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Abstract: The Belt and Road Initiative (BRI) is a Chinese strategy, proposed to strengthen the
connectivity and cooperation among BRI countries. Under this circumstance, many transportation
projects are planned to be carried out, which means the transportation accessibility evaluation is
of significance in providing valuable suggestions for transportation construction. This research
established a global transportation accessibility index (GTAI) model in the BRI region using raster data.
Based on its gridded outputs, we conducted classification evaluation, autocorrelation analysis, and a
geographical weighted regression model to explore the spatial characteristics of the GTAI distribution
and its correlation with population density. The results show that: (1) most countries in Europe and
the Middle East, western Russia, and eastern China enjoy high accessibility, while central regions (e.g.,
Central Asia and western China) have poor access to destinations; (2) the GTAI values are distributed
as a spindle, where about 60% areas belong to the middle transportation accessibility region, mapped
as a non-significant type; and (3) there is a positive relationship between transportation accessibility
and population distribution, but their connection tends to be weaker as socioeconomic development
increases. Finally, several policy implementations are provided: (1) give a priority to road or railway
construction between China and Central Asian countries; (2) establish an innovative transportation
system and introduce advanced technologies to enhance the exchange and cooperation among the
BRI countries; (3) improve public transport management in well-developed regions, and introduce
talents and strengthen transportation infrastructure construction in developing regions.

Keywords: transportation accessibility; correlation analysis; spatial analysis; Belt and Road initiative

1. Introduction

The Belt and Road Initiative (BRI) is a Chinese strategy with the principle of “openness and
inclusiveness” and “wide negotiation, joint development and sharing benefits,” aiming to strengthen
the connectivity and cooperation among BRI countries [1]. Since its inception in 2013, the BRI regions
have made significant progress [2]. According to the World Bank statistics, the share of 65 BRI countries
(more details are presented in Section 2.1) in world GDP increased by 3% and the GDP per capita
of those countries has increased by 132% in the past five years, significantly outpacing the growth
rate of global GDP per capita. It is this rapid development that catches the eyes of many scholars.
Specifically, Suocheng et al. [3] put forward four modes of sustainable economic development for the
Silk Road Economic Belt to show the distribution pattern of resources, ecological environment, society,
and economy for the Silk Road Economic Belt. Li et al. [2] used nighttime light data to reflect the
spatial and temporal city development of countries along the Belt and Road. In addition, the change of
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population and urbanization in those counties has been studied by Liu et al. [4] based on a spatial
auto-correlation analysis and hierarchical cluster analysis from 1950 to 2050.

Although there has been much research related to BRI countries’ development, few of them focus
on evaluating the transportation accessibility in those regions. However, under BRI, many roads,
railways, ports, and airports are planned to be built to address the transport disadvantage and achieve
transportation equality in BRI regions [5], so as to balance socioeconomic progress and integrate the
principle of territorial cohesion [6]. Within this context, accessibility evaluation is of great significance,
which could answer the question of where the transportation infrastructures need to be built.

Accessibility, meaning the ease of reaching destinations, consists of two parts: mobility and
potential, reflecting the ability to move in the traffic network and the number or size of reachable
opportunities, respectively [7]. Many scholars have focused on the measurements of transportation
accessibility. In 1959, Hansen was the first to put forward a gravity measure for accessibility in view of
land development [8]. After that, lots of new approaches have been developed. For example, Murray
et al. [9] used buffer analysis to evaluate public transport accessibility in the Southeast Queensland
region of Australia. Yigitcanlar et al. [10] and Liu and Zhu [11] proposed a general framework to conduct
accessibility analysis based on geographic information systems. Mavoa et al. [12] and Saghapour
et al. [13] focused on developing related indexes to illustrate levels of accessibility. Balsa-Barreiro
et al. [14] took territorial cohesion into consideration and evaluated accessibility in a Spanish region by
considering both public and private transport modes.

Based on the above discussion, we find that existing transport accessibility measures mainly
focused on one or two transportation modes (such as roads and railways), often presented as vector
data, which cannot fully reflect the regional transportation ability. Besides, many researchers focused
on evaluating transportation accessibility in a city or subarea by calculating residents’ travel time,
cost, and distance [8–14], which is not suitable for determining the transportation condition level
at the macro scale due to problems in data availability. In light of this, we developed a global
transportation accessibility index (GTAI) model based on raster data, and took road, railway, waterway,
airports, and ports into consideration. Then, classification evaluation and autocorrelation analysis
were applied to figure out the distribution characteristics of accessibility in BRI regions. After that, a
geographical weighted regression (GWR) model was conducted to explore the spatial relationship
between accessibility and population density. Finally, several policy suggestions are provided based
on our results.

This paper is organized into six sections. In Section 2, we expound the study area and data source.
In Section 3, the GTAI model, weight assignment methods, and spatial analysis methods are presented.
In Sections 4 and 5, we analyze the results and conduct a discussion of our work, respectively. The
conclusions are drawn in Section 6.

2. Study Area and Data Sources

2.1. Study Area

There is no defined list of countries or regions in the Belt and Road initiative (BRI) because it is
open to all interested countries. However, in academic research, there is a widely used group of 65
countries [15]. At present, the total length of main roads in those countries is around 517,400 km, while
the total length of the railway networks is about 384,500 km, accounting for 28% of the world’s total
railways [16]. In addition, the socioeconomic conditions and infrastructure quality of those countries
vary widely [17,18]. Considering their development inequity, we selected them as our study area, which
could also provide valuable suggestions for a global accessibility evaluation. In this study, we divided
those countries into six sub-regions based on their location (see Table 1). The spatial distribution of six
economic corridors (Bangladesh–China–India–Myanmar Economic Corridor, BCIMEC; New Eurasian
Continental Bridge, NECB; China–Pakistan Economic Corridor, CPEC; China–Indochina Peninsula
Economic Corridor, CIPEC; China–Mongolia–Russia Economic Corridor, CMREC; China–Central
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Asia–West Asia Economic Corridor, CCAWAEC) and population density in the BRI region are presented
in Figure 1. Since the Maldives lacks related data, only 64 countries are included in the later discussion.

Table 1. Countries involved in the Belt and Road initiative.

Region Countries Number

China–Mongolia–Russia China, Mongolia, Russia 3

Southeast Asia
Vietnam, Laos, Cambodia, Thailand, Malaysia,
Singapore, Indonesia, Brunei, Philippines, Myanmar,
Timor-Leste

11

South Asia India, Pakistan, Bangladesh, Afghanistan, Nepal,
Bhutan, Sri Lanka, Maldives 8

Central Asia Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan,
Turkmenistan 5

Central and Eastern Europe

Poland, Czech Republic, Slovakia, Hungary, Slovenia,
Croatia, Romania, Bulgaria, Serbia, Montenegro,
Macedonia, Bosnia and Herzegovina, Albania,
Estonia, Lithuania, Latvia, Ukraine, Belarus,
Moldova

19

West Asia and Middle East

Turkey, Iran, Syria, Iraq, United Arab Emirates, Saudi
Arabia, Qatar, Bahrain, Kuwait, Lebanon, Oman,
Yemen, Jordan, Israel, Palestine, Armenia, Georgia,
Azerbaijan, Egypt

19

1 
 

 

Figure1 

 

Figure 3 

Figure 1. Map of population density and six economic corridors in the Belt and Road Initiative (BRI)
region. BCIMEC, Bangladesh–China–India–Myanmar Economic Corridor; NECB, New Eurasian
Continental Bridge; CPEC, China–Pakistan Economic Corridor; CIPEC, China–Indochina Peninsula
Economic Corridor; CMREC, China–Mongolia–Russia Economic Corridor; CCAWAEC, China–Central
Asia–West Asia Economic Corridor.

2.2. Data Sources

The point layers (airports and ports data) were downloaded from OurAirports [19] and the Food
and Agriculture Organization of the United Nations (FAO) GeoNetwork [20], respectively. The line
layers, such as road and railway data, were obtained from DIVA-GIS [21], while river data were
acquired from Natural Earth [22]. In order to determine the road, railway, and waterway density data,
we calculated the sum of the road, railway, and river lengths in each grid cell (10 km × 10 km), and
then divided the length by the area of the grid cell. Considering that this is a large-scale study, we
only selected primary and secondary roads, operational railways, and rivers with moderate detail
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(under a 50 m level). The shortest distances in each grid cell to four kinds of transport facilities were
calculated using ArcPy. The distance is the length of the straight line from the center point of each cell
to a nearest road, railway, airport, or port in the same country. If a facility is not present in a country, for
example, many landlocked countries do not have ports, the shortest distance is automatically assigned
as the maximum distance from other cells to this type of facility. Also, to some extent, transportation
evaluation needs to take population density into account [23]. Many studies have been conducted on
this topic [24,25]. In light of this, LandScan population data in 2015 were used in this study to adjust
transportation indices [26] (see Figure 1).

3. Method

3.1. Global Transportation Accessibility Index Model

Referring to Feng et al.’s study [27], two main sub-indices, namely the transportation density
index (TDI) and transportation convenience index (TCI), were assigned the same weights to calculate
the GTAI. The TDI is the aggregation of the normalized road density (RDI), railway density (RWDI),
and waterway density (WDI) based on correlation analysis. The TCI is the combined normalized
shortest distances from each grid cell to roads (SDRI), railways (SDRWI), airports (SDAI), and ports
(SDPI) based on a pairwise comparison. Min-max normalization was used in this study, which is
defined as follow:

x∗i =
xi −min(X)

max(X) −min(X)
(1)

x∗i =
max(X) − xi

max(X) −min(X)
(2)

where x∗i is the normalized value of x in grid cell i, and X is the set of variable x. In this study, SDRI,
SDRWI, SDAI, and SDPI were normalized using Equation (2), while other variables used Equation (1).
As such, all indices ranged from 0 to 1, and high values indicated a high transportation ability. The
detailed process of the GTAI model is presented in Figure 2.Sustainability 2019, 11, x FOR PEER REVIEW 5 of 16 
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Figure 2. Schematic of GTAI model. RDI, road density index; RWDI, railway density index; WDI,
waterway density index; SDRI, shortest distance to road index; SDRWI, shortest distance to railway
index; SDAI, shortest distance to airport index; SDPI, shortest distance to port index; TDI, transportation
density index; TCI, transportation convenience index; GTAI, global transportation accessibility index.
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3.2. Weight Assignment Method Based on Correlation Analysis

There are two general types of relationships between things, a functional relationship and statistical
relationship. Because of the uniqueness of the functional relationship, it is easier to analyze and
measure [28]. However, relationships often appear in non-unique and indirect forms, which cannot be
described using a functional formula. Within this context, correlation analysis was introduced to reveal,
analyze, and explain the connection between things. Considering that different transport modes may
contribute differently in each country, correlation analysis was used to explore the relationship between
the population and three normalized traffic density factors (RDI, RWDI, and WDI) for each country in
this study. This was done to determine the appropriate weights, and the degree of correlation was
shown using Pearson’s correlation coefficient, which is the covariance of the two variables divided by
the product of their standard deviations [29]. Assuming that there are two variables, x and y, we can
calculate their Pearson correlation coefficient based on Equation (3):

r =

∑n
i=1(xi − x)

(
yi − y

)
√∑n

i=1(xi − x)2 ∑n
i=1(xi − y)2

(3)

where r represents the Pearson correlation coefficient,
(
xi, yi

)
(i = 1, 2, ..., n) is the n-pair observed values

of two variables (population density and RDI/ RWDI/ WDI), and x and y are the mean values of the
n-pair observed values. The range of the r value is from −1 to 1, where a positive value indicates a
positive correlation, while a negative value indicates a negative correlation. Moreover, the greater the
absolute value of r, the closer the connection between x and y. Because of this, the absolute values
of the correlation coefficients between the population and three kinds transportation density were
conducted as a reference for the weight assignment to calculate TDI. Its equation can be expressed as:

TDIi =
r1RDIi + r2RWDIi + r3WDIi

r1 + r2 + r3
(4)

where r1, r2, and r3 refer to the correlation coefficient between road density, railway density, waterway
density and population in a country, respectively; and RDIi, RWDIi, and WDIi are the grid cell i’s
normalized road density, railway density, and waterway density, respectively. The weights of the RDI
(W1), RWDI (W2), and WDI (W3) of each country are presented in Appendix A.

3.3. Weight Assignment Method Based on A Pairwise Comparison

Since airports are less likely to be located in a densely populated area and most large transportation
ports are by the sea, it is not reasonable to use correlation coefficients between them and the population
to determine their contributions. Given this, pairwise comparison was applied to the assignment
weights for those four shortest distance indices. This is in line with the analytical hierarchy process,
widely used in complex decision-making models [30,31]. The detailed processes used to calculate
weights for each shortest distance index is described as follows.

First, a pairwise comparison matrix was constructed. In this study, SDRI, SDRWI, SDAI, and SDPI
were assumed as factors affecting transportation convenience. After consulting experts and performing
investigations, we determined a matrix of pairwise comparisons of those four factors (see Table 2), and
then its eigenvector, maximum eigenvalue, and consistency ratio (CR) were calculated. If CR was less
than 0.1, the normalized eigenvector was the weight vector. If not, the pairwise comparison matrix
needed to be reconstructed. For the following matrix, its maximum eigenvalue and CR were 4.02 and
0.07, respectively; therefore, the normalized eigenvector was regarded as a weight vector (see Table 2).
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Table 2. Pairwise comparisons of factors affecting transportation convenience.

SDRI SDRWI SDAI SDPI Weight

SDRI 1 3 3 6 0.53
SDRWI 1/3 1 1 3 0.20
SDAI 1/3 1 1 3 0.20
SDPI 1/6 1/3 1/3 1 0.07

3.4. Autocorrelation Analysis

3.4.1. Global Moran’s I

Moran’s I has been frequently introduced to demonstrate the spatial autocorrelation characteristics
of geographical features [32,33], which can be calculated as follows:

Moran′s I =
n
∑n

i=1
∑n

j=1 Wij(xi − x)
(
xj − x

)
∑n

i=1
∑n

j=1 Wij
∑n

i=1

(
Xi −X

)2 (5)

where Wij represents the weight; Xi and Xj are the values of X in the corresponding spatial units i
and j, respectively; X denotes the average of the X value; n is the total number of spatial units; and
i represents the ith unit. Moran’s I value is between −1 and 1. A value close to 1 implies a positive
autocorrelation, while a value close to −1 refers to a negative autocorrelation. If its value is close to 0,
it suggests a random spatial distribution. Moreover, Moran’s I can be tested using the z-value and
p-value, and their relationship with confidence levels is shown in Table 3.

Table 3. The criteria of z-score, p-value and confidence level.

Z-Score p-Value Confidence Level

<−1.65 or >1.65 <0.10 90%
<−1.96 or >1.96 <0.05 95%
<−2.58 or >2.58 <0.01 99%

3.4.2. Local Moran’s I

To deeply analyze the spatial correlation of accessibility, this paper applied local Moran’s I to
analyze the spatial cluster and outlier of accessibility in GeoDa (developed by Anselin et al., Chicago,
IL, USA), which is also known as the local indicators of spatial association (LISA) [34]. It can be
measured using:

LISAi =
Xi −X
σ2

n∑
j=1

wij

(
Xj −X

)
(i , j) (6)

where LISAi is the local Moran’s I for sample i, σ2 is the overall variance of all samples, while other
variables are the same as Equation (5). There are four kinds of distribution characters: cluster of high
values (HH), cluster of low values (LL), high values surrounded by low ones (HL), and low values
surrounded by high values (LH).

3.5. Geographical-Weighted Regression Model

Unlike traditional linear regression, which assumes that the relationship is spatially constant,
GWR uses the local statistics, using local parameters to represent the non-stationarity of geographical
variables [33,35]. It can be expressed as the following:

yi = β0(ui, vi) +
∑

k

βk(ui, vi)xik + εi (7)
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where (ui, vi) denotes the coordinates of location i in space, β0(ui, vi) represents the intercept value,
xik is the kth independent variable at location i, and βk(ui, vi) represents the parameter for the kth

independent variable at location i. In this study, about 10,000 points randomly located in the BRI
region were selected as samples to conduct the GWR, reflecting the spatial relationship of GTAI and
the population.

4. Results

4.1. Classification Evaluation of Transportation Accessibility

For a better discussion, we divided the BRI region into five classes based on GTAI values using
natural breaks in ArcGIS 10.2. The GTAI of the low transportation accessibility region was defined as
being less than 0.35. As presented in Figure 3 and Table 4, only a small area suffered low accessibility,
accounting for 1.21% of the whole BRI territory, with a population density close to 0, mainly in the
eastern parts of Russia. The GTAI of the middle–low transportation accessibility region was defined as
being between 0.35 and 0.46, mainly concentrated in northern and eastern Russia, western and eastern
Mongolia, western China, western Indonesia, Afghanistan, Yemen, Oman, and Laos. Although those
areas covered an area of 7.42 million km2, which was twice as the large as high accessibility regions,
only 1.09% people were living in there. This was possibly due to their poor conditions, high elevation,
adverse climate, or low economic capabilities, which restricted local transportation development.
About 60% of the BRI regions belonged to the middle transportation accessibility regions, defined as
a GTAI from 0.46 to 0.53, which was more likely distributed in Central Russia, northwestern China,
most areas in Central Asia and Belarus, parts of Southeast Asia, western Indonesia, and Egypt, with
a population density of 35 people/km2. As for the middle–high transportation accessibility region
(defined as a GTAI between 0.53 and 0.59) and the high transportation accessibility region (defined as
a GTAI larger than 0.59), their distribution characteristics were similar, mostly located in European
regions, western Russia, India, eastern China (especially in the Beijing–Tianjin–Hebei region, Yangtze
River Delta, and Pearl River Delta), with population density of 187 people/km2 and 437 people/km2,
respectively. It suggests that a high accessibility level was more likely to attract more residents [36].
The detailed spatial relationship between the population density and accessibility is discussed in
Section 4.3.

1 
 

 

Figure1 

 

Figure 3 
Figure 3. Spatial distribution of GTAI in the BRI region.
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Table 4. Statistics of land in different transportation accessibility regions.

Class

Land
Main RegionsArea

(million km2) Proportion (%)

Low transportation
accessibility region 0.61 1.21 Eastern Russia

Middle–low
transportation
accessibility region

7.42 14.69

Northern and eastern Russia, western and
eastern Mongolia, western China, western
Indonesia, Afghanistan, Yemen, Oman, and
Laos

Middle transportation
accessibility region 29.74 58.84

Central Russia, northwestern China, most
areas in Central Asia and Belarus, parts of
Southeast Asia, western Indonesia, and
Egypt

Middle–high
transportation
accessibility region

9.06 17.92
Most European regions, eastern Egypt,
western Russia, central and eastern China,
India

High transportation
accessibility region 3.71 7.34 Most European regions, western Russia,

eastern China, India

4.2. Autocorrelation Analysis of GTAI

Considering that a simple classification evaluation cannot reflect spatial distribution characteristics,
we selected 10,000 random points in ArcGIS for spatial analysis. After removing invalid records, only
9950 sample points were used in the analysis discussed below. The result suggests that there is less than
a 1% possibility that this clustered pattern could be the result of random chance, with a global Moran’s
I of 0.48, z-score of 287.42, and p-value less than 0.001. Under this circumstance, LISA was conducted
to map its spatial cluster effects. Figure 4 shows the Moran scatter plot of GTAI and the number of
samples for each cluster type. It shows that more than 60% of points belonged to a non-significant (NS)
type, while about 21.33% of samples were regarded as HH clusters, 15.21% samples were classified
into LL regions, and only 85 samples experienced different accessibility with their surroundings. These
ratios imply the aggregation of the GTAI distribution, consistent with the results of the global Moran’s I
and previous classification evaluations. For example, about 60% of the BRI regions belonged to middle
transportation accessibility regions, which was close to the sample proportion of the NS type.
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In order to more intuitively express the clusters and outliers, we mapped the LISA clusters
(see Figure 5). Each cluster has its own characteristics: (1) HH clusters: those areas that had high
accessibility and were surrounded by points with high accessibility. The specific characteristics were
that the accessibility in this type of region was relatively high, but with weak spatial heterogeneity.
Most of them were distributed in Central and Eastern Europe, northern parts of West Asia and Middle
East, India, and eastern China. Those regions tended to enjoy high socioeconomic levels. (2) LL clusters:
those areas that had low accessibility, as well as their neighbors. Similar to HH clusters, a small spatial
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difference was observed. They mainly concentrated in less-developed regions, depopulated zones, or
natural reserves, with few people, like northern and eastern Russia, western and eastern Mongolia,
western China, Afghanistan, Yemen, Oman, and eastern Indonesia. Those areas were more likely to be
dominated by mountainous terrain with large slopes covered by vegetation. (3) HL regions: those
areas that had high accessibility but surrounded by points with low accessibility, with a strong spatial
heterogeneity. Compared with the HH and LL samples, their distribution was relatively discrete. (4)
LH regions: those areas that suffered from low accessibility but were surrounded by points with high
accessibility, and experience strong spatial heterogeneity. Most of them were located in the national
border region.
 

2 

 

Figure5 
Figure 5. Spatial clusters and outliers of GTAI.

4.3. Spatial Relationship between GTAI and Population Density

Considering the spatial heterogeneity of the GTAI distribution, we established a GWR model
between the normalized population density and the GTAI using selected sample points, which could
explore their local relationship to provide key references for transportation planning. Since most
road construction is due to population gathering, in this study, GTAI was regarded as the dependent
variable, and population density was deemed to be the explanatory variable. For a better discussion,
the results were interpolated using inverse distance weighting, which are presented in Figure 6.

The population density had a positive impact on transportation accessibility, with an overall R2 of
0.69, which is in line with previous classification evaluations and existing studies [37]. However, a
negative relationship was found in some areas, like some parts of Russia, western Saudi Arabia, and
Yemen, where the corresponding R2 values in these places were relatively low (see the black circles in
Figure 6). This indicates that population density was not the main factor contributing to accessibility
differences in these regions. In fact, using the GWR, we found that a low R2 was observed in most
BRI regions (see the second picture in Figure 6). This was chiefly due to the following reasons: (1)
The population was much larger than the carrying capacity of transportation facilities. Those places
normally belonged to developed areas (e.g., Beijing, Shanghai, New Delhi, Mumbai, Moscow), and had
many infrastructures with high accessibility, but due to a large number of residents and limited traffic
land, there was no strong connection between population density and accessibility. (2) The population
was much smaller than the carrying capacity of transportation facilities. Regions in this situation could
be divided into two groups. The regions in the first group mostly had a middle population density but
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with high accessibility, like most Central and Eastern European countries. The second group contained
the areas with a low population density but had middle or high accessibility. Those regions were
generally traffic nodes, although they were located in remote areas.
 

3 

 

Figure 6 Figure 6. Interpolated results of GWR in the BRI region.

In addition, as marked by the black box in Figure 6, a strong positive relationship between
population density and GTAI was more likely to occur in developing regions. Box A corresponds to
the northern parts of Egypt, mainly including Cairo, Alexandria, Matruh, Giza, Ismailia, and Fayoum.
Those areas had relatively developed tourism and strong industrial development potential. Regions
with a high R2 in box B were mostly distributed in Kemerovo and Gorno-Altaysk. Due to limited natural
resources and uncomfortable climatic conditions there, the development has been relatively slow.
In comparison, the two red clusters in box C enjoyed relatively higher socioeconomic development.
The southwestern red cluster was largely located in Sichuan province, while the northeastern cluster
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was situated in southern parts of Shanxi province and northern parts of Henan province. All of
them have made some achievements in socioeconomic development. On the basis of the above
analysis and coefficient map in Figure 6, we conclude that the positive relationship between population
concentration and accessibility tended to be stronger in the areas with relatively low development
levels, and became weak as the local development level increased. This was partly because more
factors restricted transport construction in the regions with a better socioeconomic situation, such as
limited land, environmental protection, and so on.

5. Discussion and Suggestion

According to the spatial distribution of the GTAI, we can suggest that there are three apparent
clusters with a fairly high accessibility. The first cluster was in Central and Eastern Europe regions
and western Russia; the second cluster mainly included countries in West Asia, the Middle East,
and South Asia; and the last cluster was in eastern China. These regions were more likely to be
well-developed and the terrain was level. However, the central regions (e.g., Central Asia) were
experiencing relatively accessibility. In this case, the road or railway construction between China and
Central Asian countries should be given priority, which has significant and long-term implications for
the economic development in both Central Asian regions and western China.

Besides, the cluster type statistics of sample points shows that about 80% of BRI regions were
not classified into HH or HL types. This was mainly due to their sparse transportation networks,
weak transportation management, and closed society, which also largely restricted local socioeconomic
development. In this context, in addition to strengthening the transportation construction, new
transportation cooperation mechanisms can be developed in two parts: (1) establishing an innovative
transportation system, like adjusting or configuring the function and responsibility of the transportation
cooperative organization; and (2) proposing feasible transportation regulations. Furthermore,
governments could replace traditional customs with electronic customs, which will simplify the exit
and entry procedures, thereby improving customs efficiency, promoting exchanges and cooperation.
Finally, some international logistics information networks could be constructed, which can integrate
logistics data along the BRI regions and improve the efficiency of transnational logistics.

Moreover, results of the GWR indicate that there was a positive relationship between the
accessibility degree and population density. As the development level increased, partly due to land
restriction, their relationship became weak. Based on their spatial correlation, we suggest that: (1) For
the regions with extremely high population density and high accessibility (e.g., Beijing, Shanghai, New
Delhi, Mumbai, Moscow), governments could implement some transportation policies, like vehicle
restrictions, to encourage citizens using public transportation, and enhance public transportation
management and traffic education, which will not only improve commuting efficiency but also reduce
the air pollution. (2) For the regions with a relatively low population density but relatively high
accessibility (e.g., northwestern China), governments could invest funds to develop these places and
carry out preferential policies to attract talent. For example, improving salary and housing allowance.
(3) For the regions with a relatively high population density but a relatively low accessibility, these
areas were generally less developed, like Yemen, Bhutan, Laos, and western China, due to natural
conditions, and road and railway construction is necessary. Countries with a low overall transport
levels may need outside help, and places with good natural conditions (e.g., low elevation) and
relatively high population density should be prioritized. The governments with a rich experience in
transportation development could give valuable suggestions and technical and financial support to
less-developed areas. (4) For the regions with a coordinated population density and accessibility, such
as northern parts of Egypt; Kemerovo and Gorno-Altaysk of Russia; and Sichuan, Shanxi, and Henan
province of China; they were developing areas and still had strong potential, especially for places with
a relatively low socioeconomic level. Under these circumstances, governments could invest in roads
and railways, and some policy and welfare for talent introduction could be made. However, if the
regions suffer low population density as well as low accessibility, they were more likely to be nature
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reserves or depopulated areas, which are normally regarded as ecological barriers. In this case, no
human intervention should be given.

6. Conclusions

This study proposed a global model to visualize transportation accessibility and took the BRI region
as the study case. On the basis of the gridded output, we conducted a simple classification evaluation
of accessibility based on natural breaks and used Moran’s I to explore the spatial characteristics of the
GTAI distribution. Then, a GWR model was applied to study the relationship between population
density and accessibility. Finally, some feasible policies were provided. Our findings and policy
suggestions are as follows.

Overall, the spatial distribution of the GTAI looked like an oblique U shape. The two ends of the
NECB were economically prosperous regions, with high accessibility, but there was an accessibility
depression in the middle region that consisted of western China and Central Asia. In view of this,
we recommend strengthening the connection between China and Central Asian countries using road
and railway construction. In addition, considering only about 20% land was recognized as HH type,
we think it would be helpful to improve the BRI regions’ transportation condition by establishing an
innovative transportation system, introducing advanced technologies to enhance the exchange, and
developing cooperation among the BRI countries.

More importantly, we found that the relationship between population density and accessibility
varied in different regions. A weaker connection between them was more readily observed in
well-developed regions than in developing areas, which was chiefly due to the accessibility being
already saturated in metropolises and will not changes with the increasing of population density.
In those regions, government ought to improve public transport management and promote public
transportation. However, for developing or less-developed regions, transportation construction should
be given a priority in regions with good natural conditions and relatively high population density, and
preferential policies could be put forward for talent introduction. Of course, all development must be
carried out with regard to the ecological carrying capacity. In future study, we could involve natural
indexes (e.g., temperature, terrain, vegetation) to conduct a comprehensive assessment of sustainable
development in the BRI regions.
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Appendix A

Table A1. Weights of the three transport density indices of the Belt and Road countries a.

Country W1 W2 W3 Country W1 W2 W3

Afghanistan 0.90 0.01 0.10 Macedonia 0.55 0.45 0.00
Albania 0.35 0.65 0.00 Malaysia 0.56 0.43 0.01
Armenia 0.23 0.77 0.00 Maldives - - -
Azerbaijan 0.33 0.67 0.00 Moldova 0.62 0.26 0.11
Bahrain 1.00 0.00 0.00 Mongolia 0.17 0.83 0.00
Bangladesh 0.31 0.67 0.02 Montenegro 0.33 0.67 0.00
Belarus 0.35 0.43 0.22 Myanmar 0.27 0.52 0.21
Bhutan 1.00 0.00 0.00 Nepal 0.58 0.42 0.00
Bosnia and Herzegovina 0.50 0.50 0.00 Oman 1.00 0.00 0.00
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Table A1. Cont.

Country W1 W2 W3 Country W1 W2 W3

Brunei 0.91 0.09 0.00 Pakistan 0.43 0.53 0.04
Bulgaria 0.49 0.36 0.15 Palestine 0.22 0.55 0.23
Cambodia 0.34 0.35 0.31 Philippines 0.63 0.37 0.00
China 0.45 0.48 0.07 Poland 0.33 0.38 0.30
Croatia 0.46 0.48 0.07 Qatar 1.00 0.00 0.00
Czech Republic 0.58 0.24 0.18 Romania 0.35 0.62 0.03
Egypt 0.26 0.37 0.37 Russia 0.34 0.48 0.18
Estonia 0.39 0.61 0.00 Saudi Arabia 0.79 0.21 0.00
Georgia 0.44 0.56 0.00 Serbia 0.33 0.52 0.15
Hungary 0.22 0.35 0.42 Singapore 0.36 0.64 0.00
India 0.41 0.48 0.11 Slovakia 0.32 0.40 0.28
Indonesia 0.50 0.48 0.03 Slovenia 0.18 0.77 0.05
Iran 0.74 0.25 0.01 Sri Lanka 0.45 0.55 0.00
Iraq 0.23 0.38 0.39 Syria 0.37 0.50 0.13
Israel 0.58 0.35 0.06 Tajikistan 0.25 0.65 0.10
Jordan 0.35 0.64 0.01 Thailand 0.61 0.37 0.01
Kazakhstan 0.23 0.49 0.28 Timor-Leste 1.00 0.00 0.00
Kuwait 1.00 0.00 0.00 Turkey 0.49 0.49 0.02
Kyrgyzstan 0.18 0.81 0.01 Turkmenistan 0.19 0.62 0.19
Laos 0.57 0.00 0.43 Ukraine 0.25 0.44 0.30
Latvia 0.17 0.36 0.48 United Arab Emirates 1.00 0.00 0.00
Lebanon 0.71 0.11 0.19 Uzbekistan 0.41 0.47 0.12
Lithuania 0.54 0.46 0.00 Vietnam 0.42 0.34 0.24

Note: “-“ indicates no data.

References

1. Belt and Road Portal: Concept, Practice and China’s Contribution. Available online: https://eng.yidaiyilu.
gov.cn/zchj/qwfb/12731.htm (accessed on 1 December 2018).

2. Li, D.; Yu, H.; Li, X. The spatial-temporal pattern analysis of city development in countries along the belt and
road initiative based on nighttime light data. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 711–720.

3. Suocheng, D.; Zehong, L.; Yu, L.; Guangyi, S.; Huilu, Y.; Juanle, W.; Jun, L.; Qiliang, M.; Yongbin, H. Resources,
Environment and Economic Patterns and Sustainable Development Modes of the Silk Road Economic Belt. J.
Resour. Ecol. 2015, 6, 65–72. [CrossRef]

4. Liu, H.; Fang, C.; Miao, Y.; Ma, H.; Zhou, Q. Spatio-temporal evolution of population and urbanization in the
countries along the Belt and Road 1950–2050. J. Geogr. Sci. 2018, 28, 919–936. [CrossRef]
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