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Abstract: Buildings produce a large amount of carbon emissions in their life cycle, which intensifies
greenhouse-gas effects and has become a great threat to the survival of humans and other species.
Although many previous studies shed light on the calculation of carbon emissions, a systematic
analysis framework is still missing. Therefore, this study proposes an analysis framework of carbon
emissions based on building information modeling (BIM) and life cycle assessment (LCA), which
consists of four steps: (1) defining the boundary of carbon emissions in a life cycle; (2) establishing
a carbon emission coefficients database for Chinese buildings and adopting Revit, GTJ2018, and
Green Building Studio for inventory analysis; (3) calculating carbon emissions at each stage of the life
cycle; and (4) explaining the calculation results of carbon emissions. The framework developed is
validated using a case study of a hospital project, which is located in areas in Anhui, China with a hot
summer and a cold winter. The results show that the reinforced concrete engineering contributes to
the largest proportion of carbon emissions (around 49.64%) in the construction stage, and the HVAC
(heating, ventilation, and air conditioning) generates the largest proportion (around 53.63%) in the
operational stage. This study provides a practical reference for similar buildings in analogous areas
and for additional insights on reducing carbon emissions in the future.

Keywords: carbon emissions; building information modeling (BIM); life cycle assessment (LCA);
analysis framework; Chinese hospital; carbon coefficient database; sustainable green building; hot
summer; cold winter

1. Introduction

The concept of sustainability is now widely accepted on account of the threat of climate change
and global warming [1,2]. One of the predominant causes of climate change and global warming
is the increase in carbon emissions [3,4]. As a core industry, the construction industry accounts for
about 30%–40% of carbon emissions of all industries combined [5,6]. Based on this, the calculation
and analysis of a building’s carbon emissions helps not only to achieve the goal of reducing carbon
emissions but also to achieve long-term sustainability [7].
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The construction industry needs to calculate and analyze carbon emissions [8–10]. To this end,
some scholars have used life cycle assessment (LCA) theory [11,12] to define and calculate a building’s
life cycle carbon emissions (BLCCE) [13,14]. Other scholars have combined building information
modeling (BIM) and life cycle assessment (LCA) to develop frameworks for a building’s carbon
emissions [4,15,16]. However, these frameworks have mainly focused on the calculation of carbon
emissions and have often ignored BLCCE analysis.

In the past, the research on a building’s carbon emissions was limited to developed countries, such
as the United States [17], the United Kingdom [18], and Sweden [19]. In recent years, Chinese scholars
have also begun to pay attention to the carbon emissions of buildings [4,14,15,20,21]. These studies
have included the BLCCE of villas [4], residences [14,20,21], and office buildings [14,15]. However,
since different types of buildings lead to different levels of carbon emissions [7,22], research on medical
buildings cannot be neglected.

In addition, carbon emissions are also related to the local climate of the buildings [22,23].
Previous studies have concentrated on warm climates [24], tropical desert climates [25], and subfrigid
climates [19]. The object of this study, the Anhui province of China, has the typical monsoon climate of
a medium-latitude region, with a hot summer and a cold winter [26], but there is no precedent research
focusing on such an area for the carbon emissions analysis of buildings.

More importantly, the carbon emission coefficients (CECs), which represent the amount of carbon
emissions emitted per unit of consumption, affect the calculation results of carbon emissions [21]. In
China, some scholars have provided various CECs of Chinese building materials (including 15 CECs
involved in Peng’s study [15] and 14 CECs provided by Zhang and Wang [14]), and some have adopted
the CECs of the existing LCA software (such as eBalance used by Yang [4]). Unfortunately, these CECs are
not comprehensive, and it is necessary to establish a more complete CEC database for Chinese buildings.

Based on the deficiencies of the above studies, this study makes the following assumptions:
(1) An analysis framework of BLCCE based on BIM and LCA can be used to evaluate the carbon

emissions composition after calculating carbon emissions and provide a quantitative basis for the
adoption of low-carbon measures.

(2) Using a hospital in the Anhui province of China as a case study, the framework will provide a
valuable reference for hospital buildings, as well as for buildings in areas with a hot summer and a
cold winter.

(3) An expanded CEC database of buildings will provide the basis for future research and a
practical application in China.

It is worth noting that this paper adopts process-based LCA, and the boundary of BLCCE in this
paper is determined according to the research of Peng [15]. The calculation unit is a carbon dioxide
equivalent (CO2-eq), which takes into account the contribution of greenhouse gases (including CO2,
CH4, and NO2) [27].

2. Literature Review

2.1. LCA in the Building Sector

Life cycle assessment (LCA) is a method of assessing the environmental loads of products during
their life cycle [11,12,28]. In a broad sense, there are three types of LCA approaches: process-based,
economic input–output (EIO), and hybrid [29]. The process-based analysis is a commonly used bottom-up
method, which involves identifying all materials and energy flows associated with different activities
involved in the production and quantifying the corresponding environmental impacts [30]. The method
accounts for the majority of studies in the fields of construction technology due to its accuracy and detailed
process [29]. Contrary to the process-based LCA, economic input–output analysis is a top-down LCA
method [30]. The strength of this method lies in its ability to account for all indirect impacts involved in
the supply chain of a product or service on top of the direct environmental impacts [30,31]. The hybrid
method was developed by combining the advantages of the process-based and EIO approaches [32].
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The process-based LCA is highly encouraged by the International Organization for Standardization
(ISO) standards due to its accuracy and detailed process [32]. According to ISO 14040 and ISO 14041,
LCA research is divided into four steps [12,33]: (1) goal and scope definition: defining the goal, scope,
and boundary of the LCA research [33]; (2) inventory analysis (life-cycle inventory): collecting the data
on energy and material consumption and creating an input or output inventory [9]; (3) environment
impact assessment (life-cycle impact assessment): measuring the flow to be summed for an overall
impact category total [33]; (4) interpretation: quantifying and evaluating the research results of life-cycle
inventory and life-cycle impact assessment and originating conclusions and suggestions [34].

The application of LCA in a building field is multi-faceted and involves the rating of sustainable
green buildings, energy assessment, building refurbishments, cost, social assessment, and carbon
emissions [35]. Some scholars have applied LCA to the rating of sustainable green buildings, which
encouraged building sustainability assessment in practice [36,37]. Some scholars have applied LCA
to the energy assessment of buildings, with their ultimate purpose to formulate strategies to reduce
primary energy use in buildings [5,13,38]. The purpose of applying LCA to building refurbishments is
to choose building retrofit measures with low life cycle environmental impacts [39–41]. Some studies
have integrated LCC (life cycle cost), LCA, and social LCA and have performed life cycle sustainability
assessment [42–44]. Moreover, in order to seek strategies to reduce the global warming effect, some
scholars have evaluated carbon emissions in buildings [4,15], and this will be discussed further in
Section 2.2.

2.2. Applying LCA to BLCCE

All three types of LCA methods (i.e., process-based, EIO, and hybrid) have been applied to the
carbon emission of buildings. Due to the detailed characteristics of the product, the process-based
methodology accounts for the majority of studies in carbon emissions of building [29], such as the
research of Yang et al. [4] and Peng [15]. For studies with mass data, such as the carbon emission of
buildings in the whole city, the EIO method is convenient, as Yan et al. showed [31]. In addition, the
hybrid method is used in the calculation of BLCCE by combining the advantages of the above two
methods, as shown in the previous literature [45,46].

The applications of process-based LCA to carbon emissions of a building provided an accurate
and detailed process [29]. Some scholars have put forward the concept of a building’s life cycle
carbon emissions (BLCCE) [15], which are divided into three stages: the construction stage (the
embodied stage), the operational stage, and the demolition stage [7,15]. Carbon emissions at the
construction stage mainly include material production, material transportation, and construction on
site [4,47]. The carbon emissions at the operational stage are caused by the consumption of energy in
HVAC (heating, ventilation, and air conditioning), lighting, water supplying, and equipment use [48].
Carbon emissions at the demolition stage mainly come from demolition and refurbishment [15]. The
composition of BLCCE is shown in Figure 1.
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However, process-based LCA requires extensive data that are often restored in multiple, disparate,
and proprietary sources [29]. Consequently, this approach may lead to assumptions, high costs, and
significant time investment [49]. During the construction phase, different types of material, various
types of machines and chaotic construction techniques are densely mixed together in a short period of
time [50], which leads to difficulties in calculation. In the operational stage, carbon emissions vary
greatly with climate conditions, comfort requirements, and operational schedules [22], which also
leads to difficulties in obtaining data. All these characteristics make the calculation of BLCCE difficult.

2.3. Integration of LCA and BIM in BLCCE

It is generally known that the calculation of BLCCE requires high costs and significant time
investment [35,51], but BIM can reduce the time and effort required to manage building information
and LCA data [16,52]. An increasing number of scholars have presumed that connecting BIM and LCA
software could eliminate the need for manual data input and remarkably accelerate the establishment
of the LCA model [52–54].

A quantities calculation sheet based on BIM can directly reflect the consumption of materials and
machineries, which can effectively manage multiple data in the construction stage [4,9]. In addition,
BIM can reveal information about a building, including climate conditions, comfort requirements, and
operational schedules, and the BIM-integrated energy consumption software also has the ability to
simulate energy consumption in the operation stage [7,15,19].

According to the review of BIM-based LCA by Soust-Verdaguer et al., most previous papers have been
focused on carbon emissions calculation [16]. Many scholars have obtained relatively mature calculation
methods by combining BIM and LCA [4,15,33]. Peng presented a calculation method for BLCCE based
on Ecotect and BIM [15]. Yang et al. undertook a case study on the carbon footprint accounting of a
residential building based on BIM and LCA [4]. Gardezi and Shafiq proposed an operational carbon
footprint prediction model based on BIM and LCA [33]. These studies, rather than point out where carbon
emissions came from (e.g., carbon emissions from activities of construction stage, from each month at
operational stage), demonstrate how the total amount of carbon emissions can be calculated.

Of the limited carbon emissions analysis, for the construction stage, Lee et al. analyzed the
carbon emissions generated by 13 work types and their proportion [9], while Yang et al. analyzed
the proportion of carbon emissions generated by building materials [4]. For the operational stage,
Najjar et al. analyzed the impact of cooling load on carbon emissions [34]. Schultz et al. compared the
carbon emissions of buildings in different geographical locations [55]. For the demolition stage, the
carbon emissions during the demolition stage only account for about 1% of the BLCCE [14], so the
analysis is of limited significance [7]. These studies have achieved certain results, but most of them
have not been combined with BIM. In addition, systematic analysis methods for BLCCE have not
been established.

2.4. Factors Related to BLCCE

Factors that affect a building‘s carbon emissions mainly include (1) carbon emission coefficients
(CECs), (2) building types, (3) structure schemes, and (4) geographical location and climate [30].

The CEC has a huge impact on the calculation of carbon emissions [21,56]. In many developed
countries, there are relatively complete CEC databases, for example, Building for Environmental
Economic Sustainability (BEES) in the United States, Impact Estimator for Buildings (IEB) in Canada,
and Inventory of Carbon and Energy (ICE) in the United Kingdom [21]. In China, the eBalance based on
the Chinese Life Cycle Database (CLCD) is the most commonly used CEC database [4,21]. In addition,
the Chinese government has shared some CECs of construction materials and machinery in GB/T
51366-2019. Some scholars have also provided CECs of some major materials (including 15 CECs
involved in Peng’s study [15] and 14 CECs provided by Zhang and Wang [14]). However, these CECs
were insufficient. Furthermore, most existing databases and tools do not take the characteristics of
production (such as producing area and manufacturing technique) into account.
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Different building types have different users and schedules, which leads to different amounts
of carbon emissions [7,22]. Previous studies have covered a variety of building types, including
single-family villas [4,57], apartments [6,17], high-rise residences [7,58], and office buildings [14,15].
However, there has been a lack of research on the BLCCE of hospital buildings.

Different structure schemes also have a significant impact on the BLCCE [14]. Zhang and Wang
compared the differences between structures of brick-concrete, masonry-concrete, and reinforced
concrete [14]. In addition, some scholars have also compared the carbon emissions between
prefabricated structures and traditional structures [59–61]. In recent years, modern wood houses
promoted the idea and application of environmentally and energetically efficient constructions [62,63].
Švajlenka and Kozlovská compared the modern construction system based on wood to the traditional
structure system [62,64].

Geographically, previous studies on the carbon emissions of buildings have included China [4,15,
65], the United States [17], the United Kingdom [18], Sweden [19], Saudi Arabia [25], and Korea [6].
Concerning the local climate of buildings [25,26], previous studies have focused on warm climates [27],
tropical desert climates [28], and subfrigid climates [22]. However, research on areas with hot summers
and cold winters in China has not been further developed.

2.5. Research Gaps

The literature review above shows that the research on BLCCE has achieved considerable
development and that it is valuable to combine BIM with LCA, but it still needs to be coordinated and
improved. The research gaps are as follows:

(1) Although many scholars have put forward carbon emissions frameworks that combine BIM
and LCA, these frameworks have focused on the calculation of carbon emissions, while the analysis
of carbon emissions is limited. Therefore, building on previous frameworks, this paper develops an
analysis framework for carbon emissions.

(2) In terms of building types, previous studies in China only cover villas, apartments, and office
buildings, and there is currently a lack of research on hospitals. This paper takes a hospital as a case
study to fill this gap.

(3) Previous studies cover a variety of geographical locations and climate types; however, studies
on areas with a cold winter and a hot summer are still missing. This paper, as the first case study of the
Anhui province, which has a cold winter and a hot summer, will provide an effective reference for
areas with a similar climate.

(4) At present, China’s CEC suffers from a small database and a shortage of characterizations.
In this study, 180 characteristic CECs of buildings were collected, which will greatly expand China’s
CEC database of buildings.

3. Methodologies

The goal of this study is to develop a carbon emissions analysis framework based on BIM-enabled
LCA. The analysis framework is applied to a case study to quantify the carbon emissions of a hospital
in China. This LCA study consists of four steps in accordance with the ISO 14040 & 14041 standards: (1)
goal and scope definition; (2) inventory analysis; (3) environment impact assessment; (4) interpretation.

Based on LCA and BIM, the methodology framework for the analysis of BLCCE is shown in
Figure 2.
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3.1. Goal and Scope Definition

The goal and scope of the system must be firstly determined in LCA [9]. Currently, there is a lack
of consensus in goal and scope definitions among various studies [35]. Based on previous studies [7,15],
this study defines the boundary of BLCCE as the carbon emissions generated in the three stages of a
building’s life cycle. Specifically, it includes the construction stage (including material production,
material transportation, and construction on site), the operational stage (including HVAC, lighting,
water supplying, and equipment use), and the demolition stage (demolition and refurbishment).
The detailed system boundary is illustrated in Section 2.2 and Figure 1. The definition of the system
boundary provides the basis for creating BIM models and calculating carbon emissions.

3.2. Inventory Analysis

The second step in LCA is the inventory analysis, also known as life cycle inventory. In this step,
we need to collect information about carbon emission coefficients, consumption (including man-days,
materials, and machine consumption) at the construction stage, energy consumption at the operational
stage, and so on [34].

In the life cycle inventory, the first step is to collect the carbon emission coefficient (CEC) database.
A review was conducted about the carbon emissions of buildings based on the CNKI (China National
Knowledge Infrastructure), which is the most comprehensive database of research publications in
China [66]. Combined with GB/T 51366-2019 [67], 180 CECs were obtained, which can be found in Part
1 of the supplementary materials.

Afterwards, the BIM model was created for inventory analysis. The core BIM modeling software
is Autodesk Revit2017, which is the most commonly used BIM modeling software in the field of AEC
(architecture, engineering, and construction) [68,69]. By importing Autodesk Revit2017 into Glondon
GTJ2018, a quantities calculation sheet is acquired through GTJ2018.

Additionally, Autodesk Green Building Studio, software commonly used for green building
analysis [34,70,71], is able to conduct energy simulation and determine fuel consumption and electricity
consumption required at the operational stage [71]. We used Green Building Studio built by Revit to
calculate the energy consumption during the operational stage.

The BIM model includes graphic information, materials data, and building components, and
this information is defined by the LOD (level of detail) [16]. According to the American Institute of
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Architecture (AIA), the LOD defines the minimum content requirements for BIM at five progressively
detailed levels of completeness, from LOD 100 to LOD 500 [52]. To ensure the accuracy of BIM, the
BIM model is created with LOD 300, as suggested by Soust-Verdaguer et al. [16].

3.3. Environment Impact Assessment

The third step of the LCA is the environment impact assessment, also known as the life cycle impact
assessment [70]. The BLCCE is calculated in this step to create simpler, convincing results [5]. The carbon
dioxide equivalent (CO2-eq) is often regarded as an accounting unit for carbon emissions [4,7] because
it takes into account the combined contribution of CO2, CH4, and NO2 as greenhouse gases [27].

According to the above analysis, the BLCCE is composed of carbon emissions generated in three
stages. The total BLCCE is calculated by Equation (1). Ctot, Ccon, Cope, and Cdem correspond to the
carbon emissions of the life cycle, the construction stage, the operational stage, and the demolition
stage, respectively.

Ctot = Ccon + Cope + Cdem. (1)

The carbon emissions at the construction stage are composed of a sub-item project and a measure
project (see Equation (2)). The carbon emission of the sub-item project or the measure project is equal
to the carbon emissions coefficient of the quota multiplied by the quantity of the quota (see Equation
(3)). The carbon emission coefficient of the quota is equal to the amount of man-days, materials, and
mechanical consumption, multiplied by their carbon emission coefficient (see Equation (4)).

Ccon =
∑

Csp +
∑

Cmp (2)

Csp,mp =
∑

CCq ×Qq (3)

CCq =
∑

CCmd ×Qmd +
∑

CCmat ×Qmat +
∑

CCmech ×Qmech. (4)

In Equations (2)–(4): Csp and Cmp represent carbon emissions generated by the sub-item project
and the measure project, respectively; CCq, CCmd, CCmat, and CCmech represent the carbon emission
coefficient of the quota, the man-days, the materials, and the machine class, respectively; Qq, Qmd,
Qmat, and Qmech represent the quota, amount of man-days, the amount of materials, and the machine
class, respectively.

Carbon emissions at the operational stage are mainly generated from the energy consumption of
HVAC, lighting, water supplying, and equipment use. This energy consumption is totally represented
by fuel consumption and electricity consumption. If sustainable energy is used at the operational stage,
this part should be deducted. The formulas of carbon emissions at the operational stage are listed in
Equations (5) and (6).

Cope = Csy ×Y (5)

Csy = CCf × (Qf −Qf,re) + CCe × (Qe −Qe,re). (6)

In Equations (5) and (6), Csy represents the annual carbon emissions generated during the building
use phase; Y is the service life at the operational stage. CCf and CCe represent the carbon emission
coefficient of fuel and electricity, respectively; Qf, Qf,re, Qe, and Qe,re represent the amount of fuel
consumption, the reduction of fuel consumption, the amount of electricity consumption, and the
reduction of electricity consumption, respectively.

As for the demolition stage, many scholars have pointed out that carbon emissions of the
demolition stage account for about 1% of the BLCCE [14]. To facilitate calculation, the demolition stage
can be estimated to be equal to 10% of the construction stage [72,73]. The estimation formula at the
demolition stage can be seen in Equation (7).

Cdem = Ccon × 10% (7)
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3.4. Interpretation

The final step in the LCA is interpretation. This step produces conclusions, highlights
environmental issues, clarifies the results of the analysis, and provides recommendations [33,34]. In the
interpretation, four analysis modules are carried out on the carbon emissions of buildings, focusing on
the construction stage and the operational stage. Because the carbon emissions in the demolition stage
only account for around 1% of the BLCCE, it has limited contributions for its analysis. Therefore, this
study will not be considered for the demolition stage. The four analysis modules are as follows:

(1) Carbon emissions analysis of construction material at the construction stage. This module
analyzes the contribution of various material types for carbon emissions and their percentages of the
construction stage.

(2) Carbon emissions analysis of work types at the construction stage. This module analyzes the
building types for assessing their carbon emissions and their percentages of the construction stage.

(3) Composition analysis of carbon emissions at the operational stage. This module assesses the
annual carbon emissions from HVAC, lighting, water supplying, and equipment use in the operational
stage and the percentages of annual carbon emissions.

(4) Monthly analysis of carbon emissions at the operational stage. This module assesses the
amount of carbon emissions per month and its composition over a year.

4. Case Study

4.1. Background Information of the Hospital Building

The hospital is located in Chuzhou City, Anhui Province, China. Chuzhou has the typical
monsoon climate of a medium-latitude area with a hot summer and a cold winter [26], with a maximum
temperature of 38 °C in the summer and a minimum temperature of −7 °C in the winter. This hospital
is a public building with a reinforced concrete frame structure system. The gross floor area (GFA)
is 6367 m2, and the base area is 1703 m2. The four-storey building of 15.9 m has 102 beds, and it is
centrally heated by fuel energy in the winter. The construction stage, operational stage, and demolition
stage are estimated to occupy 2, 50, and 0.5 years, respectively. The appearance of the building is
shown in Figure 3.
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4.2. Calculation Result of Carbon Emissions

A BIM model in Revit (as shown in Figure 3) was constructed to obtain the quantity calculation
sheet from GTJ2018 (as shown in the supplementary materials, Part 2), which contained 13 work types
and 126 sub-item projects. In addition, the main material list was also obtained (as shown in Table 1).
Multiplied by the corresponding CEC, the amount of carbon emissions in the construction stage is
3166.78 tCO2-eq.
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Table 1. Main material and their consumption.

Material Name Unit Amount Material Name Unit Amount

C15 commercial concrete (no
pumping) m3 220.41 Colored glazed floor tile m2 217.43

C30 commercial concrete
(pumping) m3 1915.57 Floor tile 300 × 300 m2 399.29

C30 commercial concrete (no
pumping) m3 21.41 Polycrystalline anti-slip

floor tile 300 × 300 m2 1420.89

C20 commercial concrete (no
pumping) m3 317.68 Polycrystalline anti-slip

floor tile 600 × 600 m2 3341.29

C35 commercial concrete
(pumping) m3 52.59 Granite plate 10 cm m2 6.85

C40 commercial concrete
(pumping) m3 63.07 Granite plate 3 cm m2 5.28

Steel pipe t 3.93 Granite plate 4 cm m2 210.77
Steel bar (Φ10 or less) t 115.03 Granite plate (other size) m2 516.99

Steel bar (more thanΦ10) t 230.44 Petroleum asphalt kg 5684.45

Steel support kg 6500.76 SBS-modified asphalt
waterproofing roll m2 2481.37

Welding rod kg 2791.04 Water m3 2765.60

Structural Steel kg 70.60 Crushed stone (particle
size 40) t 279.77

Nails kg 2726.10 Crushed stone (other size) t 59.26
Expanded metal mesh (Steel

wire mesh) m2 4054.64 Light steel keel 600 × 600 m2 3316.32

Calcium silicate cement t 12.20 All-ceramic wall tile 300 ×
450 m2 2757.28

Portland cement t 542.61 All-ceramic wall tile 300 ×
600 m2 2133.20

Gypsum t 34.96 PVC-steel window m2 1373.96
Standard brick 240 × 115 × 53 100 blocks 174.17 Window-shades m2 386.59
Coal gangue standard brick

240 × 115 × 53 100 blocks 161.94 Class-A fire-proof door m2 9.66

Coal gangue solid brick 240 ×
115 × 53 100 blocks 23.56 Class-B fire-proof door m2 45.99

Cork brick 240 × 115 × 90 100 blocks 1679.73 Class-C fire-proof door m2 49.32
Coal gangue cork brick 240 ×

180 × 115 100 blocks 2096.15 Compound wood template m2 4285.90

According to the energy consumption analysis of Green Building Studio (as shown in the
supplementary materials, Part 2), the annual electricity consumption in the operational stage is
1,340,260 kWh, and the fuel consumption is 3,169,999 MJ (as shown in Table 2). The amount of
the carbon emissions generated by electricity consumption is 586 tCO2-eq/y, the carbon emissions
generated by fuel consumption total 158 tCO2-eq/y, and the reduction of roof solar energy to carbon
emissions is −12 tCO2-eq/y. The amount of total carbon emissions in the building operation stage is
732 tCO2-eq/y. Multiplied by the 50-year operational stage, the carbon emissions generated in the
operation stage are 36,600 tCO2-eq.

Table 2. Energy consumption in the operational stage.

Energy Consumption HVAC Lighting Water Suppling Equipment Use Total

Fuel consumption (MJ) 2,999,421 0 170,578 0 3,169,999
Electricity consumption (kWh) 570,736 270,864 0 498,660 1,340,260

The amount of the carbon emissions in the demolition stage is estimated at 10% of that in the
construction stage, and the result is 316.69 tCO2-eq. By summarizing these three stages, the amount of
BLCCE is 40083.56 tCO2-eq. After obtaining the carbon emissions of each stage, the percentage of each
stage in BLLCE and the annual average carbon emission of each working area CAt (kgCO2-eq/(m2

·y))
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are calculated, as shown in Table 3. A detailed calculation process can be found in the supplementary
materials and in [72].

Table 3. Calculation result of the BLCCE.

Stage Carbon Emissions
(tCO2-eq)

Percentage
(%)

CAt
(kgCO2-eq/(m2 y))

Construction stage 3166.87 7.90 248.69
Operational stage 36,600.00 91.31 114.97
Demolition stage 316.69 0.79 99.48

Total 40,083.56 100.00 119.91

4.3. Carbon Emissions Analysis of Construction Materials at the Construction Stage

The top 10 building materials that contribute the most carbon emissions are listed in Figure 4.
The cumulative amount of the carbon emissions generated by these 10 materials reaches 2043.2 tCO2-eq,
accounting for 65.28% of the total carbon emissions during the construction stage. It is found that
concrete, steel, and cement contribute the most to the carbon emissions in the construction stage,
reaching 848.1 tCO2-eq (26.78%), 799.3 tCO2-eq (25.24%), and 282.3 tCO2-eq (8.92%), respectively.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 19 
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Figure 4. Carbon emissions data of the top 10 construction materials at the construction stage.

The reason is not difficult to find, because the case building is a reinforced concrete structure,
consuming a high amount of concrete (2590.7 m3), steel (399,650.5 kg), and cement (524,755.1 kg).
In addition, their carbon emission coefficients are very high. For example, the carbon emission coefficient
of C20 concrete is 239.19 kgCO2-eq/m3, the carbon emission coefficient of C30 is 346.95 kgCO2-eq/m3,
the carbon emission coefficient of steel is 2.10 kgCO2-eq/kg, and the carbon emission coefficient of
cement is 0.54 kgCO2-eq/kg. Because of the higher consumption and the higher carbon emission
coefficient of these materials, the total amount of carbon emissions produced is large.

In addition to these three items, bricks, asphalt, glass, and other building materials also significantly
contribute to carbon emissions during the construction stage.

4.4. Carbon Emissions Analysis of Work Type at the Construction Stage

There are 13 work types in the quantity calculation sheet, and their carbon emissions are shown
in Figure 5. Of the 13 work types, the top 5 that generate the most carbon emissions are reinforced
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concrete engineering, metope adornment, brick engineering, floor decoration, and waterproof roofing.
The amount of the carbon emissions generated by these five items is 1572.1 tCO2-eq, 480.7 tCO2-eq,
324.9 tCO2-eq, 197.6 tCO2-eq, and 168.5 tCO2-eq, respectively, accounting for 49.64, 15.18, 10.26, 6.24,
and 5.32% of the carbon emissions during the construction stage.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 19 
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Figure 5. Carbon emissions data of 13 work types at the construction stage.

It was found that the maximum proportion by reinforced concrete engineering is 49.64%, which
means that almost half of the carbon emissions in the construction stage is made up of reinforced
concrete. As the building consumes a large amount of concrete and steel, it has thus the greatest
sources of carbon emissions for this project.

Brick engineering requires high amounts of bricks and cement, and waterproof roofing requires the
styrene–butadiene–styrene (SBS) asphalt membrane. Brick, cement, and the SBS asphalt membrane are
the main materials producing carbon emissions, so these two work types produce large carbon emissions.

In addition, it is necessary to pay special attention to metope adornment and floor decoration.
They also produce a large amount of carbon emissions, which is related to the building type of the
hospital. Since the walls and floors of the hospital buildings were decorated with stone and ceramic
tiles, the production and construction of these materials will generate carbon emissions.

4.5. Composition Analysis of Carbon Emissions at the Operational Stage

The carbon emissions in the operational stage consist of HVAC (heating, initiation, and air
conditioning), lighting, water supplying, and equipment use, and the amount of the annual carbon
emissions and its percentages are as follows: 399.0 tCO2-eq (53.63%), 118.4 tCO2-eq (15.92%), 8.5 tCO2-eq
(1.14%), and 218.0 tCO2-eq (29.3%), as displayed in Figure 6. Among them, HVAC, which accounts for
the largest proportion during the operational stage, produces 149.5 tCO2-eq from fuel consumption
and 249.5 tCO2-eq from electricity.
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4.6. Monthly Analysis of Carbon Emissions at the Operational Stage

The carbon emissions generated each month and their composition were analyzed (as shown in
Figure 7). The carbon emissions produced in the winter (December, January, and February) and the
summer (June, July, and August) is 240.9 tCO2-eq and 193.4 tCO2-eq, respectively, which is significantly
increased from 159.3 tCO2-eq in the spring (March, April, and May) and 150.5 tCO2-eq in the autumn
(September, October, and November).
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Figure 7. Monthly data of carbon emissions at the operational stage.

This is not difficult to explain, because Anhui Province is in a typical region with a hot summer
and a cold winter, where the highest temperature in the summer is expected to be 38 °C, and the lowest
temperature in the winter is expected to be −7 °C. In order to maintain a suitable temperature inside
the building in the winter and the summer, a large amount of energy will be consumed, which will
generate a large amount of carbon emissions.

Fuel carbon emissions mainly come from HVAC (Figure 6), and the case building is centrally
heated by fuel energy in the winter, so the amount of carbon emissions produced by fuel in the winter
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is relatively high (Figure 7). In the summer, air conditioning electricity is used for lowering the indoor
temperature, so the electricity produces additional carbon emissions in the summer.

5. Discussion

Combined with BIM and LCA, this study proposes an analytical framework for a BLCCE.
The calculation method in this framework is fast and efficient, and the four modules in interpretation
can be used to analyze a building’s carbon emissions in the construction stage and the operational stage.
With the promotion of BIM [74] and LCA [4], this framework will be widely adopted in the future.

5.1. Discussion of Methods

The integration of BIM during the design stage makes design decisions more reasonable, because
the quality, speed, and availability of design data have been improved [75]. The integration of
BIM-LCA also help designers and engineers to obtain quick and reliable results about the environmental
performance of buildings, since the early stages of design [16]. The framework proposed in this
paper can simulate the results of the BLCCE at early stages of the building design, which can be used
to evaluate the performance of buildings and select solutions that can minimize carbon emissions.
In addition, wastage due to inefficiencies or mistakes in the project delivery process can also be
reduced [75], which helps reduce carbon emissions.

Eleftheriadis et al. have asked this question: “How can structural engineers and architects
collectively specify design solutions during the early design stages that optimize the life cycle
performance of the building in a cost-effective and practical manner?” [76]. This question corresponds
to an example in practice: designers can use materials with better insulation to reduce carbon emissions
during the operational phase, which will generate more carbon emissions during the construction
phase [7]. Designers can use this method to compare the BLCCE before and after adopting low-carbon
measures, so as to quantify the reduction of BLCCE.

In addition, echoing the research on different structure schemes [14,59–63], this method can also
be used to evaluate the difference in carbon emissions between different building structure schemes.
When other factors are similar, the structural designer can choose a reasonable structure scheme based
on the reduction of carbon emissions.

This framework, nevertheless, also has some shortcomings in the industry context of China
currently, including the following:

(1) In China, CAD plane drawings are often utilized as the basis of engineering [74]. Secondary
modeling is required from CAD drawings to the BIM model, which is time-consuming.

(2) Interoperability in BIM is a key aspect [16]. However, there is component and information loss
in the transition of Autodesk Revit to Glondon GTJ2018 [72]. The compatibility between different BIM
software has not been completely solved [7], which affects the results of quantities calculation sheet, so
it needs to be checked, corrected, and supplied.

(3) The database of carbon emission coefficients has an impact on the calculation results [21,56].
Due to the lack of carbon emission equivalent coefficients of some materials in China, this study adopts
the carbon emission coefficients that only consider CO2 for certain material types, which affects the
calculation results in this study. However, this problem can be solved with academic research on
China’s carbon dioxide equivalent coefficients.

5.2. Discussions of the Case Study

In the carbon emissions during the construction stage, the contribution of concrete and steel to
carbon emissions is substantial, which is consistent with the research of many scholars [4,7]. Reinforced
concrete engineering accounts for the highest proportion among all work types, which is consistent
with Lee et al.’s research [9]. However, the ratio of reinforced concrete work (49.64%) is lower than
that of 71.21% in Lee’s study [9]. The reason may be that the decoration work in this case is relatively
complex and generates additional carbon emissions.
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The proportion of carbon emissions from decoration work (mainly metope adornment and floor
decoration) is diverse for different building types. In both the hospital in this case study and the villa in
a case study of Yang et al. [4], the proportion of carbon emissions from the decoration is relatively large
because they adopted complex or high-grade decorations. However, the amount of carbon emissions
generated by the decoration of ordinary houses is relatively low [20,72].

Compared with some studies in other countries [46,77], the percentage of the carbon emissions in
the operational stage is between 85.0% and 99.6%, which is similar to the result of carbon emissions in this
hospital case (91.31%). Compared with other studies in China, the ratio of villas [4], residences [14,20,21],
and office buildings [14,15] in the operational stage are 68.92%, 63.26%~85.16%, and 84.91%~85.43%
respectively. The carbon emissions proportion of the hospital building is higher than that of other
building types during the operational stage. The possible reasons for this can be explained as follows:

(1) The case building is located in Anhui Province, which has a cold winter and a hot
summer [26]. Compared with other areas, summer cooling and winter heating in this area require
higher energy consumption.

(2) The daily operation time of hospitals is longer than that of other buildings. For example, the
emergency department is open 24 h per day. The operation time will lead to an increase in carbon
emissions caused by HVAC, lighting, and equipment use.

(3) The hospital building serves the population of the whole city, and the number of daily clients
and staffs is higher than that of villas, residences, and office buildings. In addition, the patient’s
comfort demand is high, which further increases the burden of energy consumption.

6. Conclusions

In past research, the overall analysis framework of a building’s life cycle carbon emissions (BLCCE)
was often neglected. In addition, research on the carbon emissions of hospital buildings in areas with a
cold winter and a hot summer is lacking. Moreover, carbon emissions coefficients of buildings have
been insufficient, and characterization is lacking.

The main contributions of this study are as follows: (1) An analysis framework based on building
information modeling (BIM) and life cycle assessment (LCA) is proposed to analyze BLCCE. (2) The
hospital case study provides useful references for similar buildings in analogous areas and provides
additional insights on reducing the BLCCE in the future. (3) This paper gives a comprehensive review
of the carbon emission coefficients (CECs) in China’s construction industry and provides 180 CECs
that lend some help towards future research on carbon emissions.

The result of this case study showed that the amount of the carbon emissions generated in
the construction, operation, and demolition stages of the hospital are 3166.8 tCO2-eq (7.90%),
36,600.0 tCO2-eq (91.31%), and 316.7 tCO2-eq (0.79%), respectively. Due to the large amount of
carbon emissions generated from steel and concrete, the reinforced concrete engineering contributes
the most carbon emissions during the construction stage. In the operational stage, HVAC produces the
largest amount of carbon emissions, accounting for 53.63%. The reason is related to a geographical
location that has a hot summer and a cold winter, as well as the characteristics of the hospital building.

For future research, the following directions deserve scholarly attention:
(1) The compatibility between BIM and BIM-based software has not been completely solved,

which has to be improved in the future.
(2) Although 180 CECs of China’s building industry have been collected, further work is needed

to expand the CEC database.
(3) Specific low-carbon measures should be tested to quantify their reduction of BLCCE.

For example, how much of a reduction in BLCCE can be achieved by using wood, natural insulation
materials, and so on?

(4) In China, owners have little interest in reducing the carbon emissions of their buildings. How
can owners’ willingness to reduce carbon emissions increase?
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