weekend

Comparing the temporal characteristics of the population aggregation on the workday and
weekend day of Shehong County (Figure 11), we found the following:

(1) On both the weekday and weekend, the population aggregation degree of the daytime was
greater than that at night based on z-scores. This is consistent with common sense, that people in
residential areas have a lower aggregation degree than public activities [14], thus providing the facial
validity of our results.
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(2) Regarding the population aggregation degree, the z-scores indicate that people on the workday
are more clustered than on the weekend before 10:00 p.m., but the aggregation trends reverse after
10:00 p.m., when the weekend is more clustered than the workday.

(3) On the volatility of the population aggregation, by comparing the fluctuations of the curve
of the population aggregation, volatility for most time periods of the weekday was greater than
on the weekend. Comparing the curvature of the morning and afternoon curves, on the weekday,
people gathered and dispersed faster than on the weekend.

3.2. Spatial Distribution Characteristics of Population Aggregation

We used Equation (5) to count all heat maps of the working day and weekend. Then, we used
the natural break method to divide the calculation results into 10 categories according to the pixel
score. Cold and warm colors were used to indicate the degree of population aggregation; a warmer
color represents a higher clustering of people. The spatial distribution characteristics of the population
aggregation on the workday and weekend in Shehong County are shown in Figure.

3.2.1. Workday

It can be seen from (a) of Figure 12 and (a) of Figure 13 that there are mainly three high aggregation
areas in the Shehong County on the workday, they are People’s Square, People’s Hospital and Land
Resources Bureau. The People’s Square is the main public activity venue for people of Shehong County.
The northern part of People’s Square is where the county’s government buildings are located. People’s
Square is surrounded by commercial buildings, such as the New Century Commercial Plaza and
the Yongjia Supermarket. There are also public service buildings, such as government buildings,
information service centers, and so on. Therefore, the population aggregation near the People’s Square
has large numbers of working and shopping people. The People’s Hospital is located in the east of
Taihe Avenue, south of Guanghan Road, and there are no large commercial buildings or other public
service buildings nearby. The Land Resources Bureau is located in the west of the middle section
of Taihe Avenue, south of Democratic Lane, surrounded by public service buildings, such as the
county people’s congress, the county land transaction and service center, and the county employment
service bureau. In general, the people in Shehong County gather together for work, leisure shopping,
and medical treatment on weekdays.
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3.2.2. Weekend

It can be seen from Figures 12b and 13b that there are also three high-aggregation areas in Shehong
County on the weekend: the People’s Square, the People’s Hospital, and the Land Resources Bureau.
Compared with the workday, it was found that the area of the high-aggregation area was much
smaller than the weekend. Moreover, the high-aggregation area of the Land Resources Bureau was
reduced compared with the Huixing Department Store in the southeast and another in the southern
business district.

3.2.3. Comparison of the Workday and the Weekend

By comparing the spatial characteristics of the population aggregation on the workday and
weekend in Shehong County, we found the following:

(1) The locations of population aggregation in Shehong County have a high degree of overlap
on the workday and weekend. This is different from the conclusion reached for Shanghai: “On the
workday and weekend, there is a big difference in the population aggregation in downtown Shanghai
(the workday is mainly concentrated in the Century Avenue, Lujiazui, Jing’an Temple, Shanghai
Railway Station, etc. The weekend is mainly concentrated in People’s Square, Xujiahui, Zhongshan.
Park, Jinshajiang Road Subway Station, etc.)” [14].

(2) The workday has larger high population aggregation areas than the weekend. This shows that
people on the workday are more clustered than on weekend, which is consistent with the conclusion
drawn in Section 3.1.3.

3.3. Correlation between Population Aggregation and Land Parcel attributes

3.3.1. Analysis Results Based on the Land Use Parcels

The land parcel attributes we extracted were land type, POI density, floor area ratio, building density,
and land area. The Baidu heat score of the population aggregation degree is a quantitative variable,
and the land type is a categorical variable, so the correlations between them should be calculated by
a chi-squared test. Because parcel attributes such as POI density, floor area ratio, building density,
and land area are all continuous variables, the correlations between the population aggregation and
parcel attributes can be tested by the Pearson correlations coefficient tests.

(1) Correlation between Population Aggregation and Parcel Type.
The correlation between population aggregation and land parcel type was analyzed by a

chi-squared test using SPSS. The results are shown as Table 1.
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Table 1. The population aggregation and land parcel type chi-squared test.

Value Degrees of
Freedom

Progressive Significance
(Two Sides)

Pearson’s chi-squared 12,214.195 * 12,122 0.276
Likelihood ratio 2328.929 12,122 1.000

Number of valid cases 654 654 654

**: Correlation is significant when the confidence (two sides) is 0.01; *: Correlation is significant when the confidence
(two sides) is 0.05.

Progressive significance tests between population aggregation and land parcel type revealed
no evidence of a relationship between the population aggregation and the parcel type. The reason
for this result could be that population aggregation is not only affected by the land type but also by
other factors, such as the density of POI, development time, and mode. For example, the population
aggregation of the residential land in the old city center was generally higher than that of the newly
developed residential land in suburbs. At the same location and under the same development time,
the population aggregation in the higher floor area ratio was higher than that of the lower floor
area ratio.

(2) Correlations between Population Aggregation and POI Density, Floor Area Ratio, Building
Density, and Land Area.

We used the Pearson correlation coefficient in SPSS to explore the relationship between the
degree of population aggregation and land parcel attributes, which were POI density, building density,
floor area ratio, and land area. The results are shown in Table 2. The p-values of the significance
of correlations between population aggregation degree and the POI density, the floor area ratio,
the building density, and the land area were less than or equal to 0.01(indicated by two asterisks),
indicating that the null hypothesis was rejected. Among them, the population aggregation degree
was positively correlated with the POI density, floor area ratio, and building density. The population
aggregation degree was negatively correlated with the land parcel area.

Table 2. Correlation analysis of population aggregation degree and land use on the land use parcels.

POI Density Floor Area Ratio Building Density Land Area

People aggregation degree 0.864 ** 0.325 ** 0.452 ** −0.375 **
Number of cases 654 654 654 654

**: Correlation is significant when the confidence (two sides) is 0.01; *: Correlation is significant when the confidence
(two sides) is 0.05.

3.3.2. Analysis Results Based on the Road Network Blocks

For the road network blocks, the land parcel attributes we extracted included POI density, floor area
ratio, building density, and land area. A land parcel may contain multiple types of road network blocks,
so land type was no longer used as an attribute of road network blocks. The results of the correlation
analysis between the population aggregation degree and the abovementioned land parcel attributes
are shown in the Table 3. It can be seen that at a significance level of 0.01, the correlations between
population aggregation degree and POI density, floor area ratio, building density, and land area were
significant. The population aggregation degree positively correlated with POI density, floor area ratio,
and building density and negatively correlated with land area.
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Table 3. Analysis of population aggregation degree and land use on road network blocks.

POI Density Floor Area Ratio Building Density Land Area

People aggregation degree 0.662 ** 0.468 ** 0.620 ** −0.333 **
Number of cases 249 249 249 249

**: Correlation is significant when the confidence (two sides) is 0.01; *: Correlation is significant when the confidence
(two sides) is 0.05.

3.3.3. Analysis Results Based on Grids

For the regular grid scale, the land parcel attributes we extracted included POI density, floor area
ratio, and building density. The land area of each regular grid was the same, and one grid cell may
contain multiple land use types, so land type and land area were no longer used as land parcel
attributes. Starting from a 30 m by 30 m grid, we gradually increased the grid size at a 30m interval to
form multiple scale sequences. The number of grid cells dropped from 11605 (30 m) to 8 (2310 m).
The correlation analysis results of the population aggregation degree and the attributes in each grid
size are shown in Appendix A. It can be seen that at a significance level of 0.01, the correlations between
population aggregation degree and POI density, floor area ratio, and building density were significant,
and they were positively correlated. For the correlation coefficient, the correlation coefficient between
population aggregation degree and POI density, floor area ratio, and building density increased with
the increase of the grid size, and the correlation coefficient reached the maximum at 1800 × 1800 m
(Figure 14). Prior to the 420 × 420 m grid, the correlation coefficient between population aggregation
degree and POI density increased slowly. After that, the growth was faster, and the grid reached a
maximum at the test boundary of 2310 × 2310 m.
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4. Discussion

Our findings show that the weekday aggregation of people in Shehong County is higher than
on the weekend, which is unlike the results for Shanghai: “The crowd tends to gather at a high
intensity in a few centers during the weekend, while the crowd tends to gather at more centers
on weekday, but the intensity of the agglomeration is relatively low” [14]. We speculate that there
are two main reasons for this difference: Firstly, the land use pattern of the two cities are different.
There is only one main working center in Shehong County, which is located in the center of the city,
resulting in a higher concentration of people on the weekday. However, there are several major
work areas in Shanghai, which leads to a lower concentration of people on the weekday than on the
weekend. Secondly, cities have different attractions for their residents and the population of their
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vicinity. Shehong is a small city and its attraction is low on the weekend, while Shanghai, as a megacity,
has more attractive destinations for weekends.

On the weekday and the weekend, the population aggregation in Shehong County has a high
degree of overlap, which is different from the research results of Wuhan City: “Workdays and weekends,
people clustered with great differences” [17]. We speculate that this difference may due to different
urban structures. Wuhan is a multicenter megacity, and there is a clear boundary between the work
areas and the entertainment areas, which leads to a large difference in the population aggregation
on the weekday and the weekend. However, Shehong County, as a small city with a single center,
has no clear boundary between the work and recreation areas. They are located in the same city center,
which leads to a large overlap of the population aggregation on the weekday and the weekend.

To examine the influence of parcel division on the correlation between population aggregation
degree and land parcel attributes, we divided the land parcels three different ways: land use parcel,
road network blocks, and grids. We found that the correlation significance of the three divisions were
unaffected by division methods. At a significance level of 0.01, the correlations between population
aggregation degree and POI density, floor area ratio, and building density were significant and
positively correlated. This shows that the division of land parcel method has little influence on judging
whether population aggregation degree and POI density, floor area ratio, and building density are
related or not. However, the division of land parcel method has an effect on the correlation coefficient.
Using regular grid division, the correlation coefficient between population aggregation degree and POI
density, floor area ratio, and building density will become larger when the grid size becomes larger.

Finally, when dividing the area by land use parcel, we found that the population aggregation
degree is not significantly related to the land type, and this result is different from people’s common
sense and deserves some further investigation since this assumption is used in some travel demand
modeling processes.

5. Conclusions

Based on Baidu heat maps, we used Getis–Ord general G to obtain variations in the population
aggregation on weekdays and the weekend in Shehong County. (1) On weekdays, the population
aggregation of Shehong County is significantly higher than the weekend, and the peak of the
aggregation is at 2:00 a.m. and 4:00 p.m. (2) People on weekdays gather with more volatility than on the
weekend. People on weekdays gather and disperse at a significantly faster rate than on the weekend.
(3) Regarding the aggregation position, the high aggregation area is where there is a concentration of
business districts, administrative offices, people’s hospitals, and the People’s Square in the city center,
on weekdays and the weekend. Population aggregation has a high degree of overlap in geographical
locations in Shehong County.

Using the chi-squared test, we found that the correlation between the population aggregation and
the land use was not significant. Through the Pearson correlation coefficient, we found that population
aggregation degree and POI density, floor area ratio, and building density were significantly positively
correlated, and the correlation coefficient increased as the mesh unit size increased. In the grid of
1800×1800m, the correlation coefficients between population aggregation degree and floor area ratio
and building density reached the peak.

The results show that Baidu heat map data can reveal urban residents’ spatiotemporal aggregation
pattern and the relationship between people aggregation and urban infrastructural settings. It may play
an important role in urban and transportation planning by being treated as a supplementary data source
to traditional urban planning data. This is especially the case when the costly and time-consuming
full-scale traditional transportation OD (Origin-Destination) survey cannot be conducted due to
manpower and finance constraints. Baidu heat maps can provide some coarse information about the
origins and destinations of city residents’ trips at different times of day. Combined with traditional OD
data or GPS tracking data, from which OD information can be derived, it can be used for travel demand
analysis. Furthermore, Baidu heat maps can be used to find the mismatch between residents’ demand
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and urban infrastructure supplies. Baidu heat maps that represent people aggregation and POI data
(educational points and administrative points in particular) that partly represent urban infrastructure
can be examined by correlation analysis, and areas with weak correlations and high POI densities
may indicate an insufficient usage of infrastructure. Finally, the people’s time-dependent spatial
aggregation patterns may help city administrators with dynamic traffic management, which may
effectively remedy traffic jam situations by applying different policies on weekends and workdays.

Although Baidu heat maps represent a huge number of Baidu users, it is still a biased sample
from the total population; thus, it cannot simply be marked as a “real” population aggregation pattern.
Further studies may investigate the following two aspects: (1) exploring the population aggregation in
various functional areas of the city through POI data and Baidu heat maps; (2) cross-validating the
relationship between population aggregation and land parcel attributes with multiple data sources,
such as taxi GPS logs and mobile tracking logs.
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Appendix A

Table A1. Correlation analysis between people aggregation degree and POI density, floor area ratio,
and building density on grids of different scales.

POI Density Floor Area Ratio Building Density

30×30 m Grid People aggregation degree 0.636 ** 0.0225 ** 0.157 **
Number of cases 11605 11605 11605

60 × 60 m Grid People aggregation degree 0.641 ** 0.379 ** 0.348 **
Number of cases 3584 3584 3584

90 × 90 m Grid People aggregation degree 0.647 ** 0.489 ** 0.471 **
Number of cases 1762 1762 1762

120 × 120 m Grid People aggregation degree 0.652 ** 0.586 ** 0.564 **
Number of cases 1060 1060 1060

150 × 150 m Grid People aggregation degree 0.665 ** 0.654 ** 0.649 **
Number of cases 733 733 733

180 × 180 m Grid People aggregation degree 0.670 ** 0.699 ** 0.668 **
Number of cases 524 524 524

210 × 210 m Grid People aggregation degree 0.682 ** 0.760 ** 0.738 **
Number of cases 410 410 410

240 × 240 m Grid People aggregation degree 0.688 ** 0.797 ** 0.765 **
Number of cases 327 327 327

270 × 270 m Grid People aggregation degree 0.693 ** 0.817 ** 0.768 **
Number of cases 264 264 264

300 × 300 m Grid People aggregation degree 0.700 ** 0.850 ** 0.792 **
Number of cases 220 220 220

330 × 330 m Grid People aggregation degree 0.704 ** 0.859 ** 0.804 **
Number of cases 190 190 190

360 × 360 m Grid People aggregation degree 0.712 ** 0.870 ** 0.842 **
Number of cases 155 155 155

390 × 390 m Grid People aggregation degree 0.717 ** 0.889 ** 0.823 **
Number of cases 143 143 143
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Table A1. Cont.

POI Density Floor Area Ratio Building Density

420 × 420 m Grid People aggregation degree 0.705 ** 0.904 ** 0.845 **
Number of cases 127 127 127

540 × 540 m Grid People aggregation degree 0.740 ** 0.926 ** 0.865 **
Number of cases 78 78 78

780 × 780 m Grid People aggregation degree 0.801 ** 0.955 ** 0.926 **
Number of cases 48 48 48

1290 × 1290 m Grid People aggregation degree 0.808 ** 0.937 ** 0.853 **
Number of cases 20 20 20

1560 × 1560 m Grid People aggregation degree 0.887 ** 0.974 ** 0.949 **
Number of cases 16 16 16

1800 × 1800 m Grid People aggregation degree 0.806 ** 0.981 ** 0.954 **
Number of cases 10 10 10

2070 × 2070 m Grid People aggregation degree 0.918 ** 0.934 ** 0.888 **
Number of cases 10 10 10

2310 × 2310 m Grid People aggregation degree 0.978 ** 0.837 ** 0.747 **
Number of cases 8 8 8

**: Correlation is significant when the confidence (two sides) is 0.01; *: Correlation is significant when the confidence
(two sides) is 0.05.
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