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Abstract: Improving the sharing rate of public transportation is an important content for the
sustainable development of urban transportation. However, bus bunching, a common phenomenon
during transit operation, makes negative effects on reliability and service level of the bus system.
In most urban centers in China, many bus lines usually serve in a corridor. Different buses may
interact with each other in the corridor, which may aggravate the bus bunching. However, previous
studies on bus bunching focused on single bus service. In addition, with the popularization of
bus data acquisition and the maturity of data processing methods, the accuracy of bus bunching
research meets more opportunities. In this paper, we proposed a holding strategy based on two-bus
cooperative control. A simulation was carried out after preliminarily processing and analyzing the
bus operation data of Foshan, Guangdong City. In the simulation, we compared the performance of
three different scenarios, which are before control strategy, under the strategy for a single bus line and
under the coordinated strategy for multiple bus lines. We contrastively analyze the results of the two
strategies from different aspects. The results show that in aspects, such as holding a frequency, holding
time, the total running time and the influence on the other bus line, the cooperative holding strategy
manifests better. It illustrates that it is meaningful to do such a research on the effect of corridor
service on bus bunching and add this effect into traditional holding strategy to build a multi-bus
cooperative control strategy. The results have important theoretical significance for enriching and
completing existing theory and methods of transit system and practical value for improving the
service level and attractiveness of buses, increasing the share rate of public transportation, and thus,
promoting the sustainable development of cities.

Keywords: bus bunching; common line; coordinated control strategy; bus big data

1. Introduction

With the acceleration of China’s urbanization process, the urban population and the number of
cars increase rapidly. The problem of urban traffic becomes increasingly prominent. Traffic congestion
has gradually become a major bottleneck restricting the development of cities. Giving priority to the
development of public transport has been an important strategy for sustainable development. However,
the share rate of regular buses is decreasing year by year. This is because there are more interference
factors during the operation of regular buses, resulting in its poor stability, poor punctuality, and as a
result, the phenomenon of bus bunching. Many researchers have studied the occurrence mechanism
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and improvement strategies of bus bunching, most of which are based on a single bus line. While
the fact is that in most cities of China, the bus network is complex and there are many common bus
segments (that is, sections of the road passing by multiple bus lines at the same time). Buses of different
bus routes interact with each other in the common corridor, which may affect the implementation effect
of the improvement strategy for a single bus line. Therefore, it is necessary to propose a coordinated
improvement strategy for multi-line buses.

With the application of on-board GPS device and communication technology in buses, a large
number of data related to bus operation can be collected and stored, such as real-time GPS data, IC card
(Integrated Circuit Card) records, video recording in buses, etc. Compared with the traditional bus
survey data, such information is more comprehensive, accurate, less limited and of great application
value. Now public transport informatization has been deeply involved in the management, operation
and other aspects of public transport enterprises. It has brought more abundant basic information to
the research of bus bunching, and made the research on the influence mechanism and improvement
strategy for bus bunching more accurate. In addition, with the popularity of big data in recent years,
data mining technology has become increasingly diversified and mature, bringing more opportunities
for researchers to process data. Therefore, based on the big data of public transport, this paper will
study the influence of the common corridor on bus bunching and the improvement strategy for it.

Based on the summary of relevant research, a coordinated holding strategy for multi-line buses in
the same corridor was established. Processing and analyzing the bus big data in Foshan, Guangdong
City, bus routes with obvious bus bunching and common corridors were selected as the object in this
paper. The running performance of the proposed strategy was verified through simulation. Results
show that the coordinated holding strategy has a good effect on improving bus bunching.

The research results have important theoretical significance for enriching and improving the
existing analysis theories and methods for the public transport system, and have important practical
value for improving the service level of public transport, and thus, developing the intelligent
management decision support system for public transport.

In the second part of this paper, the existing improvement strategy models for bus bunching is
summarized. In the third part, a coordinated holding strategy based on collaborative control for two
bus lines is proposed. Finally, the improvement effect of this strategy is verified by simulation, and the
comparison of two scenarios on the improvement effect proves that the coordinated holding control
has advantages when multiple bus lines have a common corridor

2. Literature Review

There are many methods to improve the reliability of public transport services and effectively
improve the phenomenon of bus bunching, such as adjusting timetable, dynamic scheduling of buses,
the priority of traffic signals, bus lane planning, route design, etc. They are summarized and classified
in Table 1:

Table 1. Strategies for improving bus bunching.

Strategy Description Classification

Adjust timetable [1–3] Establish a reasonable bus operation schedule according
to passenger demand. Scheduling

Bus dynamic scheduling [4–7]
According to real-time monitoring of the bus station,

holding and skipping are adopted to keep the headway
stable.

Bus signal priority [8–11]

When the bus arrives at the intersection, it gives priority
to the signal, so that the bus can pass through the

intersection quickly and reduce the waiting time at the
intersection.

Bus priority

Bus lane [12,13] Planning a bus lane to reduce the interference of social
vehicles.
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Table 1. Cont.

Strategy Description Classification

Route design [14–16] Change the length or the direction of the bus line.

Others

Bus station design [17,18] Change the number of bus stations, the layout of bus
stations and other characteristics.

Bus driver training [19,20] By training bus drivers, the instability of running time
caused by driver operation can be reduced.

Spare bus and driver [21,22] Arrange the spare driver and bus reasonably in case of
emergency.

Although bus priority has always been the hot topic of research, they are often focused on the
improvement of bus running speed and the reduction of the impact of other traffic flows, rather than
the direct improvement of bus bunching. At present, most strategies improving bus bunching still
focus on dispatching. Therefore, the following sections combine bus priority with other strategies, and
mainly review the literature on bus dispatching and some other advanced strategies.

2.1. Bus Dispatching Strategy

The dispatching strategy is one of the most extensive strategies to study the improvement strategy
of bus bunching. There are mainly two kinds of dispatching strategies for improving bus bunching:
One is a planning strategy, the other is a real-time strategy.

2.1.1. Planning Strategy

Planning strategy is a long-term strategy that needs to be made based on existing timetable.
According to different goals, the researchers put forward different timetable optimization scheme.
Based on the analysis of bus bunching phenomenon and its causes, Zhou et al. studied the minimum
departure interval of the bus with the goal of minimizing the operating cost of bus enterprises and
maximizing the benefits of passengers under the constraint of easing bus bunching [23]. With the goal
of minimizing the cost of waiting for passengers and maximizing the benefits of public transportation
companies, Liang established an intelligent bus dispatching model based on the improved genetic
algorithm, which can reduce the occurrence of bus bunching [24]. Xiao processed the historical GPS
of the bus, analyzed the running characteristics of the bus, and established the bus departure time
model to alleviate the phenomenon of bus bunching and large interval [25]. Wu et al. aim to minimize
the total waiting time of transfer passengers, waiting for passengers and direct passengers, and add
redundant time in the bus timetable to adapt to the randomness of bus travel time [26]. A reasonable
timetable can effectively improve the stability of the bus system from the root and reduce the trouble of
later dispatching. However, due to the randomness of the bus system, the static dispatching measures
are difficult to deal with emergencies. Therefore, more research is now focused on real-time strategies.

2.1.2. Real-Time Strategy

Real-time strategy is a short-term strategy, such as bus-skipping, bus-holding, etc. Bus skipping
is that when the bus falls behind the schedule in the running process, the bus can skip several stops
without stopping, so that it can catch up with the scheduled time. Vuchic et al., the earliest scholar
who described and evaluated the strategy of skipping at the level of operation, believed that compared
with normal operation, bus-skipping could improve the speed of bus operation and maintain a high
frequency of bus service [27]. Ercolano et al., through the comparison of bus-skipping and normal
operation on the same bus line, found that bus-skipping could reduce the travel time, improve the
bus operation speed and save the operating cost [28]. The researchers discussed bus-skipping from
different goals, including the minimum waiting time of passengers [29], the minimum of passenger
travel time (the sum of waiting and boarding time) [30], the minimum passenger expense [31], evenly
spaced fleet [32], and the minimum operating cost of vehicles [33].
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The bus-skipping is simple and effective, which can quickly restore the stability of the headway of
bus, but it will also lead to a very adverse impact on passengers boarding, causing inconvenience to
some passengers. Therefore, the implementation of this strategy is very cautious. In order to study the
applicability of bus-skipping, Fu et al. conducted a sensitivity analysis on the bus line and found that
the bus-skipping strategy had a good effect when the bus headway was small, and it could only be
used when the bus running time fluctuated appropriately [34].

Compared with the bus-skipping strategy, the bus-holding strategy has better practicability and
is the most widely studied bus bunching improvement strategy. The holding strategy enables the
bus to stay at the station for an appropriate period in order to stabilize the headway. The simplest
holding strategy is based on the planned timetable or headway [35]. This kind of strategy implements
a holding strategy based on the actual arrival time of the bus, causing the bus to leave the station at the
time planned by the timetable or to maintain the planned headway with the front car.

These holding strategies set the holding time based on the actual arrival time. With the development
of automatic vehicle positioning system, automatic vehicle identification system and other advanced
technologies, researchers can obtain the real-time location data of buses. So, a lot of prediction-based
holding strategies are beginning to emerge. Bartholdi [36] and Daganzo et al. [37] used the real-time
data of bus vehicles to predict the arrival time of the next bus, and to control the middle bus at the
station, taking into account the headway of the previous bus and that of the next bus, so as to avoid the
phenomenon of bus bunching with the next bus after holding at the station.

Lucas et al. found that the implementation of the skipping strategy could lead to an increase in
the total delay, while making the headway stable through a comparison between the implementation
of holding strategy and the strictly punctual bus service. This indicates that the optimal control
strategy should not aim at obtaining uniform headway [38]. Therefore, many researchers set different
objective functions and constraints to optimize the holding time. These models are complex and take
many factors into consideration comprehensively. It is usually necessary to solve the holding time
through heuristic search and other algorithms. Based on the predicted arrival time of the buses, Yu
et al. established a model aiming at the minimum cost of the user from the perspective of the user,
and used a genetic algorithm to solve the optimal holding time [39]. Zhang established a bus line
model aiming at minimizing the average of additional travel time for passengers and discussed the
relationship between different bus holding strategies and the stability of the headway. In order to
determine the threshold affecting the stability of headway, she made an investigation on passenger
travel choice behavior under the influence of the stability of headway [40]. In order to achieve a more
ideal effect of holding control, Chen et al. considered the boarding behavior of passengers, took the
shortest waiting time of passengers on the bus and at the station as the optimization objective, and
extended the single control point problem into multiple control points to reduce the deviation of the
headway of downstream stations [41]. Berrebi et al. proposed a global approach to deal with public
transportation dispatching problem, making a large interval of buses can be absorbed by some or
all the subsequent buses. Its goal is to keep the departure frequency as large as possible and make
the passengers’ waiting time shortest at the same time [42]. Lizana et al. calculated the optimal
holding time and the minimum passenger waiting time through mathematical programming model
and developed a real-time application to convey the control command to the bus driver [43].

Some researchers combine the holding strategy with other techniques to make it more effective.
While carrying out dynamic holding dispatching, Han coordinated with the intersection signal priority
technology to achieve uniform distribution of buses on the road and stable departure interval of each
station on the premise of not affecting bus operation of the same station and other bus lines at the
intersection [44].

With the development of relevant advanced technologies, the research on bus control is not
limited to bus stations, but can also control the speed of buses in the process of bus operation. Because
of its wide control range, the theoretical effect is better than the traditional holding control strategy.
The strategy proposed by He can adaptively determine the actual holding time and running speed of
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the bus on the road, and take into account the non-linear boarding process of passengers [45]. Daganzo
proposes a speed control scheme that can adjust the bus in real time, assuming that the bus in front is
given enough information to interact with the bus behind [37]. Estrada et al., based on real-time data
of the bus at the station, controlled the running speed of buses and extended the green light phase at
the intersection when there facing a large delay [46]. John et al. proposed a bus operation scheme of
automatic adjustment, in which the headway between vehicles can be dynamically self-regulated. Its
goal is to reduce the average time headway and the deviation of headway. This scheme gives up the
traditional method of considering timetable or preset headway [36]. However, in the actual situation,
the frequent change of speed will make the driver always in a state of high tension, and the real-time
speed adjustment is not easy to achieve, due to the driver’s driving skills, the traffic situation at that
time and other factors. These methods are more suitable for automatic buses with bus lanes.

2.2. Other Strategies

Bus priority can improve the bus running speed, reduce the bus operation delays caused by traffic
congestion and red lights at the intersections. It has a positive significance to improve the phenomenon
of bus bunching. Bus lane can set up to isolate buses from social vehicles, reduce the interference of
them, improve the running speed of buses, and thus, improve the reliability of bus operation [47].
Bus signal priority is a common bus priority strategy. It provides red light advance, green light delay,
phase insertion and other methods for specific buses detected, so as to reduce the bus delay at the
intersection. In order to reduce the influence of bus signal priority on social vehicles, the priority of
the bus signal should be conditional. Only when the bus is late can the priority request of bus signal
priority be triggered [48]. Wanjing et al. presented a group of coordination based on the intersection of
conditional bus priority strategy. The method considers the bus arrival time of downstream intersection
when awarding the priorities, which significantly reduces the deviation of bus headway, improve the
reliability of bus and at the same time, does not significantly affect other motor vehicle delays [8]. Chow
et al. proposed a multi-objective optimization control framework based on bus timetable and headway
deviation and additional delays caused by surrounding traffic to buses, calculated the optimal control
formula for bus signal priority, and verified the rationality of this method through a case analysis of
real scenes in London [9]. Larry used the priority diagram model to optimize the bus priority signal
control scheme and reduce the bus delay [49]. Yang et al. predicted the time of vehicle arrival at the
main intersection, coordinated and controlled main intersection and its signal timing, reducing the
headway variation coefficient [10]. Anderson did not consider the influence of bus signal priority on
other traffic in the model. He believed that fewer bus priority requests would have less influence on
other traffic. Therefore, he directly took the reduction of headway deviation as the objective function
and proposed a mathematical model on Brownian motion to solve the bus priority strategy [11].

In addition, bus arrival time can be predicted, and bus arrival time and full load rate can be
released to passengers through electronic station signs, which can regulate passengers’ transfer behavior,
effectively improve the stability of bus operation and significantly reduce the number of bus transits [50].
Xia analyzed and clustered various abnormal situations in the daily operation of public transport
vehicles, quantified them based on the practical experience of dispatchers, applied the knowledge base
technology of expert system and proposed the idea of establishing the transport capacity configuration
system [51]. A bus route length model based on headway stability was established to determine the
optimal length of the bus route. When the bus route was higher than the optimal length, it should
be arranged in the section with low saturation as far as possible to reduce the occurrence of bus
bunching [18]. Shi, based on the study of the phenomenon of multi-line bus bunching, believes that
the section repetition coefficient should be limited in the layout of the bus network, and suggests that
the collinear stations of different lines should not exceed 1/3 of the total stations [52]. Furthermore,
the development of autonomous buses can make up for the restrictions of drivers and improve the
stability of bus operation.



Sustainability 2019, 11, 6221 6 of 23

3. Methodology

3.1. Notation

The symbols and meanings used in the model are shown below.

• i—index of bus line A (i = 1,2, 3 . . . ).
• k—index of bus line B (k = 1,2,3 . . . ).
• gi, j—holding time [sec] of bus i (bus line A) at the stop j.
• hi−1,i—planned headway [sec] between bus i (bus line A) and bus i− 1 (bus line A).
• di, j—the original departure time of bus i (bus line A) at the stop j (before the implementation of

holding control) [time units].
• di, j—the actual departure time of bus i (bus line A) at the stop j (after the implementation of

holding control) [time units].
• d j—the departure time of the latest bus of bus line A at stop j (updates when every bus leaves the

stop with an initial value of 0) [time units].
• Gk, j—holding time [sec] of bus k (bus line B) at the stop j.

• Hk−1,k—planned headway [sec] between bus k (bus line B) and bus k− 1 (bus line B).
• Dk, j—the original departure time of bus k (bus line B) at the stop j (before the implementation of

holding control) [time units].
• Dk, j—the actual departure time of bus k (bus line B) at the stop j (after the implementation of

holding control) [time units].
• D j—the departure time of the latest bus of bus line B at stop j (updates when every bus leaves the

stop with an initial value of 0) [time units].
• gmax—the maximum allowable holding time, set gmax = 90s.
• β—a coefficient for holding time, set β = 0.7.
• c—the minimum headway that judges whether two buses will encounter at the station, set c = 60 s.

3.2. Network Configuration

In this paper, we only consider the common corridor with two bus lines. The bus network is
simplified into the model shown below (Figure 1). When two bus lines are in a common corridor, the
number of common stops is n, and the stops are marked as S + 1, S + 2, . . . , S + n.

Figure 1. Station number of bus lines.

3.3. Problem Formulation

When solving the problem of bus bunching, most of the studies take the passenger waiting time or
the total travel cost as the objective function to optimize the solution. However, the research difficulty
and solution complexity of these goals are relatively high, and they are often used for one bus line
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and single control point. In this paper, we implemented a coordinated holding control for all buses
departing from 07:00 to 09:00 during peak hour to reduce the occurrence of bus bunching. There are
more than one bus line, and coordinated holding control is carried out not only at one point. So, the
holding strategy is based on the traditional target of stabilizing the headway of buses. This method is
relatively simple and can be solved fast. The main goal of the headway-based holding control is to
adjust the headway between buses by station holding. The average passenger waiting time is related
to the average headway and variance of headway, as shown in the following equation [53]:

E(W) = E(H)/2 + var(H)/[2 · E(H)] (1)

In which
E(W) is the average waiting time [sec] of passengers;
E(H) is the mean headway [sec];
var(H) is the variance of headway.
The above equation shows that the holding strategy based on headway can not only improve the

stability of headway, but also reduce the average waiting time of passengers. The main principle of
this holding strategy is that, when the headway between two buses is less than a planned number, the
latter bus will be held at the station to adjust the headway.

In order to reduce the unnecessary long time of holding, a coefficient β (0 < β ≤ 1 ) is introduced
and βh is the minimum allowable headway. Only when the distance between two buses is smaller than
βh can the holding strategy be implemented. Previous studies show that the β range between 0.6 and
0.8 is relatively appropriate [54]. So, a medium value of 0.7 is taken for β in this paper. The holding
strategy means the extension of the bus stopping time at the station, leading to the prolonging of
passenger waiting time in the cars. However, the waiting time that passengers can endure in the car is
limited. Therefore, a maximum allowable holding time gmax is set in this paper. The value of gmax is set
as 90 s according to Reference [55].

3.4. Assumptions

• The capacity limit of the bus is not considered, that is, all the passengers waiting at the station can
get on the bus when a bus arrives.

• The transfer within the common corridor is not considered.
• Passengers data at each station for every bus line is calculated from the historical data, and is not

a variable.
• In the corridor, only the interactions between two buses are considered.

3.5. Formulation of the Holding Criteria

3.5.1. Single Line Holding Strategy

The holding time in this paper refers to the additional time that bus stays at the station under
the implementation of holding strategy. Figure 2 is a simplified diagram of single line bus operation.
Assuming that the number of bus station is n, the holding time is calculated as follows:

gi, j =

 min
[
max

[
0, βhi−1,i −

(
di, j − di−1, j

)]
, gmax

]
, i , 1

0, i = 1
(2)

di, j = di, j + gi, j (3)

βhi−1,i −
(
di, j − di−1, j

)
is the holding time considering the headway when holding strategy is not

implemented, and the minimum allowed headway. When the value is less than zero, the value of
gi, j will be zero. That is, the bus normally leaves the bus station without holding. When the value is
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greater than gmax (the maximum allowed holding time), the holding time will gi, j be set as gmax so that
passengers will not wait too long in the bus. When the value is between 0 and gmax, the holding time
will be the calculated value of βhi−1,i −

(
di, j − di−1, j

)
.

The first bus departing from the starting station will not be held, and the holding strategy will be
carried out from the second bus. Buses at the first and last station and the penultimate station will
not be held too. The effect of the bus holding at the penultimate station is meaningless, because the
implementation of the station directly affects the arrival time of the next station, which is the terminal,
and there will be no passengers waiting. In a word, the holding strategy is carried out from the second
station to the third from the bottom.

Figure 2. Operation of the single bus line.

3.5.2. Holding Strategy Outside the Common Corridor

When buses of bus line A and bus line B are outside the common corridor, the buses of two lines
will not interfere with each other, so the control method as that of a single line.

For bus line A

gi,p =

 min
[
max

[
0, βhi−1,i −

(
di, j − di−1,p

)]
, gmax

]
, i , 1

0, i = 1
(4)

di,p = di,p + gi,p (5)

For bus line B

Gk,q =

 min
[
max

[
0, βHk−1,k −

(
Dk, j −Dk−1,q

)]
, gmax

]
, i , 1

0, i = 1
(6)

Di,q = Di,q + Gi,q (7)

3.5.3. Holding Strategy Within the Common Corridor

When two bus lines are running in a common line segment, they will interfere with each other
and aggravate the phenomenon of bus bunching. Therefore, the influence of another bus line in the
common corridor should be taken into consideration when carrying out the bus control strategy. Since
it is difficult to control the running speed of buses between stations, this paper carries out collaborative
control on the stopping time of buses at the station in order to reduce the occurrence of bus bunching
between different bus lines. Therefore, within and without the common corridor, the calculation of
holding time is different. The influence of other lines should be considered in the common corridor.

For the two bus lines in the common corridor, the holding time can be calculated, respectively,
as follows:
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For bus line A:

gi, j =


min

 max

 min
[
max

[
0, βhi−1.i −

(
di, j − di−1, j

)]
, gmax

]
,

max
[
0, c−

(
di, j −D j

)] ,
min

[
max

[
0, hi−1,i −

(
di, j − di−1, j

)]
, gmax

]
,

(
D j , 0, i , 1

)
min

[
max

[
0, βhi−1,i −

(
di, j − di−1, j

)]
, gmax

]
,
(
D j = 0, i , 1

)
0, (i = 1)

(8)

di, j = di, j + gi, j (9)

d j = di, j (10)

For bus line B:

Gk, j =


min

 max

 min
[
max

[
0, βHk−1.k −

(
Dk, j −Dk−1, j

)]
, gmax

]
,

max
[
0, c−

(
Dk, j − d j

)] ,
min

[
max

[
0, Hk−1,k −

(
Dk, j −Dk−1, j

)]
, gmax

]
,

(
d j , 0, k , 1

)
min

[
max

[
0, βHk−1,k −

(
Dk, j −Dk−1, j

)]
, gmax

]
,
(
d j = 0, k , 1

)
0, (k = 1)

(11)

Dk, j = Dk, j + Gk, j (12)

D j = Dk, j (13)

For the last station in the common corridor, that is, station S + n, it is also treated as the station
outside the common corridor. This is because no matter whether the strategy is carried out at this
station, the two bus lines will never meet at the next stop.

When the buses of bus line A and bus line B are running along the common corridor, the two lines
may meet in the station or section to affect each other. So, when implementing a holding strategy, the
interaction of the two bus lines should be taken into consideration. The principle of this model is to
avoid the meeting of different bus lines. When the headway between the bus of line A and the bus of
line B is less than c, it is considered that the buses of the two lines are too close. So that control strategy
needed to be carried out and the holding time is max

[
0, c−

(
di, j −D j

)]
. At the same time, it should

also satisfy the stabilization of the headway between buses of the same bus line. Make it the bigger one
of the two bus lines. As the ultimate goal is to ensure the headway remain stable, not to avoid the two
bus lines meeting, the maximum allowable holding time min

[
max

[
0, Hk−1,k −

(
Dk, j −Dk−1, j

)]
, gmax

]
is

set to prevent the situation that buses waiting too long at the station and make the headway of the
front bus too large.

4. Simulation Experiments

The experiment data in this paper are derived from the bus operation data of Foshan, Guangdong
City. The cases of bus no. 391 and bus no. 378 with a common line segment and the obvious
phenomenon of bus bunching are selected as the object in this paper. The direction and common route
sections of bus no. 391 and bus no. 378 are shown in Figure 3.
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Figure 3. Bus route map of bus no. 391 and bus no. 378.

Through the statistical analysis of historical data and simulation, it is proved that buses running
in the same corridor will influence each other, making bus bunching more common. Therefore, the
simulation experiment is carried out to verify the effectiveness of the collaborative control strategy
proposed in this paper to solve the problem of the bus lines running in the common corridor.

4.1. The Performance of the Proposed Strategy

The simulation environment was built by Vissim based on the current situation of bus no. 378
and bus no. 391. Under the simulation condition, the operation data of bus no. 391, with the
implementation of the proposed strategy, were obtained. It is then calculated and compared with the
original operation data without any control strategy. The departure and arrival time at each station is
extracted and drawn into the bus running trajectory diagram, as shown in Figures 4 and 5.

Figure 4. Bus running trajectory of bus no. 391(before control strategy).
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Figure 5. Bus running trajectory of bus no. 391(after control strategy).

From the comparative figure above, it can be clearly seen that after the implementation of the
strategy, the interval between the two adjacent buses becomes more even.

Calculate the headway of the buses and the distribution of headway is shown in Figures 6 and 7.

Figure 6. The distribution of headway before control strategy.

Figure 7. The distribution of headway after control strategy.
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The headway of the original data shows a scattered state in Figure 6, indicating that the headway
greatly deviates, and the bus operation is very unstable. While after the implementation of the holding
strategy, headway converges towards the center (Figure 7), indicating that the headway becomes stable.

Calculate the time headway variation coefficient of each station (Table 2) and a comparison
diagram is shown in Figure 8. It can be seen from the figure that after the implementation of strategy,
the headway variation has been significantly reduced, which indicates that the probability of bus
bunching is reduced.

Table 2. Headway Variation Coefficient of Bus no. 391 before and after S2 implemented.

Station
Number Before After Station

Number Before After Station
Number Before After

2 0.33542 0.33542 16 0.66405 0.34674 30 0.94128 0.46917

3 0.34644 0.32562 17 0.68118 0.34925 31 0.96914 0.46697

4 0.35375 0.32309 18 0.73276 0.36878 32 0.96255 0.46979

5 0.47092 0.40193 19 0.78133 0.37848 33 0.94588 0.46908

6 0.48254 0.39156 20 0.78978 0.37240 34 0.94812 0.47679

7 0.44699 0.36211 21 0.79991 0.36622 35 0.99950 0.45800

8 0.50515 0.37850 22 0.78921 0.36887 36 1.02260 0.48445

9 0.52741 0.36828 23 0.81225 0.37209 37 1.07164 0.47845

10 0.51524 0.37468 24 0.83981 0.37775 38 1.11700 0.46139

11 0.52402 0.37089 25 0.8241 0.42168 39 1.13477 0.64522

12 0.58781 0.36637 26 0.83851 0.47405 40 1.69743 0.59404

13 0.59309 0.35567 27 0.85388 0.46738 41 2.15718 0.51007

14 0.64604 0.38590 28 0.87571 0.46836 42 2.20790 0.50792

15 0.65685 0.37230 29 0.92892 0.46315 43 2.18257 0.41818

Figure 8. Headway variation coefficient before and after S2 implemented.

In addition, relevant indicators were calculated to quantify the difference before and after the
implementation of the strategy, as shown in Table 3.
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Table 3. Indicators before and after S2 implemented.

Indicators Before After Relative Difference

Average headway variation coefficient 0.870491 0.41818029 −51.96%
Standard deviation of headway 314.6746 137.4170 −56.33%

Total time of bus operation/s 97586 96915 −0.69%
Total time of bus stopping/s 5649 10074 78.33%
Total time of bus travelling/s 91937 86841 −5.54%

Total number of bus bunching 125 5 −96.00%

* Note: ‘-’ means that the results calculated after S2 implemented are smaller than before. The same below.

As can be seen from the above table, after the implementation of the holding control, the average
headway variation coefficient decreased by 51.96%, and the standard deviation of headway decreased
by 56.33%, which indicates that the holding control significantly improved the stability of headway.
Furthermore, the total number of bus bunching dropped from 125 times to five times, and the five
times of bus bunching occurs in the last four stops, basically solving the problem of bus bunching.
Although the total bus dwell time increased by 78.33%, due to the holding control, the overall running
time during the common corridor decreased by 5.54%. It also proves that the holding control is
very effective.

4.2. Comparison

The main objective of our work is to study the impacts of single-line control strategy versus
coordinated control strategy in the common corridor. In order to achieve this, we compared three
scenarios:

• Single-line control strategy (S1): All the buses in the corridor are controlled independently without
considering the interference of other bus lines.

• Coordinated control strategy (S2): The control strategy is carried out considering the interaction
between different bus lines as described in Section 3.

• No control: In this scenario, all the buses are allowed to operate without any intervention or
control strategy. This scenario serves as a base line for the comparison of the other scenarios.

Figure 9 is a comparison diagram of headway distribution for S1 and S2. It can be seen from the
figure that the headway after the implementation of the two strategies is similar to a high degree of
overlap. That is, the improvement effect of both strategies on bus bunching is similar as well.

Figure 9. The distribution of headway after S1 and S2 implemented.
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In order to further illustrate the advantages of the coordinated control strategy (S2) over single-line
based control strategy (S1), the improvement effects of the two strategies are compared and analyzed
in the following aspects.

4.2.1. Number of Holding

Figure 10 is a schematic diagram of whether the bus no. 391 is held at the station. The dark
square means that the bus is held at the station, while the light square means not. According to the
comparison of the two strategies, the dark area of S1 is obviously larger than that of S2, meaning that
S1 implemented more times of holding than S2.

Figure 10. Number of holding at each station after S1 (a) and S2 (b) implemented.

In addition, most of the buses are held at more than one station. It shows that choosing only one
or two stations to carry out holding control will not effectively improve bus bunching. It is because
various factors leading to the phenomenon of bus bunching still exist after holding control and will
continue to affect the bus operation, causing the instability of headway.

The total number of holding control at each station is calculated, as shown in Table 4. the total
number of holding in S1 was 225, while that in S2 was 175, which was 50 times less than that in S1.
The increase of the number of holding will add to the complexity of the bus driver’s work. That is why
previous studies usually select only one or two stations to avoid repeated stops in the process of bus
operation. Therefore, S2 is superior to S1 in terms of the number of holding.

Table 4. Total number of holding at each station for S1 and S2.

Station
Number S1 S2 Station

Number S1 S2 Station
Number S1 S2

1 0 3 15 5 4 29 5 4

2 4 3 16 6 5 30 6 5

3 4 3 17 0 0 31 6 2

4 5 5 18 6 4 32 4 3

5 8 6 19 6 6 33 6 5

6 7 5 20 5 5 34 2 2

7 3 0 21 5 2 35 6 5

8 6 5 22 4 3 36 8 8
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Table 4. Cont.

Station
Number S1 S2 Station

Number S1 S2 Station
Number S1 S2

9 6 6 23 8 6 37 4 3

10 9 6 24 6 5 38 3 3

11 7 4 25 6 4 39 1 3

12 6 4 26 6 4 40 9 11

13 5 4 27 7 4 41 10 3

14 7 8 28 8 4 TOTAL 225 175

4.2.2. Holding Time

The figure below (Figure 11) shows the thermal map of holding time at each station. The darker
the color, the longer the bus stays at the station. Comparing the two figures, the dark blocks of S1 are
more than that of S2, which indicates that most of the holding time of S1 is longer than S2.

Figure 11. Thermal diagram of holding time at each station for S1(a) and S2(b).

The total holding time is calculated in Table 5. The holding time at most stations in S1 is larger
than that in S2. From the perspective of the whole period, the total holding time of S1 is 5231 seconds,
while that of S2 is 3051 seconds. The total holding time of S2 is 41.67% less than that of S1. The holding
at the station leads to the extension of the bus running time. Therefore, the longer the bus is held
at the station, the greater the impact on bus bunching. To sum up, S2 is superior to S1 in terms of
holding time.

Table 5. Total holding time at each station after S1 and S2 implemented.

Station Number
Holding Time/s

Station Number
Holding Time/s

Station Number
Holding Time/s

S1 S2 S1 S2 S1 S2

2 63 41 9 452 245 16 728 587

3 392 130 10 65 13 17 554 527

4 130 169 11 99 9 18 273 163

5 102 107 12 0 0 19 83 24

6 0 0 13 0 0 20 199 112

7 28 49 14 320 29 21 401 96

8 304 0 15 583 293 22 455 457

TOTAL S1 5231 S2 3051 Relative
Difference 41.67%
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4.2.3. Bus Running Time

After the implementation of control strategy, the bus stop time, running time, and other indicators
will change. Therefore, S1 and S2 are compared from these aspects.

In order to better compare the stopping time of the bus at each station, subtracting the stopping of
S2 from that of S1 as a stop time difference. The values are drawn into the figure below. In Figure 12,
white indicates that the stop time of S1 and S2 is equal, red indicates that the stop time of S2 is longer
and blue indicates that the stop time of S1 is longer. The darker the color is, the larger the stop time
difference is. There are more blue blocks in the figure than red, indicating that the stop time of S1 is
longer than that of S2 at more stations. It is also related to the fact that the holding time of S1 is longer
than S2 at most stations. Although there are many blue blocks, most of them are lighter, indicating that
although the stop time of S1 is longer, the difference is not significant. In Table 6, the total stop time of
S2 is 13.06% less than that of S2, which is consistent with the results presented in the thermal map.

Figure 12. The difference in stopping time between S1 and S2.

Table 6. Indicators of bus operation time.

Indicators S1 S2 Relative Difference

Total Time of Bus Operation /s 103009 96915 −5.91%

Total Time of Bus Stopping /s 11587 10074 −13.06%

Total Time of Bus Travelling /s 91422 86841 −5.01%

The total running time of S2 is 86841 seconds, which is 5.01% less than that of S1. After the
implementation of S2, bus no. 391 was less likely to be affected by bus no. 378 and the speed of bus
no. 391 was slightly improved.

In a word, S2 is superior to S1 in terms of the total bus operation time, the total stop time and the
total bus section running time.

4.2.4. The Influence of Other Bus Lines in the Same Corridor

S1 only controls bus no. 391, but changes in the running state of bus no. 391 may affect the
running state of bus no. 378 in the same corridor. S2 not only controls bus no. 391, but also bus no. 378.
Therefore, the running state of bus no. 378 will change after the implementation of S2. In a word, it is
necessary to analyze the running state of bus no. 378 after the implementation of the two strategies.
The operation state of bus no. 378 in the common corridor is analyzed below. The following three
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pictures show the bus running trajectory of bus no. 378 before and after the implementation of the
two strategies.

Through the comparison between the running trajectory before and after the implementation of
S1, as shown in Figures 13 and 14, we can see that although S1 did not adopt any control over bus
no.378, the running state of it changed because of the change of bus no. 391. this also shows from the
side that buses of different lines in the common corridor will interact with each other.

Figure 13. Bus running trajectory of bus no. 378(before control strategy).

Figure 14. Bus running trajectory of bus no. 378(after S1 implemented).

Through the comparison between the running trajectory after the implementation of S1 and S2, as
shown in Figures 14 and 15, we can see that the bus trajectory of S2 is more even. This is because that
S2 aims at stabilizing the headway of bus no. 378 as well.

According to Figure 16, after the implementation of S2, the headway variation coefficient of bus
no. 378 decreased significantly, indicating that the reliability of bus no. 378 increased. It proves that
the implementation of S2 not only improves the phenomenon of bus bunching of bus no. 391, but also
increases the operational reliability of bus no. 378.
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Figure 15. Bus running trajectory of bus no. 378(after S2 implemented).

Figure 16. Line chart of headway variation coefficient of bus no. 378 under three scenes.

The following table (Table 7) is the summary table of bus operation indexes of bus no. 378 before
and after the implementation of the two strategies. After the implementation of S1, the stop time, the
section running time and the total bus running time of no. 378 all decreased to a certain extent. After
the implementation of S2, due to holding at some stations, the stop time of bus no. 378 increased.
However, due to the reduced interference of bus no. 391, the total running time of bus no. 378 decreased
to some extent.

Table 7. Indicators of bus no.378.

Indicators Before S1 S2

Total Time of Bus Stopping /s 1810 1711 2301

Total Time of Bus Holding /s 610

Total Time of Bus travelling /s 28533 28371 27295

Total Time of Bus Operation /s 30343 30082 29596

4.2.5. Comprehensive Analysis

Table 8 is a summary of S1 and S2 indicators. Taking the bus no. 391 as the evaluation target,
although S1 had a slightly worse improvement effect on bus bunching than the S2, the other indicator
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S2 are better than the S1. Taking bus no. 378 as the evaluation target, S2 is better than S1. In addition,
taking the system of the common corridor with bus no. 378 and bus no. 391 as the evaluation target,
the total number of stops and the total holding time, the total bus operation time, the total stop time
and the total section running time of S2 are smaller than the S1. Therefore, after the improvement of S2,
the bus bunching phenomenon of bus no. 378 and bus no. 391 has been greatly improved. So, the
strategy proposed in this paper is an acceptable better strategy.

Table 8. Summary of indicators for S1 and S2.

Evaluation
Object Category Indicators S1 S2 Relative

Difference

Bus No. 391

Bus Bunching
Improvement

Average Headway
Variation Coefficient 0.3993 0.4182 4.73%

Standard deviation of
headway 123.9888 137.417 10.83%

Total number of bus
bunching 4 5 25.00%

Bus Holding

Total number of bus
holding 225 175 −22.22%

Total time of bus
bunching /s 5231 3051 −41.67%

Bus Operation

Total time of bus
operation /s 103009 96915 −5.92%

Total time of bus
stopping /s 11587 10074 −13.06%

Total time of bus
travelling /s 91422 86841 −5.01%

Bus No. 378

Bus Bunching
Improvement

Average Headway
Variation Coefficient 0.3986 0.2524 −36.68%

Standard deviation of
headway 247.768 171.309 −30.86%

Total number of bus
bunching 0 0 -

Bus Holding

Total number of bus
holding 0 28 -

Total time of bus
bunching /s 0 610 -

Bus Operation

Total time of bus
operation /s 30082 29596 −1.62%

Total time of bus
stopping /s 1711 2301 34.48%

Total time of bus
travelling /s 28371 27295 −3.79%

Bus System

Bus Holding

Total number of bus
holding 225 203 −9.78%

Total time of bus
bunching /s 5231 3661 −30.01%

Bus Operation

Total time of bus
operation /s 133091 126511 −4.94%

Total time of bus
stopping /s 13298 12375 −6.94%

Total time of bus
travelling /s 119793 114136 −4.72%

Compared with S1, S2 considers the interaction between buses on different lines within a common
corridor. During the implementation of the strategy, not only the single line is controlled, but the
multi-lines that have a mutual influence on the common corridor are also controlled coordinately
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to reduce more delay. By comparing the two strategies, under the premise of better improving the
phenomenon of bus bunching, the multi-line cooperative control method reduced the delay caused by
the traditional single line control strategy. At the same time, the operating status of other lines in the
common corridor is improved.

5. Conclusions

5.1. Key Findings

In this paper, based on the bus big data, this paper conducts a study on bus bunching between
two bus lines with a common corridor. The main research results are as follows:

Two bus lines based coordinated control strategy to improve bus bunching is established. The bus
running state of the two bus lines are monitored in real time by simulation. Through the analysis
of the bus running status before and after the implementation of strategy, it proves that the strategy
proposed in this paper has a good effect on the improvement of bus bunching in multi-line corridor.

Compared and analyzed the two different improvement strategies from various aspects. Indicators
of the collaborative control strategy are superior to those of the single-line based strategy. It shows that
it is meaningful to study the influence of the common corridor on bus bunching and add the factors of
the common corridor into the traditional single-line based improvement model.

5.2. Future Work

In this paper, the control strategy is established based on the target of stabilizing the headway of
buses. This method is relatively simple. Future research can consider quantifying the mutual influence
and coordinated control of different lines in the common line segment into the model, and put the
focus on other optimization targets, such as minimizing the total cost of passengers.

To increase the realism of the case study, the bus capacity and passenger data should also be
included in the model. In this paper, passenger’s data at each station for every bus line is constant
and calculated from the historical data. The model can be further improved if stochastic passenger
arrivals are considered. To achieve this, a queueing model needs to be added to the model to describe
the boarding and alighting process at each station explicitly.

On the other hand, the consideration of bus capacity would amplify the propagation of delays, as
crowded buses tend to need more time per passenger to complete boarding and alighting. Consideration
of crowding would further possibly lead to a revised queueing model in which passengers might
predict that crowded buses require more dwell time at subsequent stops, and hence, prefer to board
less congested buses as those buses tend to complete alighting at the next stops faster. Furthermore,
if we consider vehicle capacity constraint, the total cost is more likely to increase with regard to the
idealized performance with perfect regularity.

In the downtown areas of China’s cities, there are many bus lines in some sections, and the number
of collinear lines is even as high as 10. The increase in the number of buses lines in the common
corridor will lead to more serious interactions with each other. Therefore, this factor can be considered
in the research of public transport network planning in future research. Our future study will focus on
extending the results and control strategy presented in this paper to the entire bus network. That means
a network of different size, branch, corridor lengths should be considered and assessed to decide when
and where to carry out the coordinated control strategy. Furthermore, when it comes to the whole
network with multiple branching situations, the transferring passengers should also be accounted for.

For different bus lines with a long line segment, future research on timetable optimization can be
further improved from the perspective of adjusting the bus departure time to avoid the bus of different
lines entering the common line segment at the same time.
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