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Abstract: We utilized a high dimensional financial network to investigate the systemic risk contagion
between different industries in China and to explore the impacts of monetary policy and industry
heterogeneity factors. The empirical results suggest that the total level of systemic risk increased
quite significantly during the 2008 global crisis and the 2015-2016 Stock Market Disaster. The energy,
material, industrial, and financial sectors are the top systemic risk contributors. Industry heterogeneity
variables such as the leverage ratio, book-to-market ratio, return on assets (ROA) and size have
significant impacts on the systemic risk, but their effects on the systemic risk contribution are more
pronounced than those on the systemic risk sensitivity. Moreover, monetary policy can effectively
suppress the systemic risk diffusion derived from the leverage ratio. These results are essential for
investors and regulators of risk management.

Keywords: systemic risk; monetary policy; industry heterogeneity; high dimensional financial network

1. Introduction

Since the 2008 global financial crisis, systemic risk contagion and its influencing factors has become
the focus of academic circles and regulatory authorities. Incentives for systemic risk may come from
within the financial system (such as bank failure and the collapse of financial market prices) and from
external financial systems (such as macroeconomic reform and the decline of a national economy’s
pillar industries) [1-3]. Numerous studies have shown that non-financial industries are also associated
with systemic risk [4-7]. In emerging markets, some non-financial industries may even play central
roles in economy networks due to their special financing relationship and the socioeconomic system [8].
It is of great importance for investors and regulators to be able to understand systemic risk contagion,
as well as to identify its influencing factors from a global industry perspective.

Despite the global financial crisis causing a worldwide recession in recent years, China’s economy
has continued to grow rapidly and it is critical to global economic growth. For example, in the first half
of 2019, China’s gross domestic product (GDP) growth rate was 6.3%, which ranked it first in the world.
However, during the post-financial crisis, several serious market crashes occurred in the Chinese stock
market, which damaged investor confidence and the entire economy. Impressively, China’s Shanghai
Composite Index fell by more than 30% over 15 days in June 2015, and then fell by nearly 45% over
the next two months. The index reached a peak of 5178 points on 15 June and plummeted to 2850
on 26 August 2015. The rapid growth of China’s economy and the dramatic fluctuations in the stock
market during the post-crisis period have influenced the world economic and financial markets; this
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has attracted significant attention from international investors. Therefore, understanding China’s
systemic risk during the post-crisis period is crucial for the world market. In general, the literature
justifies systemic risk contagion during financial crisis, but little is known about it in emerging market
economies during the post-crisis period. In this paper, we use the 20082016 Chinese stock market as
an example to study dynamic systemic risk contagion.

The recent literature focuses on systemic risk contagion among financial institutions (see a review
by Benoit et al. [9]), while the risk from sectors other than the financial sector are rarely mentioned.
Bisias et al. [10] assumed that systemic risk arises endogenously within the financial system and provide
a broad overview of quantitative measures of systemic risk. Glasserman and Young [11] proposed a
theoretical framework for understanding the relationship between interconnections among financial
institutions and financial stability. Kahou and Lehar [12] offer a literature review of macroprudential
policies and address the link between the stability of the financial system and the performance of the
overall economy. Since financial institutions and real enterprises are related through credit and debt,
difficulties in financial institutions may lead to the collapse of the financial system or the increase of
risk, and the same situation in a real sector (or enterprise) can have a similar effect. Chiu et al. [2]
provide evidence of significant volatility and tail risk spillovers from the financial sector to many real
sectors in the U.S. economy. The main reason why systemic risk can be contagious across industry is
that investors tend to rely not only on the market but also tend to rely on industry-specific indices as
important references for evaluating and predicting portfolio performance [13]. Thus, our goal here is
to extend the study of systemic risk from the institutional level to the industry level.

The existing literature has proposed a number of methods to measure systemic risk based
on publicly available market-data such as stock price. These methods can be broadly classified
into three categories: financial asset correlation [14-19], tail-dependence [20-24], and sophisticated
networks [25-28]. The representative measurements of financial asset correlation include the
cross-correlation coefficient [15] and principal component analysis (PCA) [16]. There are four prominent
examples of tail-risk measures: marginal expected shortfall (MES) and the systemic expected shortfall
(SES) [23], the SRISK of Brownlees et al. [26], and the CoVaR of Adrian and Brunnermeier [22].
However, the above measurements may underestimate systemic risk among financial institutions
since they cannot capture the risk spillovers found in financial network topologies [26]. Network
theory provides a valuable tool for the analysis of systemic risk contagion because it can abstract the
complex economic system into a network with a set of nodes and edges, revealing the inter-topological
structure and complexity of the system [29,30]. Although the market-data may have no particular
pre-specified graphical structure, we can recover the network structure as defined by the long-term
variance decomposition network model (LVDN, Diebold and Yilmaz [25]). Another reason for adopting
the complex network framework to study systemic risk is that the interconnectivity among institutions
or industries often has a complicated dependency structure. For example, interdependency among the
financial sector and other real economy sectors may not necessarily show monotonic linearity [31].
In addition, investigating systemic risk for a large number of samples can lead to severe statistical
deficiencies in model estimation, including overfitting, inaccurate parameter estimates, and uninformed
inferences (“dimensional disasters”). Barigozzi and Hallin [28] proposed LVDN methods based on
the generalized dynamic factor model (GDFM) for the analysis of volatility interconnections in high
dimensional series. Their method has two main advantages: (i) it is based on the GDFM, which is
entirely non-parametric and model-free, thus it can overcome curse-of-dimensionality problems in
large sample estimation, and (ii) given the economic interpretation of the network indicators, it has
proven to be a powerful tool for analyzing systemic risk contagion.

Monetary policy plays an indispensable role in the stability of financial markets, but how monetary
policy implementation affects systemic risk contagion at the industry level is inconclusive. According
to Reinhart and Rogoff [32], systemic risk is closely related to monetary policy, and a tight money
policy can lead to bank defaults, causing bank credit to tighten and leading to a sharp rise in systemic
risk. Taylor believes that expansionary monetary policy is one of the main factors in systemic risk
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accumulation, which ultimately led to the global financial crisis [33]. Battiston et al. [1] found a
correlation between debt defaults and systemic risk in the real economy. Chiu et al. [2] found that
industry characteristics help to explain the size of tail spillovers. To the best of our knowledge, current
research on systemic risk has not considered the interaction between monetary policy and industry
characteristics. Therefore, we are trying to fill this research gap. We take monetary policy and industry
heterogeneity factors into consideration and explore their influence on systemic risk sensitivity and
contribution in various industries.

Here, we use the LVDN tool based on GDFM [28] to study system risk contagion in China.
We used daily data from companies in the CSI 300 index from 4 January 2008 to 30 December 2016 to
construct dynamic LVDNs and analyze the systemic risk sensitivity, systemic risk contribution, and the
overall level of systemic risk from an industry perspective. Then, we studied the relationship between
monetary policy, industry heterogeneity and systemic risk under the framework of panel regression
analysis. The novelty of this paper is based on the following aspects:

1.  Using the LVDN tool based on GDFM, we expand on the current literature on measuring
the systemic risk at the institutional level to focus on the industry level. We found that
several industries including the energy, materials, industrial, and financial sectors are the top
contributors to systemic risk due to their high levels of risk out-degree. Consumer, healthcare,
IT, telecommunications, and utility industries are more susceptible to systemic risk due to their
high levels of risk in-degree. This not only enables investors to better allocate portfolios across
sectors to reduce risk exposure, but also helps regulators to target the most systemically important
sectors, and monitor risk in the whole market.

2. We found that the total connectedness of LVDNSs increases significantly when the stability of the
system exhibits distress. An increase in cross-industry connectedness caused the high systemic
risk level during the 2008 global crisis and the 2015-2016 Stock Market Disaster in China. This
suggests that regulatory commissions should focus on cross-industry connectedness and increase
the coordination of their supervisory responsibilities.

3. This paper revealed that monetary policy not only directly affects systemic risk but also indirectly
affects the effect of the industry’s leverage ratio. Industry heterogeneity variables have significant
impacts on systemic risk, but their effect on the systemic risk sensitivity is more pronounced than
their effect on the systemic risk contribution.

In Section 2, we introduce the measure of systemic risk, i.e., the LVDN network based on the
GDFM model and the panel regression models. We show the data and the empirical analysis in
Section 3 and present our conclusions in Section 4.

2. Methodology

2.1. Measurement of Systemic Risk

The first step in investigating system risk contagion is to analyze the interdependences in volatility
panels [25]. Firstly, we consider the panel of stocks and then from the daily adjusted closing price
lpyli=1,...,nt=1,..., T}, we compute the daily log-returns:

ri = 100log(pit/pit-1), i=1,...,.n,t=1,...,T 1)

We assume that the stock return panel r;, := {rnt = (ryros- .. rnt)'lt € Z} satisfies assumptions 1-3
from Barigozzi and Hallin [28], i.e., that it represents the generalized dynamic factor model (GDFM)
decomposition:

nt = Xnt +Ent, tEZL 2)

where x; is driven by g common shocks and ¢, is idiosyncratic (called level common and level
idiosyncratic components, respectively). The Hallin and Liska [34] criterion yields qT =1,1i.e.,, aunique
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level common component. The two components x;, &, represent the auto-regressive and sparse vector
auto-regression (VAR) representations respectively:

ﬂ(L)gnt = Ut =: (vltr- ..,Z)nt)/, teZ (3)

An(L)Xnt = Mt =2 (Mg, M), tEZ )

where A), is an auto-regressive filter and ¥, is a VAR filter with sparse coefficients. Two volatility
panels are defined as

Ont 1= log(nit), Wyt 1= log(vit), teZ (5)

We assume those panels, in turn, satisfy assumptions 1-3 and hence, we admit the second-stage
GDFM decomposition:

dnt = 0nt — E[Gnt] = Xont + Eo,nt/ teZ (6)

Wyt = Wyt — E[Cl)nt] = Xont + 5a),nt/ teZ (7)

where X, and xo,, are driven by g, and g, common shocks, and &, is idiosyncratic (called common
and idiosyncratic volatility components, respectively). Again, the Hallin and Liska [34] criterion yields
gF =gl = 1,1i.e., a unique market shock, which is common to the two subpanels. The auto-regressive
representation of the common volatility components is

Aan(L) 0y )( Xon ) ( Hs )
, M e, te€Z, e ~wn(0,1 8
0y Aw,n(L) Xwn Ha),n ! ! ( ) ®)

and the sparse VAR representations of the idiosyncratic volatility components are
Fon(L)ean = Vo, t€Z, vou ~wn(0, C;}) ©)

Fw,n (L)gw,n =Vonut, tE€ Z, Vont ~ WH(O/ C;}n) (10)

Details on the estimators of (3), (4), (8), (9), and (10) are given in Forni et al. [35].
Following Diebold and Yilmaz [25], we define the vector moving average (VMA) of the common
and idiosyncratic volatility components as

Ba,n (L) = Aa,n (L)_lHG,nKa/ (11)
Bm,n (L) = Aw,n (L)_chu,n wr
and o
Da,n (L) = Fa,n (L) Ra,nr (12)

Dou(L) = Fou(L) 'R .

See Barigozzi and Hallin [28] for a more formal description and details. Next, we built the
long-term variance decomposition (LVDN) networks based on the VAM representations of the two
volatility components. Following Diebold and Yilmaz [25], we summarized the dependence up to the
lag h using the forecast error variance decomposition method and the ratios:

h-1 n h-1
ho_ 2 2

wh= (Y /Y Y d2,)x100 (13)

k=0 I=1 k=0

n
For any i, note that 11W Y, w?] = 1. Thus, we can define the LVDN by
j=1

ELpn = {(i, ) € (L nPbPN = lim o} (14)
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In order to study a system’s risk and its determinants from the perspective of industry, this paper
constructed the following three system risk measurement indicators based on network theory: the
system risk sensitivity of each industry (TICIN), the system risk contribution of each industry (T couty,

and the overall level of system risk (TC):

n

TICIN = 5{“”" = Z w?]., i=1,...,n, (15)
j=1,j#i
n
OUT __ gto __ h .
i=1,i#]
I f v
_ gtotal __ rom _ - to
TC =6 _nZ{éf —anf‘ 17)
i= j=

These three directional measures of the strength of the sector-conditional connectivity are used to
measure the system risk sensitivity of each industry, the system risk contribution of each industry and
the overall level of systemic risk, respectively. Among several prominent systemic risk measurement
methods given in the recent literature, Adrian and Brunnermeier [22] suggested that the increase in
tail-event interconnectedness can be used to identify systemic risk, and they proposed the conditional
value at risk (CoVaR) measure. Acharya et al. [23] presented the marginal expected shortfall (MES)
and systemic expected shortfall (SES) measures, which gave rise to the idea of identifying systemically
important financial institutions (SIFIs). The economic interpretation of the network degree indicator in
our model is related to the recently developed systemic risk measurements mentioned above, which is
the main reason why we can use this method to measure systemic risk. In particular, the economic
interpretation of the from-degree of series i is closely related to the MES or SES, which measure the
exposure of component i to extreme events affecting all other components [23,28]. Also, the to-degree
of series j is related to the co-value at risk (CoVaR), which measures the impact of an extreme event
affecting component j on the whole panel [22,25]. Thus, the LVDN for the idiosyncratic volatility
component is an ideal tool to measure system risk contagion.

2.2. Variable Description

This paper considers price-based instruments, which mainly refers to the interest rate and
quantitative monetary policy instruments, a tool that primarily applies to reserve ratios., and The interest
rate indicator (RATE) is expressed in the one-year deposit benchmark interest rate, and the reserve ratio
indicator (RR) is the statutory reserve ratio based on the weighted average of large financial institutions.

Referring to Hoberg and Phillips [36], Adrian et al. [22], Chiu et al. [2], etc., we selected six
industry heterogeneity indicators: the leverage ratio (LEV), book-to-market ratio (BM), total return
on assets (ROA), debt cost (COST), increase in cash holdings (CASH), and size (SIZE). The leverage
ratio is expressed as the total debt compared to the total assets, the debt cost is shown as the natural
logarithm of the financial expense, and the size is expressed as the natural logarithm of the total assets.
The industry heterogeneity variables are the arithmetic means of the industry sample stock. For the
subsequent econometric analysis, the data frequency was adjusted quarterly. Also, we used the GDP
growth rate indicators to reflect macroeconomic conditions.

2.3. Panel Regression Model

First, in order to study the relationship between monetary policy, industry heterogeneity,
and systemic risk, we constructed the following panel regression model:

TICIN /TICQUT = a + B1MP; + PoIH;; + psMAC + v; + 0t + pis (18)
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where T1 CﬁN / TICgUT is the system risk sensitivity and systemic risk contribution of industry i at time
t; MP;; is the monetary policy proxy variables, including the interest rate (RATE) and statutory reserve
ratio (RATER); IH is the industry heterogeneity indicators, including the six indicators described
above; MAC}; is the macroeconomic indicator, i.e., GDP; q; is the individual factor; v; and v; are industry
effects and quarter effects, respectively; u; is a random disturbance term, subject to independent and
identically distributed (i.i.d.). In detail, model (18) is expressed as follows

TICIN/TICQUT = & +B1MPys + 1 LEVis + fooMBit + B3ROEj; + p24COSTy

19
‘|j325CASHl't + ,52651ZE,} + ,53GDPit +v; + vt + Uit (19)

Then, considering a correlation between the book market value ratio and other variables, we
replace book market value ratio with the regression residual. Moreover, monetary policy factors
restrict the financing of enterprises to a certain extent. Enterprises with fast credit growth will not be
constrained by funds, and further expansion will reduce the probability of future default. Otherwise,
the probability of default will increase. This will ultimately affect the system’s risk exposure in the
industry. With the deepening of China’s “de-leveraging” policy, monetary policy may be biased for
different industries or companies. Therefore, we added cross terms between the proxy variables of
monetary policy and industry leverage ratios to the model to analyze the mechanism of monetary policy:

TICIN/TICQUT = o +B1RATEj + Bo1LEVy + fooMBi; + B23ROEj; + B24COST; 20)
+BasCASH,t + Ba6SIZEjt + p3GDPjy + YRATEy X LEV i + v; + vp + pijt
TICIN/TICQUT = & +B1RR;; + P21 LEVit + PoaMBjs + B23ROE;; 4 P2 COSTy

21
+BasCASH;; + BasSIZEj + B3GDPjy + YRR X LEVy + v; + vt + Wiy @)

Since the data in this paper is “large T small N” type panel data, to avoid sequence correlation,
the feasible generalized least squares regression (FGLS) method was used for parameter estimation of
(21). Also, due to the persistence of risk [37] and the endogeneity between variables, we constructed
the following dynamic panel model:

TICIN /TICQUT = a + yTICIN, /TICUT + By1MPy; + BolHjr + BsMACi +v; + v + pip - (22)

Scholars have proposed many remedies to the endogeneity problem. Li [38] summarized the
different methods to address endogeneity concerns and found that the generalized method-of-moments
estimator (GMM) [39] has the most significant correction effect on the bias, followed by instrumental
variables. However, the GMM and its extension methods are general estimators designed for situations
with “small T, large N” panels, meaning few periods and many individuals. However, our situation
is “small N, large T.” Both the GMM and instrumental variables estimators are susceptible to severe
“small sample estimation bias” in particular customary finite sample situations [40]. Thus, for the
dynamic panel model (22), we use the biased-corrected Least-Squares Dummy Variable (LSDVC)
estimator, which has been proven to be more efficient than the GMM and IV estimators [40,41].

3. Empirical Analysis

3.1. Data Description

We used the LVDN tool based on GDFM [28] to study system risk contagion in China.
We constructed dynamic LVDNSs using daily data for companies in the CSI 300 index from 4 January
2008 to 30 December 2016, and analyzed their topological properties to identify the systemic risk
sensitivity and contribution of different industries. Note that because the Shanghai and Shenzhen
300 Index adjusts its components each year, we needed to ensure continuity throughout the period
to compare the evolution of the stock markets. In other words, the selected stocks needed to be
included in the index at all times. In addition, a few stocks were suspended during trading time for
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long periods of time for specific reasons (such as asset restructuring or refunding). This is why the
number of sample stocks was less than 300. In fact, we ended up with 100 industry-represented sample
stocks from 10 different industries. The CSI 300, which stands for the China Securities Index 300
stock index, was jointly issued by the Shanghai and Shenzhen Stock Exchanges on April 8, 2005.
The index compiles a sample of 300 A- share stocks listed on the Shanghai or Shenzhen stock market,
and the total value of the stocks is approximately 70% of the total market capitalization of both stock
exchanges. Therefore, the index is widely perceived to comprehensively reflect the performance and
volatility of China A-share markets, and thus is a good representation of the equity market in terms
of analyzing the system risk contagion. The constituents of the Shanghai and Shenzhen 300 Index
were selected according to certain representative indicators. The composition of the index constituents
was more evenly distributed across industries than the other indices, which is convenient for later
research. Our data comprised the daily closing price of the sample stock indexes during the period
from 4 January 2008, to 30 December, 2016 (a total of 2190 trading days). We selected data starting from
2008 because several prominent financial institutions were not listed on China’s A-share market until
2007. The stocks we considered belong to 10 different industries: energy, materials, industrial, optional
consumer, major consumet, healthcare, financial, information technology, telecommunications services,
and utilities. The industry classification was based on the China Securities Index industry classification.
We obtained the stock prices through the Wind Financial database. Industry heterogeneity, monetary
policy, and macroeconomic data were sourced from the China Stock Market and Accounting Research
(CSMAR) database.

We calculated three systemic risk indicators as described above. Table 1 summarizes the descriptive
statistics for all variables incorporated into our analyses.

Table 1. Descriptive statistics.

. Standard . 1st . 3rd
Variables Mean Deviation Min Quartile Median Quartile Max
TC 10.052 6.613 4.987 9.678 10.068 14.763 26.556
TICIN 9.840 4.975 0.732 5.885 9.385 17.951 29.873
TIc™" 10.245 9.917 0.000 3.414 9.948 16.951 47.591
RATE 2.500 0.646 1.500 2.250 3.000 3.000 3.500
RATER 0.183 0.195 0.150 0.170 0.180 0.200 0.215
LEV 0.523 0.236 0.034 0.401 0.558 0.699 0.966
MB 2.279 3.745 0.039 0.454 0.969 1.970 21916
ROA 0.101 0.295 -1.060 0.011 0.043 0.115 4.659
COST 10.472 0.921 7.888 9.887 10.319 10.837 13.358
CASH 0.272 0.727 0.000 0.043 0.107 0.238 8.226
SIZE 10.108 0.962 7.897 9.492 9.912 10.496 13.346
GDP 0.085 0.017 0.0620 0.071 0.078 0.101 0.122

Note: TC, TIC!N, and TICOUT are calculated by Equations (17), (15), and (16), respectively. For an explanation of the
remaining variables, see “Variable Descriptions” in Section 2.

The mean value of the total systemic risk level (TC) was 10.052, but the maximum was 26.556,
indicating that systemic risk increases rapidly in extreme cases. Secondly, the industry’s systemic
risk contribution (TICOUT) had a higher standard deviation (9.917) than the industry’s systemic risk
sensitivity (TICN) (4.975), and the maximum value of TICOUT (47.591) was much larger than the
maximum value of TIC'N (29.873), indicating that TICOUT fluctuates more severely than TIC'N. This
is consistent with the findings of Diebold and Yilmaz [25] and Hérdle [42]. In terms of the industry
heterogeneity variables, the book market value ratio, loan cost, and scale, as measured by the standard
deviation, demonstrated broad distributions. The minimum value of the return on assets (ROA) was
negative and the maximum value was positive. Together, these indicate that the sample selection
was reasonable.
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3.2. Analysis of the Generalized Dynamic Factor Model (GDFM)

During the sample period, the bankruptcy of the Lehman Brothers on 15 September 2008
represented the beginning of the global financial crisis. At the same time, the Chinese stock market
experienced massive fluctuations. Furthermore, in June 2015, a stock market disaster occurred in the
Chinese stock market. The Shanghai Composite Index fell to 3373 points from 5174 points, and the
Shenzhen Composite Index dropped to 10,850 points from 18,182 points. Following this, many stocks
fell sharply for a long time and this incident triggered the first large-scale government rescue action.
Therefore, a high level of fluctuation and corresponding high volatility were found in two time periods
during our sample period: the first one occurred from 4 January 2008 to 31 December 2008, 246 days
in total; and the other was from 1 January 2015 to 30 December 2016, 487 days in total. We refer
to these as the global crises and Stock Market Disasters, respectively. Moreover, the middle time
period of 1457 days is referred to as the common period, since there was no systemic crisis in the
Chinese stock market and the market was stable. Proceeding the estimation of the level-common and
level-idiosyncratic shocks in Equation (2), we computed the estimated market shocks. The market
shocks on the return of the sample stocks from 4 January 2008 to 30 December 2016 are shown in
Figure 1. From this plot, we can easily observe two well-identified high periods: the 2008 global crisis
and the 2015-2016 stock market disaster. It is evident that the most massive shocks over the sample
period, by far, are those related to the 2008 global crisis. Therefore, as described in the following section,
we divided the full sample period into three stages: stage 1 (2008, Global crisis), stage 2 (2009-2014,
Common period), and stage 3 (2015-2016, Stock Market Disaster). In the following regression analysis,
we made quarterly adjustments to the data to build quarterly risk networks.

15 T T

stage 2 < >stage 3¢

\

stage 1

Global crisis Common period Stock Market Disaster

-1%7 08 09 10 " 12 13 14 15
Figure 1. Market shocks on the return of the sample stocks from 4 January 2008 to 30 December 2016.
3.3. Network Analysis

We focused on the LVDNS of the two idiosyncratic components & and &7, of volatility given by
Equations (9) and (10) to study the system risk. Since &, is completely unrelated, both serially and

cross-sectionally (refer to Hallin and Liska [34] for details), we concentrated only on éz,,n. According to
the Bayesian information (BIC) criterion, we estimated a sparse VAR (5) model for &L . The graphs

of LVDN s for the idiosyncratic volatilities Ez,/n during the three sample stages are shown in Figure 2.

Figure 2 shows the threshold LVDNs, with the optimal thresholds being 2.99, 1.48 and 2.59, respectively.
In addition, we measured the systematic risk indicators based on the non-threshold LVDNs. Nodes
of the same color belong to the same sector. The node size is expressed as the total degree. During
the 2008 global financial crisis, as illustrated in Figure 2a, the connectedness of the whole network
structures increased significantly, making the entire network more vulnerable to contagion. Moreover,
during the stock market disaster, as illustrated in Figure 2c, the connectedness of the whole network
structures also increased compared with that in the common period, as shown in Figure 2b. In the
common period, as illustrated in Figure 2b, the network nodes were relatively scattered, and we found
more interconnections within the sectors (nodes of the same color, such as yellow, red, and blue were
linked together). These graphs reveal the importance of financial institutions (yellow nodes) in risk
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contagion. During the global crisis, the stock market disaster, and the relatively stable common period,
the interconnections within financial institutions were very close.

v T A m
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SAIC 1S s Bes O HL X6M
HBR  BsC S
WHC  spG (& G D
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SHA REM 3
H#B
SH VeT e 0eT
S3E G
KBS

Figure 2. Graphs of the estimated long-term variance decomposition network (LVDN) for the
idiosyncratic volatilities: (a) 2008; (b) 2009-2014; (c) 2015-2016.

Table 2 shows the system risk indicators in the threshold LVDN for Ezm. As shown in Table 2, we
can see that the overall level of systemic risk spillover reached 20.176 in 2015, and the value TC reached
26,556 in 2008, three times higher than that in Stage 2. This was stimulated by the roller-coaster ups
and downs of China’s stock market in 2015. In the first half of 2015, the stock market was in a “mad
bull” state in which the excess liquidity in the market led to common risk exposure for most industries,
and the potential risk transmission channels between industries widened rapidly, leaving the economy
increasingly vulnerable. This process of potential systemic risk accumulation may not necessarily have
an immediate and obvious impact on the economy, but a systemic crisis will be on the verge of breaking
out when risks accumulate to a certain extent and negative impacts appear. In June 2015, the China
Securities Regulatory Commission (CSRC) began to check the over-the-counter fund allocation. Due to
the impact of rapid deleveraging, the risks accumulated in the first half of the year erupted instantly
and the stock market plunged by more than 40%. Besides, there were significant differences in the
input and output levels of systemic risk between different industries. The energy, materials, industrial,
and financial industries showed high levels of systemic risk contribution, especially during the crisis,
which was the main risk exporter. The industries with higher systemic risk sensitivity were the
consumet, healthcare, IT, telecommunications, and utility industries, indicating that these industries
are vulnerable to risk. Note that the system risk sensitivity/contribution indicators for the industrial
sector were relatively large, and its system risk contribution was larger than the system risk sensitivity,
which is different to other developed countries like the U.S. [28]. The industrial sector occupies a
dominant position in China’s national economy, and it is necessary to target it as it is a systemically
important sector, and effectively monitor and curb the risk that it accumulates. In addition, the system
risk sensitivity of the financial sector was shown to be 19.78 in Stage 1 and 18.25 in Stage 3, whereas its
system risk contribution was shown to be 36.61 in Stage 1 and 25.52 in Stage 3. The risk that financial
institutions transmit to other real economic sectors was found to be greater than the risk that other
sectors pass on to them. In the relatively stable Stage 2, the financial sector was shown to be the
most central in the network. This once again proves the important position of financial institutions in
risk contagion.
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Table 2. System risk indicators based on the long-term variance decomposition network model (LVDN)

for EZ,/,,.
S Stage 1 (2008) Stage 2 (2009-2014) Stage 3 (2015-2016)
ector TIc™N TICOUT TIcN TICOUT TIc™N TICOUT
Energy 17.727 47.591 3.195 5.569 16.481 31.013
Materials 20.306 29.318 4.702 4.884 20.445 24.696
Industrial 24.570 27.630 3.982 4.446 16.353 17.904
Optional consumer 28.770 19.995 4.097 2.995 18.786 16.198
Major consumer 26.240 25.539 4.072 3.204 19.258 14.583
Healthcare 27.591 19.484 4.796 4.007 19.981 16.395
Financials 19.776 36.607 5.694 6.475 18.246 25.516
IT 26.331 17.942 4.476 4.658 19.208 12.499
Telecommunications 29.873 11.363 4.787 5.174 20.968 14.197
Utilities 29.547 15.546 4.849 3.458 16.068 12.301
TC 26.556 4.632 18.671

3.4. Regression Analysis

Table 3 presents the regression results for the system risk indicators (TIC'N/TICOUT). We found
a significant correlation between the systemic risk sensitivity and contribution of the industry and
the industry’s heterogeneity variables. However, their correlations are different: the industry’s
leverage ratio (LEV) was significantly positively correlated with both TIC'N and TICOUT, and the
industry’s return on assets (ROA) was significantly negatively associated with both TIC'N and TICOUT.
The book-to-market ratio (BM) was significantly positively correlated with TICOUT, and the size (SIZE)
was significantly negatively correlated with TICOUT. However, except for model 1, the book-to-market
ratio (BM) was not significantly related to TIC'N, and the relationship between SIZE and TIC'N were
not significant for models 1-3. This suggests that the relationship between the industry’s system
risk contribution and industry characteristics is more significant. Our findings are similar to those of
Berger et al. [43], who claimed that return on assets is positively related to systemic risk, Chiu et al. [2],
who found that market-to-book ratios have a significant negative relationship with the industry
system risk, and Zhu et al. [3], who found the firm size has a significantly negative effect on systemic
risk contribution. The monetary policy proxy variables (RETE and RR) showed significant negative
associations with system risk indicators, suggesting that an industry’s systemic risk-taking level will
increase as the real interest rates or statutory reserve ratios decrease. This argument is similar to that of
Ariccia et al. [44], who provided the theoretical foundations for the claim that prolonged periods of
easy monetary conditions increase bank risk-taking. More importantly, the cross-terms of monetary
policy proxy variables and leverage ratio show significant negative relationships with the systemic
risk indicators.

Consequently, we argue that in the long run, whether a price-based monetary policy tool (interest
rate) or a quantitative monetary policy tool (legal reserve ratio) is used, China’s monetary policy can
effectively curb the systemic risk diffusion derived from the intra-industry leverage ratio. The absolute
value of the coefficient RATE X LEV was found to be larger than the absolute value of the coefficient
RR x LEV, indicating that the interest rate instrument is generally more effective than the deposit
reserve ratio instrument. In addition, the macroeconomic status proxy variable (GDP) was significantly
negatively correlated with systemic risk indicators in all models, which means that the macroeconomic
condition is a reliable guarantee against risk shocks.



Sustainability 2019, 11, 6222 11 of 15

Table 3. Regression results of system risk indicators.

Variable System Risk Sensitivity TiclN System Risk Contribution TICOUT
Model (U)) 2) 3) 4) (5) (6)
—1.1070 ** —0.7745 *
RATE (0.012) (0.072)
RR —0.9231 ** —0.7693 **
(0.023) (0.024)
LEV 3.1309 ** 11.3338 * 9.8376 ** 8.4922 *** 4.4370 ** 6.3611 **
(0.031) (0.071) (0.046) (0.006) (0.047) (0.016)
—1.2265 ** —1.5642 *
RATE x LEV (0.031) (0.055)
—0.0407* —0.0672 *
RR X LEV (0.057) (0.059)
BM 0.2637 * 0.1621 —0.0969 0.9427 ** 0.8274 * 0.7044 **
(0.049) (0.190) (0.254) (0.045) (0.094) (0.046)
ROA —-2.1702 * —-2.1140 * -1.749 * —2.5477 ** —2.9085 ** —3.0833 **
(0.046) (0.057) (0.093) (0.029) (0.035) (0.027)
COST —0.0612 0.0445 —0.0630 —0.0895 —0.0614 —0.0815
(0.709) (0.787) (0.237) (0.114) (0.982) (0.496)
CASH —0.0993 —0.0981 0.0957 -0.0821 —0.1248 —0.0631
(0.209) (0.212) (0.176) (0.920) (0.523) (0.961)
SIZE —0.6389 —0.5500 —0.4512 —0.4484 ** —0.4248 * —0.2057 *
(0.439) (0.504) (0.583) (0.044) (0.053) (0.097)
GDP —4.8514 ***  —5.4806 *** —3.956 *** —4.3967 ***  —5.0943 ** —3.3957 **
(0.000) (0.000) (0.004) (0.008) (0.024) (0.048)
CONS 18.9773 31.2809 14.3496 20.8910 30.5027 19.4404
- (0.007) (0.000) (0.000) (0.000) (0.009) (0.000)
N 360 360 360 360 360 360

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Table 4 shows the dynamic panel regression results of system risk indicators for Model (22).
The coefficients of the variables RATE, RR, RATE x LEV and RR x LEV were found to be consistent in
terms of variable significance and the direction of action, indicating that the above conclusions about
monetary policy are robust. For the system risk sensitivity TIC'N, only the industry heterogeneity
variable LEV and ROA were significant, but for the system risk contribution TICOUT, the coefficients of
the variables LEV, BM, ROA and SIZE were significant. This suggests that the system risk contribution
is more sensitive to industry heterogeneity variables. This paper holds that vast discrepancies exist
in the level of risk contribution in different industries because of the influences of several factors
such as policy and the macro-economy. However, due to inter-industry involvement, the system risk
sensitivity of different industries may be similar. Moreover, the stronger risk overflow of a single
industry is shared by several industries. Thus, in most cases, the impact of industrial heterogeneity
is not prominent. In fact, the discrepancy between risk sensitivity and contribution exactly proves
the real existence of risk communication in industries. In addition to dynamic model testing, we also
conducted a series of univariate model tests, such as adding lag terms to explanatory variables and
introducing explanatory variables one by one, with robust results.
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Table 4. Dynamic panel regression results of system risk indicators.

12 0f 15

Variable System Risk Sensitivity TIC'N System Risk Contribution TICOUT
Model ) @) ®) @ ®) (6)
ICIN jppcour 019257 018757 (1350 05806** 05217 04753 %
| (0.004) (0.008) (0.000) (0.000) (0.000) (0.000)
—3.1672 *** —3.7020 ***
RATE (0.008) (0.008)
~1.1028 ** ~1.1517 %
RR (0.036) (0.036)
LEV 3360*  10.0586**  9.3548**  8.8306** 93422 89068 ***
(0.040) (0.039) (0.009) (0.016) (0.009) (0.005)
~0.3219 ** ~0.1806 *
RATE x LEV (0.032) (0.054)
~0.0312 ** ~0.0330 *
RR X LEV (0.049) (0.066)
BM 0.2634 * 0.1752 0.5760 1.0753 ** 1.092 * 1.034 **
(0.059) (0.289) (0.178) (0.045) (0.078) (0.045)
ROA ~1.9500*  —-1.8701*  -2.0333*  -1.3203* —16542%*  —2.2654*
(0.044) (0.065) (0.076) (0.048) (0.047) (0.075)
COST 0.0862 ~0.0355 0.0795 ~0.0652 0.0935 0.0877
(0.798) (0.443) (0.432) (0.5706) (0.988) (0.727)
CASH ~0.0911 0.0050 ~0.7503 0.3560 03003 0.5637
(0.256) (0.722) (0.489) (0.490) (0.980) (0.606)
SIZE ~0.7369 0.5596 0.4594 ~0.5107*  —0.5086**  —0.4980*
(0.576) (0.837) (0.576) (0.036) (0.033) (0.054)
cDP —4.963%*  —65806*% 53675  —7.0802%% —72611** —63186**
(0.000) (0.000) (0.001) (0.000) (0.006) (0.003)
CONS 289306 **  17.2583** 152051 ** 250008 ***  22.5635**  20.0768 ***
- (0.000) (0.000) (0.003) (0.000) (0.000) (0.000)
N 360 360 360 360 360 360

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

4. Conclusions

This paper seeks to shed new light on systemic risk contagion and its determinants from an

industry perspective. We utilized the high dimensional financial network to capture the systemic risk
contagion between different industries in China and to explore its relationships with monetary policy
and industry heterogeneity factors. The results of the network analysis show that the total level of
systemic risk increased significantly during the 2008 global crisis and the 2015-2016 Stock Market
Disaster. The energy, materials, industrial, and financial industries are the top systemic risk contributors
due to their high levels of risk output. Consumer, healthcare, IT, telecommunications, and utility
industries are more susceptible to systemic risk due to their high levels of risk input. Combining
the network theory and econometric analysis, we found that industry heterogeneity variables had
significant impacts on systemic risk sensitivity and systemic risk contribution, but their effect on
the systemic risk contribution was more pronounced. In particular, the effects of the leverage ratio
and book-to-market ratio on the systemic risk contribution were positive, and the effects of the total
return on assets and size on the systemic risk contribution were negative. However, for systemic risk
sensitivity, only the effect of the leverage ratio and total return on assets were found to be robust.
Moreover, monetary policy was shown to not only directly affect the systemic risk of the industry but
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also indirectly affect the effect of the industry’s leverage ratio, implying that China’s monetary policy
can better restrain the adverse effects of leverage on market stability.

Our empirical study contributes to the literature on measuring systemic risk and has important
economic implications in terms of asset pricing, risk management and policy making. For investors,
the practical implications of our findings suggest that investment strategies should be adjusted
accordingly to address risk contagion from the most influential industries to other industries.
For regulators, we provide useful information when measuring the systemic risk and determining
which industry are systemically important. In particular, we propose the following advice for risk
supervision. Firstly, regulation should not only be placed on financial institutions but also on some
entity industries. Secondly, great attention should be paid to connectivity among institutions or
industries. The current economic and financial system demonstrates that more complex internal
relevance and potential systematic risk attack is bound to influence entity industries through financial
institutions, thus producing a scaling effect as well as a spillover effect. Ultimately, prudent regulation
of monetary policy is necessary to prevent systematic risk in the mixed economy.

Our framework has several possible options for further study. First, the data used in our study do
not include all publicly listed companies in China because we have eliminated companies that are not
included in the CSI 300 and those that we only have limited data. Thus, developing new methods for
analyzing systemic risk with limited data is a worthy goal. Another important extension would be the
forecasting of systemic risk contagion in the networks. This effort could use the approach described
by Barigozzi and Hallin [28], which provides volatility forecasts for the various stocks based on the
GDFM approach. Moreover, the various variance decompositions and impulse-response functions of
the GDFM approach open the way for systemic risk forecasting.
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Y.S..; data curation, Z.H.; writing—original draft preparation, Y.S. and Z.H.; writing—review and editing, BM.D.;
supervision, Z.H.
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