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Abstract: Urban impervious surface is considered one of main factors affecting urban heat island
and urban waterlogging. It is commonly extracted utilizing the original linear spectral mixture
analysis (LSMA) model. However, due to the deficiencies of this method, many improvements and
modifications have been proposed. In this paper, a modified dynamic endmember linear spectral
mixture analysis (DELSMA) model was introduced and tested in Zhengzhou, China, using different
images of Landsat series satellites. The accuracy and performance of DELSMA model was evaluated
in terms of RMSE, r and R2. Results show that (1) the DELSMA model performed equally well
for Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) images,
and obtained better accuracy by using Landsat-8 Operational Land Imager (OLI) than Landsat
TM/ETM+; (2) the DELSMA model achieved a better performance than the original LSMA model
consistently, using images of Landsat from different sensors. Based exclusively on the overall accuracy
reports, the DELSMA model proved to be a more efficient method for extracting impervious surface.
Our study will provide a reliable method of impervious surface estimation for the urban planner
and management in monitoring urban expansion, revealing urban heat island, and estimating urban
surface runoff, using time-series Landsat imagery.

Keywords: urban impervious surface; dynamic endmember linear spectral mixture analysis;
performance evaluation; Landsat imagery

1. Introduction

Urban impervious surface refers to the land cover surface which are made up of various
impervious materials to prevent moisture seepage, mainly including roads, parking lots, roofs and
squares etc. [1,2]. Over the past few decades, China has experienced unprecedented rapid urbanization,
and the urban land use structure has been influenced and altered significantly. Impervious surfaces
have become one of the most important type of land use/land cover changes that occur during the
urbanization process [3]. However, the rapid increase in the impervious surface area leads to an
increased risk of serious environmental problems, including urban heat island effects [4–7], rainstorm
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waterlogging [8,9], and water quality deterioration [10–12]. The spatial distribution of impervious
surface is not only an important characteristic of the urbanization process, but also a critical indicator
for urban ecological environment quality evaluation [13–15]. Thus, accurate time-series impervious
surface extraction and mapping at higher precision are relevant to the research of urban expansion and
sustainable development.

Remote sensing technology has become an important method, to effectively extract impervious
surface due to its fast, large coverage, and reproducible ground observation advantage [16]. For the
study of time-series impervious surface remote sensing, Landsat imagery is still the main data source
because of its long time span, moderate resolution, and easy access [17–20]. However, because of the
heterogeneity of urban land covers and the limitation in spatial resolution, the presence of mixed pixels
has been recognized as a major problem in the analysis of medium spatial resolution images [21,22].
The spectral mixture analysis method has been used to decompose the proportion of endmembers of
various features in each pixel, which can significantly improve the interpretation accuracy of medium
resolution remote sensing images [23]. In spectral mixture analysis, the linear spectral mixture analysis
(LSMA) is the most widely used method [24–27]. This method is based on the vegetation-impervious
surface-soil (V-I-S) conceptual model, combined with the fully constrained least squares (FCLS) method
for mixed pixel decomposition. Because of the LSMA model has a good theoretical basis and algorithm
framework, and the remote sensing commercial software provides a practical tool to realize linear
spectral decomposition, LSMA has become a widely used impervious surface remote sensing inversion
method [16].

While the LSMA method is easy to use in estimating impervious surface, several problems still
exist [21]. Firstly, every pixel in the image is unmixed into a fix set of endmembers, where some pixels
may only contain a subset of endmembers. This could cause “excess” of endmember unmixing and
lower the accuracy of impervious surface estimation, adopting the same number of endmembers for
the entire image. Secondly, due to the interference of “heterogenous spectra of homologous objects”
or “homologous spectra of heterogenous objects”, especially the similarity in spectral properties
between impervious surface and bare soil, impervious surface tends to be overestimated in the areas
with small amounts of impervious surface, but is underestimated in the areas with large amounts of
impervious surface. To address those problems of the LSMA model, some new techniques based on
this model have been proposed, including spatially adaptive spectral mixture analysis (SASMA) [28],
prior-knowledge-based spectral mixture analysis (PKSMA) [29], segmentation-based and rule-based
spectral mixture analysis (S-R-LSMA) [30], stratified spectral mixture analysis in spectral domain
(SP-SSMA) [21], and dynamic endmember linear spectral mixture analysis (DELSMA) [31]. The pros
and cons of these improved models are shown in Table 1. The performance of the above five improved
models is better than the original LSMA model because they introduced spatial information to
clip the whole image into sub-regions in the spectral mixture analysis. The shortcomings of the
SASMA, PKSMA, and S-R-LSMA models are that pure endmembers are extracted from the entire
image scene rather than each sub-region, and the with-class spectral variability is not considered.
The SP-SSMA model selected endmembers from each sub-region independently to cope with the
within class variability. Even though SP-SSMA markedly improved the accuracy of impervious
surface estimation, confusion between impervious surface and soil in suburban areas is still a major
concern. The DELSMA model improved the SP-SSMA model by introducing a simpler and more
effective biophysical composition index (BCI) as the characteristic component of image stratification,
maximizing distinction between impervious surface and bare soil [32]. In addition, the DELSMA
model only contains two layers of bright and dark layers, which can reduce image fragmentation and
the difficulty of selecting pure endmember. Considering the accuracy of the model, the simplicity of
the calculation and the achievability of the operation, the application prospect of the DELSMA model
is better than other models.
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Table 1. Main features of the various improved models. SASMA, spatially adaptive spectral mixture
analysis; PKSMA, prior-knowledge-based spectral mixture analysis; S-R-LSMA, segmentation-based
and rule-based spectral mixture analysis; SP-SSMA, stratified spectral mixture analysis in spectral
domain; DELSMA, dynamic endmember linear spectral mixture analysis.

Applicability Endmember Without-Class
Spectral Variability

Within-Class
Spectral VariabilityModel TM ETM+ OLI The Entire Image Sub-region

SASMA Unknow
√

Unknow
√

×
√

×

PKSMA
√

Unknow Unknow
√

×
√

×

S-R-LSMA
√

Unknow Unknow
√

×
√

×

SP-SSMA
√

Unknow Unknow ×
√ √ √

DELSMA Unknow Unknow
√

×
√ √ √

Note:
√

indicates the type and method of remote sensing image used by the model, × indicates the method not
adopted by the model.

As one of the nine national central cities in China, Zhengzhou has experienced rapid urban growth.
The urban population of Zhengzhou City increased from 1.25 to 5.23 million and the urbanization rate
increased from 32.4% in 1978 to 73.4% in 2018. Population growth and socio-economic development
have resulted in a significant increase in the amount of impervious surface areas. Previous studies
have been conducted to analyze the spatio-temporal variations of urban growth and urban heat
island over a long-time period, using the impervious surface estimated with remote sensing data
in Zhengzhou [33–35]. However, the impervious surface are extracted by using the traditional
classification method based on pixels, and the accuracy of impervious surface estimation needs to be
improved. The DELSMA model is a new classification method based on sub-pixels, and can extract
more accurate impervious surface distribution. The DELSMA model has been reported to perform
better than the original LSMA model for Landsat-8 Operational Land Imager (OLI) images in the
literature. Nonetheless, in consequence of the OLI sensor’s band number, the band spectral range
and image radiation resolution are adjusted compared to Landsat-5 Thematic Mapper (TM) and
Landsat-7 Enhanced Thematic Mapper (ETM+) sensors [36,37], and the applicability of the model for
the TM/ETM+ images require experimental verification. In addition, the differences in the application
performance of the DELSMA model for three different sensor images need to be further explored.
This study provides a theoretical reference for the application of DELSMA in extracting impervious
surfaces to monitor urban expansion and assess eco-environmental quality based on the DELSMA
model, using time-series Landsat imagery.

In this study, we selected Zhengzhou as the study site and evaluate and compare the performance
of the DELSMA model against the original LSMA model for extracting the impervious surface, using
TM, ETM+, and OLI images. Specific objectives are as follows: (1) to verify the applicability of the
DELSMA model to the images acquired by TM and ETM+ sensors; (2) to extract the impervious surface
with the DELSMA and LSMA models, using Landsat series images respectively; and (3) to compare
the performance of DELSMA model against the original LSMA model for TM, ETM+, and OLI images.

2. Materials and Methods

2.1. Research Scheme

First, the applicability of DELSMA model for TM and ETM+ images was verified through
contrastive analysis. Then, the impervious surfaces of different periods were estimated based on the
DELSMA and LSMA model respectively, using TM, ETM+, and OLI images. The actual impervious
surfaces as a reference were extracted using the corresponding Google Earth images. Finally, root mean
square error (RMSE), correlation coefficient (r) and goodness of fit (R2) were adopted to assess the
accuracy of impervious surface between the estimated and actual impervious surface. Figure 1
illustrates the major steps of the framework.
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Figure 1. Flowchart depicting framework of the study.

2.2. Data

The Landsat series of satellites is the earliest land resource satellite. The latest generation of
Landsat 8 satellites not only maintains the basic features of Landsat 7 and Landsat 5, but also has
several new characteristics. These include adding two spectral bands (deep blue and cirrus bands),
refining spectral range of some bands of Landsat 7 and Landsat 5, splitting one thermal band to two
bands, and improving radiometric resolution from 8 bits to 16 bits. The study found that the basic
parameters of the OLI sensor were adjusted compared to TM and ETM+ sensors, and the image quality
was improved [36]. The parameter comparison is shown in Table 2.

In this study, three images from TM, ETM+, and OLI sensors, were selected to extract impervious
surface and evaluate the performance of the DELSMA model. All the remote sensing data of
Zhengzhou were freely downloaded from the United States Geological Survey website (USGS,
https://earthexplorer.usgs.gov/). Preprocessing operations include geometric correction, radiation
calibration, and atmospheric correction, to eliminate the influence of atmospheric and illumination
factors on terrain reflection and obtain terrain reflectivity. The vector data is from the vector map
of Zhengzhou administrative boundary. In order to evaluate the accuracy of impervious surface
estimation, the corresponding Google Earth images, which were generated near the acquisition date of
TM, ETM+, and OLI images respectively, were used as the ground reference. The details of data used
in the present work are shown in Table 3.

https://earthexplorer.usgs.gov/


Sustainability 2019, 11, 6227 5 of 18

Table 2. Comparison of spectral bands between Landsat 8 and Landsat 7.

Landsat8

Sensor Band No. Band Wavelength Spatial Resolution/m Radiometric
Resolution/bit

OLI

1 Dark-Blue 0.43–0.45 30 12
2 Blue 0.45–0.51 30 12
3 Green 0.53–0.59 30 12
4 Red 0.64–0.67 30 12
5 Near-Infrared 0.85–0.88 30 12
6 SWIR 1 1.57–1.65 30 12
7 SWIR 2 2.11–2.29 30 12
8 Panchromatic 0.50–0.68 15 12
9 Cirrus 1.36–1.38 30 12

TIRS
10 TIRS 1 10.6–11.19
11 TIRS 2 11.5–12.51

Landsat5/7

Sensor Band No. Band Wavelength Spatial Resolution/m Radiometric
Resolution/bit

TM/ETM+

1 Blue 0.45–0.52 30 8
2 Green 0.52–0.60 30 8
3 Red 0.63–0.69 30 8
4 Near-Infrared 0.77–0.90 30 8
5 Near-Infrared 1.55–1.75 30 8
7 Mid-Infrared 2.08–2.35 30 8

8 Panchromatic
(Only Landsat7) 0.52–0.90 15 8

6 Thermal 10.40–12.50 Landsat7(60)
Landsat5(120) 8

Table 3. Data used in the present work.

S.no Date Sensor Path/Row

1 2006/6/17 Landsat 5 TM 124/36
2 2011/7/25 Landsat 7 ETM+ 124/36
3 2017/4/28 Landsat 8 OLI 124/36

2.3. Methods

2.3.1. DELSMA Model

The DELSMA model consists of image stratification, endmember selection, and linear spectral
mixture analysis (LSMA) [31]. These steps are detailed below.

Image stratification technology introduces the idea of feature extraction into subpixel unmixing.
First, the original BCI is calculated to distinguish impervious surface, vegetation, and soil preliminarily,
using Equation (1). In BCI, impervious surface is positively correlated with its value and is greater
than zero, vegetation is negatively correlated with its value and less than zero, and the gray value of
soil is close to zero [38,39]. Then, a transformation was utilized to improve the separability between
different land cover types [40]. The grayscale image of BCI was enhanced by adopting Equations (2)
and (3). Finally, according to the threshold calculation method of OTSU [41], the enhanced intensity
map was used to stratify the whole image into bright and dark fraction images based on Equation (4).

BCI =
(H + L)/2−V
(H + L)/2 + V

, (1)
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where H is the normalized TC1 component, V is the normalized TC2 component and L is the normalized
TC3 component. TCi(i = 1, 2, 3) is the first three components of the tasseled cap transformation (TCT).

BCIenh = ρ
√

BCIori , (2)

ρ =
1
π

arc tan[λπ(BCIori − θ)] + 0.5 , (3)

here BCIori is the normalized original feature component with a value range of [0–1]; BCIenh is the
enhanced feature component with a value range of [0–1]; ρ is the conversion coefficient of image
transformation with a value range of [0–1]; λ is the sensitivity factor with a value of 20; θ is the average
value of the target terrain to be enhanced with the normalized original feature component with a value
of 0.5.

g = Max
0<T<1

σT
2 = ω0(µ0 − µ)

2 +ω1(µ1 − µ)
2 , (4)

where ω0 =
∑T

i=1 pi, ω1 =
∑m

i=T+1 pi, µ0 =
∑T

i=1 ipi/ω0, µ1 =
∑m

i=T+1 ipi/ω1, µ = ω0µ0 + ω1µ1.
Assuming T changed from 0 to 1, traversal algorithm is used to find the corresponding value σT

2 of
each T, and the T corresponding to the largest inter-class variance g is the optimal threshold obtained
by the OTSU algorithm.

Endmember extraction is critical [42–44]. In this study, endmembers were selected in each layer
independently, rather than from the entire image, to achieve more adaptive spectral characters. First,
the image is transformed by minimum noise fraction (MNF), and all the data information of the
image is concentrated in the first few components, so as to reduce the dimensionality of the data and
separate the noise so as to eliminate the correlation between bands [23,45]. Then, calculating the pixel
purity index (PPI) from the MNF component image. The PPI is the most representative interactive
endmember extraction algorithm and is widely used due to its publicity and availability [46]. Finally,
the endmembers of different land cover types are selected from these pure pixels by comparing with
the corresponding Google Earth images.

The LSMA method assumes that the spectral brightness values of mixed pixels are a linear
combination of the spectral brightness values of the basic components of the mixed pixels, which are
also called endmembers. By calculating the composition ratio of each endmember in the mixed pixel,
the spectrum of the mixed pixels can be unmixed into a linear combination of various endmember
spectra [23,24]. The LSMA with full abundance constraints can be expressed as:

Rb =
N∑

i=1

fiRi,b + eb , (5)

where, Rb is a mixed pixel’s reflectance at band b; Ri,b is the reflectance of endmember i at band b;
N is the number of endmembers; fi is the fraction of endmember i; and eb is the standard residual.
Equation (5) is solved by the least square method, and the estimated fractions of the endmembers are
commonly constrained using the following equation:

N∑
i=1

fi = 1 and fi ≥ 0 , (6)

2.3.2. Accuracy Assessment

In order to evaluate and compare the performance of impervious surface estimation of DELSMA,
comparative analysis is performed with original LSMA, using time-series Landsat imagery. In this
study, a random sampling method was applied. First, 100 samples were chosen randomly and
evenly in the image. A sampling unit of 3 × 3 (90 m× 90 m) pixels was used to avoid the effects of
geometric errors of Landsat and Google Earth images. Then, the estimated value was counted from
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the average value of the impervious surface in a sampling unit. For every sampled 3 × 3 Landsat
pixel, the corresponding Google Earth image was digitized and the true value was calculated from
the digitized map. Finally, the 2D scatter plots was drawn based on estimated and the real value,
and the methods of residual analysis and linear regression analysis were utilized. Three quantitative
criteria were adopted to assess the accuracy of impervious surface abundance modeled by DELSMA
and LSMA. These criteria are widely used in performance evaluation of impervious surface extraction
models and are expressed as follows [23,31,47,48]:

RMSE =

√
1
N

∑N

i=1
(yi − xi)

2 , (7)

r =
∑N

i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2

·
∑N

i=1(yi − y)2
, (8)

R2 =

∑N
i=1(yi − x)2∑N
i=1(xi − x)2 , (9)

where xi is the true impervious surface proportion derived from Google Earth of pixel i; yi is the
estimated impervious surface fraction of sample i using models; x is the mean true value of the samples;
y is the mean estimation value of the samples; and N is the mean true value of the samples.

2.4. Study Area

Zhengzhou is the capital of Henan Province, and located in the north of central Henan Province,
in China. It is in the transition zone between the Funiu mountains and the Huanghuai plains and
belongs to a typical inland plain city. By the end of 2018, Zhengzhou city included six districts,
five county-level cities and one county. The total area of the city is 7446 km2, with a total population
of 10.14 million and gross domestic product (GDP) of 14.41 billion USD. Note that the districts of
Erqi, Zhongyuan, Jinshui, Guancheng, and Huiji compose the central urban area according to the
Zhengzhou City Master Plan (2010–2020). So the five administrative districts of Zhengzhou were
selected for this study as they are more urbanized than other districts (Figure 2). The study area is
located between 113◦28′–113◦52′ E longitudes and 34◦36′–34◦58′N latitudes, the area is 1016 km2 and
the population is 5.23 million. The terrain trends toward higher terrain in the southwest and lower
terrain in the northeast, and shows a ladder-like decline. This city is part of the north temperate zone
continental monsoon climate and the average temperature is approximately 14.4 °C, with the annual
average precipitation is 640.9 mm, and the average annual sunshine time is 2292 h. Zhengzhou City is
the only “double cross” center in the national railway network, and one of the nine national central
cities in China. It has become an important node city for the “One Belt, One Road” development
strategy. Due to its special geographical location and the support of national policies, Zhengzhou has
experienced unprecedented rapid urbanization in the past 40 years. The built-up area increased with
an annual growth rate of 24.46% between 1978 and 2018, and the impervious surface area increased
significantly. Therefore, it is important for accurate extraction of impervious surfaces of Zhengzhou in
different periods, to better reveal its urbanization process and guide its sustainable development.
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3. Results

3.1. Model Verification of DELSMA

Image stratification technology is the key to distinguish the DELSMA model from the original
LSMA model. The applicability of the LSMA model for Landsat series satellites and the applicability
of the DELSMA model for OLI images have been verified and reported. Therefore, this study mainly
verified the applicability of image stratification technology for TM and ETM+ images.

3.1.1. BCI Enhancement Result

The original BCI and enhanced BCI gray scale images were derived through applying
Equations (1)–(3), and the results of TM and ETM+ images were shown in Figures 3 and 4. As illustrated,
pixels with white and bright gray tones are associated with impervious surfaces, light and moderate
gray tones are assigned to bare soil and mixed lands, and dark gray and black tones are assigned
to vegetation.

Figure 3 shows the result of the transformation based on a TM image. Figure 3a1,b1 show an
original BCI gray scale image and its histogram, respectively. Figure 3a2,b2 show the enhanced
result as defined by Equations (2) and (3), and the histogram of the enhanced BCI, respectively.
Comparing Figure 3a1,a2, it is clear that the luminance levels of the lower intensity regions are
effectively compressed, while simultaneously, the luminance levels of the higher intensity regions
are promoted. The difference between Figure 3b1,b2 clearly reveals this positive effect. After the
transformation, there is an obvious valley in the histogram between the lower and higher intensity
parts, and this change effectively improves the separability of the impervious surface and background
information in CBI. Figure 4 shows the result of the transformation based on ETM+ image. The result
of Figure 4 is similar to that Figure 3, as it can be seen that the higher intensity regions representing
the impervious surface is improved, and the lower intensity regions representing the vegetation
is suppressed.



Sustainability 2019, 11, 6227 9 of 18

Sustainability 2019, 11, x FOR PEER REVIEW 8 of 17 

 

Figure 2. Location of the study area. 

3. Results 

3.1. Model Verification of DELSMA 

Image stratification technology is the key to distinguish the DELSMA model from the original 
LSMA model. The applicability of the LSMA model for Landsat series satellites and the applicability 
of the DELSMA model for OLI images have been verified and reported. Therefore, this study mainly 
verified the applicability of image stratification technology for TM and ETM+ images. 

3.1.1. BCI Enhancement Result 

The original BCI and enhanced BCI gray scale images were derived through applying Equations 
(1)–(3), and the results of TM and ETM+ images were shown in Figures 3 and 4. As illustrated, pixels 
with white and bright gray tones are associated with impervious surfaces, light and moderate gray 
tones are assigned to bare soil and mixed lands, and dark gray and black tones are assigned to 
vegetation. 

 
Figure 3. The transformation for characteristic index enhancement in Landsat TM: (a1,b1) are the
original BCI image and its corresponding histogram image; (a2,b2) are the enhanced BCI image and its
corresponding histogram image.

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 17 

Figure 3. The transformation for characteristic index enhancement in Landsat TM: (a1), (b1) are the 
original BCI image and its corresponding histogram image; (a2), (b2) are the enhanced BCI image and 
its corresponding histogram image. 

 

Figure 4. The transformation for characteristic index enhancement in Landsat ETM+: (c1,d1) are the 
original BCI image and its corresponding histogram image; (c2,d2) are the enhanced BCI image and 
its corresponding histogram image. 

Figure 3 shows the result of the transformation based on a TM image. Figure 3a1,b1 show an 
original BCI gray scale image and its histogram, respectively. Figure 3a2,b2 show the enhanced result 
as defined by Equations (2) and (3), and the histogram of the enhanced BCI, respectively. Comparing 
Figure 3a1,3a2, it is clear that the luminance levels of the lower intensity regions are effectively 
compressed, while simultaneously, the luminance levels of the higher intensity regions are promoted. 
The difference between Figure 3b1,b2 clearly reveals this positive effect. After the transformation, 
there is an obvious valley in the histogram between the lower and higher intensity parts, and this 
change effectively improves the separability of the impervious surface and background information 
in CBI. Figure 4 shows the result of the transformation based on ETM+ image. The result of Figure 4 
is similar to that Figure 3, as it can be seen that the higher intensity regions representing the 
impervious surface is improved, and the lower intensity regions representing the vegetation is 
suppressed. 

The above analysis indicate that the feature component extraction and enhancement technology 
has achieved a good application effect for TM and ETM+ images. 

3.1.2. Stratification Result 

The enhanced BCI was taken to construct the sub-regions for linear spectral mixture analysis. In 
this study, the threshold for stratification was calculated by Equation (4). The results show that the 
optimal threshold for the TM image is 0.4510, the ETM + image is 0.4706, and the OLI image is 0.4549. 
The stratification results are shown in Figure 5. 

Figure 4. The transformation for characteristic index enhancement in Landsat ETM+: (c1,d1) are the
original BCI image and its corresponding histogram image; (c2,d2) are the enhanced BCI image and its
corresponding histogram image.



Sustainability 2019, 11, 6227 10 of 18

The above analysis indicate that the feature component extraction and enhancement technology
has achieved a good application effect for TM and ETM+ images.

3.1.2. Stratification Result

The enhanced BCI was taken to construct the sub-regions for linear spectral mixture analysis.
In this study, the threshold for stratification was calculated by Equation (4). The results show that the
optimal threshold for the TM image is 0.4510, the ETM + image is 0.4706, and the OLI image is 0.4549.
The stratification results are shown in Figure 5.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 17 

 
Figure 5. The stratification result: (a,c,e) are bright fraction images of TM (RGB: 5,2,1), ETM+ (RGB: 
5,2,1),and OLI (RGB:6,3,2); (b,d,f) are dark fraction images of TM (RGB: 7,4,2),ETM+ (RGB: 7,4,2), 
and OLI (RGB: 7,5,3). 

It can be seen that the bright fraction image is mainly located in the central urban area and 
industrial areas. The main types of ground features are high and low albedos, such as squares, roads, 
parking lots, roofs, sand and gravel in construction sites and sand in the Yellow River. Dark fraction 
image is mainly located in suburban and rural residential areas. The main types of land features are 
vegetation, non-irrigated lands and some low albedo rural residential areas. 

In order to further quantitatively evaluate the image stratification effect, which means there 
should be no vegetation in the bright fraction image and no high albedo terrains in the dark fraction 
image. Using Google Earth image as the control group, 100 sample points were randomly selected 
from the bright and dark fraction images to verify the stratification accuracy. Accuracy verification 
results show that the sample accuracy of bright and dark fraction images is above 95%, which meets 
the needs for the further research. 

The results of qualitative and quantitative analysis show that the image stratification technique 
achieves high accuracy for TM and ETM+ images. Then, the applicability of extracting impervious 
surface based on the DELSMA model has been verified, using TM and ETM+ images. 

3.2. Impervious Surface Mapping 

According to the DELSMA, we adopted different endmember sets for impervious surface 
mapping in each layer, spectral unmixing was performed. The high albedo, low albedo, and soil (H-
L-S) endmember set was used to map impervious surface in bright fraction image, whereas the low 
albedo, soil, and vegetation (L-S-V) endmember set was used to map impervious surface in dark 

Figure 5. The stratification result: (a,c,e) are bright fraction images of TM (RGB: 5,2,1), ETM+ (RGB:
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It can be seen that the bright fraction image is mainly located in the central urban area and
industrial areas. The main types of ground features are high and low albedos, such as squares, roads,
parking lots, roofs, sand and gravel in construction sites and sand in the Yellow River. Dark fraction
image is mainly located in suburban and rural residential areas. The main types of land features are
vegetation, non-irrigated lands and some low albedo rural residential areas.

In order to further quantitatively evaluate the image stratification effect, which means there should
be no vegetation in the bright fraction image and no high albedo terrains in the dark fraction image.
Using Google Earth image as the control group, 100 sample points were randomly selected from the
bright and dark fraction images to verify the stratification accuracy. Accuracy verification results show
that the sample accuracy of bright and dark fraction images is above 95%, which meets the needs for
the further research.

The results of qualitative and quantitative analysis show that the image stratification technique
achieves high accuracy for TM and ETM+ images. Then, the applicability of extracting impervious
surface based on the DELSMA model has been verified, using TM and ETM+ images.

3.2. Impervious Surface Mapping

According to the DELSMA, we adopted different endmember sets for impervious surface mapping
in each layer, spectral unmixing was performed. The high albedo, low albedo, and soil (H-L-S)
endmember set was used to map impervious surface in bright fraction image, whereas the low albedo,
soil, and vegetation (L-S-V) endmember set was used to map impervious surface in dark fraction
image. FLCS were used in both layers for mixed pixel unmixing. By summing the abundances of high
and low albedos, the impervious surface fractions in bright and dark areas were estimated. The final
impervious surface fraction map was prepared by mosaicing the impervious surface fractions in bright
and dark areas. In addition, according to the LSMA, the high albedo, low albedo, soil, and vegetation
(H-L-S-V) endmember set was used to map impervious surface over entire image. The final impervious
surface fraction maps from TM, ETM+, and OLI images based on DELSMA and LSMA were shown
in Figure 6.

As illustrated in Figure 6a,c,e the main elements of the impervious surface detected in the study
area include compact urban areas, small rural residential land, and the main road network. The images
illustrate that the spatial distribution of impervious surface matches well with their actual distribution,
although, some bare soils in rural areas are confused with impervious surface, and could be a primary
error source. As illustrated in Figure 6b,d,f, the confusion between impervious water surface and bare
soil is relatively serious, and the overall effect of the image is light and moderate gray tones. A closer
visual inspection of the classification maps of DELSMA and LSMA, reveals their main difference,
which is the underestimation of the bright areas and the overestimation of the dark areas by LSMA.

Visual inspection indicates that the DELSMA model performs well in extracting impervious
surface as higher impervious surface percentage can be found in commercial and residential
areas, and significantly lower impervious surface percentage can be found in agriculture, forestry,
and wetlands. In generally, the application of image stratification technology reduces the error of
impervious surface estimating of underestimation in urban area and overestimation in rural area,
and improves the accuracy of impervious surface estimation.
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3.3. Comparative Analysis

To demonstrate the effectiveness of the DELSMA, the original LSMA was employed for comparison.
After obtaining the estimation of impervious surface based on DELSMA and LSMA, the corresponding
Google Earth images were used as the ground reference. Then, statistics was computed on the
differences between the actual and the extracted impervious surface.

3.3.1. Residual Analysis

The sample error test results of impervious surface extracted by the two models are shown
in Figure 7.
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The test results show that for TM, ETM+, and OLI images, the error ranges of DELSMA model
are –0.2037 to 0.2216, –0.1931 to 0.1770, and –0.2133 to 0.1255, the RMSE are 0.0090, 0.0092 and 0.0063
respectively, and the absolute error is less than 0.1. The proportion of samples is more than 80%,
and almost no samples are more than 0.2. However, the error of LSMA model are –0.3361 to 0.3758,
–0.3057 to 0.2826, and –0.2906 to 0.2922, the RMSE are 0.0115, 0.0133, and 0.0074, and the absolute
error is less than 0.1, and the sample proportion is about 70%. Samples with an error of more than 0.2
are about 10%. Overall, for TM, ETM+, and OLI images, the error of impervious surface coverage
extracted by the DELSMA model is lower than the LSMA model. In addition, the error of the TM and
ETM+ image is similar and significantly higher than the error of OLI image.

3.3.2. Linear Regression Analysis

In order to further compare the quantitative relationship between the true impervious surface and
the estimated impervious surface extracted by the DELSMA and LSMA models, the estimated value
and true value are made into 2D scatter plots and linear regression analysis is carried out. The results
are shown in Figure 8.

In TM, ETM+, and OLI images, the 2D scatter plots between the estimated values and the real
values obtained by the two models are evenly distributed on both sides of the 1:1 central line, and the
r of the two models are close to or greater than 0.9, showing a high correlation. At the same time,
the fitting line between the estimated value and the real value obtained by the two models is close to
the 1:1 center line position, and the R2 of the linear fitting results are also above 0.8, which shows that
the two models have a strong linear relationship. The above two indicators show that both models can
achieve credible accuracy. However, the r and R2 obtained by the DELSMA model are larger than the
LSMA model, and the r and R2 of the TM and ETM+ images are similar and lower than the for the OLI
image, which means that the correlation between remote sensing estimation results of the DELSMA
model and real values is more significant, and the quality of inversion results is higher, which is more
suitable for the estimation of urban impervious surface distribution in complex scenarios.
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4. Discussion

4.1. BCI-Based Image Stratification

The selection of feature components is the key step of image stratification, which has significant
influence on the stratification accuracy. As a quantitative indicator designed to enhance spectral
contrast, BCI is able to effectively characterize various major urban land cover compositions over
the study area, particularly for vegetation and impervious surface. BCI gray scale is a panchromatic
image, the value of a pixel is its intensity. In this study, a feature component transformation technique
to process the original BCI gray scale image. By enhancing the strong value and reducing the weak
value, the separability of the strong value and the weak value in the gray scale image is further
improved. When applying BCI transformation in TM and ETM+ images, the difference between the
two histograms of BCIori and BCIenh clearly reveals this positive effect. After the transformation, there is
an obvious valley in the BCIenh histogram between the lower and higher intensity parts, and this
change effectively improves the separability of the higher intensity and lower intensity. Therefore,
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the accuracy of image stratification is improved effectively by using BCI and feature component
conversion technology.

4.2. Stratification-Based Endmember Extraction

Spectral mixture analysis suffers from a difficulty in endmember extraction due to within-class
spectral variability, and an inappropriate endmember set could severely affect the accuracy of
impervious surface. While LSMA is easy to use in estimating impervious surface, the difficulty of
endmember extraction still exists. It has been found that the accuracy of selected endmember is
affected by same object with different spectrums and different objects with same spectrum. In addition,
the paradox of endmember selection is still unsolved, which means that theoretically “purest”
endmembers that can be selected with relative ease do not always yield optimal results, while the
selection of the most “representative” endmembers is very difficult with simple LSMA. Stratification
provides a good solution to address the problem. With existing researches, the within-class endmember
variation is ignored. Although they applied different endmember set to different sub-regions,
the endmember set was achieved from the entire image scene rather than each sub-region that have
been stratified. In this study, we select the endmember set in each sub-region independently in order to
reduce the spectral confusion between similar objects and within-class variability. Therefore, the inner
layer information is made full use of extracting more pure and representative endmembers by using
image stratification technology.

4.3. Comparison with LSMA

The fundamental difference between the DELSMA model and the LSMA model lies in the
application of image stratification technology and the way of endmember selection. For DELSMA
model, vegetation is firstly removed from the bright fraction image, and H-L-S endmember set is
adopted. The reduction of the endmember type reduces the underestimation error of impervious
surface. Therefore, in the central urban areas with high density of impervious surface, the impervious
surface obtained by the DELSMA model has higher intensity than the original LSMA model. When dark
fraction image is used to eliminate the high albedo, the L-S-V endmember set is adopted, with the
linear spectral mixture analysis in the process of reducing the interference of high albedo of other
classes, and which reduces the error of the impervious surface overestimation. Therefore, in the urban
fringe, the impervious surface extracting based on the DELSMA model has lower intensity compared
with the original LSMA model. Moreover, visual inspection and quantitative analysis indicate that
DELSMA improves the accuracy of impervious surface estimation when compared with the original
LSMA method.

5. Conclusions

This study first verified the applicability of the DELSMA model for TM and ETM+ images in
Zhengzhou City, then evaluated the application effect of the DELSMA model in the Landsat series
of different sensors, and finally compared the accuracy of extracting impervious surface applying
DELSMA and original LSMA. The key findings and main conclusions are summarized as follows:

First, the DELSMA model performed equally well for TM and ETM+ images, and it performed
consistently better than the LSMA model. This is mainly because the DELSMA model introduces the
feature extraction idea. According to the spatial difference and spectral variability of the ground object,
the original image is stratified, which purifies the extraction environment of the pure endmember,
and then improves the accuracy of the impervious surface estimation.

Second, the application performance of DELSMA and LSMA models for OLI images were better
than that of TM and ETM+ images. This is mainly due to the fact that for the OLI sensor, the addition
of the cirrus band can improve the discrimination of soil and high reflectivity features, the spectral
range of the band is narrowed, and the vegetation and non-vegetation information is discriminated.
The radiometric resolution is improved from 8 bits to 16 bits to avoid the gray-scale over-saturation of
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the extreme/very dark areas, which is helpful for the fine feature recognition of low-reflectivity features.
These advantages make OLI images superior to TM and ETM+ images in mixed pixel unmixing.

Third, the DELSMA model achieved a better performance than the original LSMA in extracting
urban impervious surface, using time-series Landsat imagery. This is mainly because the DELSMA
model takes advantage the BCI to stratify the entire image into two layers, and selects endmembers from
each layer independently rather than from the entire image to cope with the class variability within.

Even though the applicability and performance of the DELSMA model has been validated based
on Landsat imagery in Zhengzhou City, the applicability of DELSMA in different types of cities have
not been verified. Zhengzhou belongs to a typical inland plain city, where topography and water
have little influence for the urban impervious surface estimation. However, in mountainous areas and
coastal areas, topography and water may have a great influence for urban impervious surface extracting.
Therefore, the DELSMA model should be verified or improved for more cities. Future research is
needed to evaluate the application effect of the DELSMA model in different types of cities, and improve
the DELSMA model in order to obtain higher accuracy of urban impervious surface according to the
features of different types of cities.

Findings from this study will be helpful to extract higher accuracy impervious surface. Moreover,
this will provide sufficient data support for urban change, urban heat island analysis, and hydrological
simulation, and contribute to decision-makers in formulating urban planning policies.
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