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Abstract: In the production of gridded population maps, remotely sensed, human settlement
datasets rank among the most important geographical factors to estimate population densities and
distributions at regional and global scales. Within this context, the German Aerospace Centre (DLR)
has developed a new suite of global layers, which accurately describe the built-up environment and
its characteristics at high spatial resolution: (i) the World Settlement Footprint 2015 layer (WSF-2015),
a binary settlement mask; and (ii) the experimental World Settlement Footprint Density 2015 layer
(WSF-2015-Density), representing the percentage of impervious surface. This research systematically
compares the effectiveness of both layers for producing population distribution maps through a
dasymetric mapping approach in nine low-, middle-, and highly urbanised countries. Results indicate
that the WSF-2015-Density layer can produce population distribution maps with higher qualitative
and quantitative accuracies in comparison to the already established binary approach, especially
in those countries where a good percentage of building structures have been identified within the
rural areas. Moreover, our results suggest that population distribution accuracies could substantially
improve through the dynamic preselection of the input layers and the correct parameterisation of the
Settlement Size Complexity (SSC) index.

Keywords: global population distribution mapping; World Settlement Footprint; percent impervious
surface; dasymetric mapping; Settlement Size Complexity Index

1. Introduction

According to the latest revision of the United Nations (UN), World Population Prospects, the
world’s population is projected to grow from 7.7 billion in 2019 to 10.9 billion in 2100 [1]. Considered part
of the four global demographic “megatrends”, population growth next to population ageing, migration
and urbanization, is an important indicator for economic, social and environmental development [2].
For this reason, accurate knowledge of the size, location, and distribution of the human population
is fundamental for successfully achieving a sustainable future. An effective monitoring of global
population change, allows implementing efficient government policies to allocate financial resources,
plan interventions and quantify populations at risk.
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To this end, since the late 1980s considerable efforts have been taken to produce global or
continental scale, high resolution gridded population maps describing the spatial distribution of
human population [3]. Over the last 20 years, the ongoing improvement in the availability and
spatial detail of census population data, the better quality and spatial resolution of remote sensing
data, the development of sophisticated geospatial analysis methods and the statistical refinement of
modelling techniques, have been leveraged to produce more accurate datasets that capture the changes
in magnitude, composition and distribution of human population over time [4].

Global or large scale gridded population datasets considered state-of-the-art in terms of open access
archives of population distribution data include: the Rural–Urban Mapping Project (GRUMP) [5],
the Gridded Population of the World, Version 4 (GPWv4) [6,7], the LandScan Global Population
database [8,9], the Global Human Settlement Layer-Population grid (GHS-POP) [10,11], the WorldPop
datasets [12–16] and the recently developed High Resolution Settlement Layer (HRSL) population
grids [17]. Current and previous versions of these products have proved to be an important source of
information and essential input for a wide range of cross-disciplinary applications including: poverty
mapping [18–20], epidemiological modelling and disease burden estimation [21–23], interconnectivity
and accessibility analyses [24–26], deriving past and future population estimates [15,27,28], disaster
management [29–31] and human settlement characterisation [32] among others.

The modelling techniques of these population distribution datasets are based on a common
methodology which consists of the disaggregation of census data from administrative units (polygons
or source zones) into smaller areal units of fixed spatial resolution (grid cells or target zones) [3].
Population disaggregation is accomplished using two areal interpolation methods: areal-weighting
and dasymetric mapping. With areal-weighting interpolation, a grid of fixed spatial resolution is
intersected with the census polygons and each grid cell is assigned a portion of the total population
based solely on the proportion of the area of the administrative unit that falls within each grid cell [9].
Thus far, the GPWv4 is the only dataset produced based on areal-weighting interpolation, while the
rest of the population datasets employ a dasymetric mapping approach. This method seeks to improve
the distribution of population through the incorporation of one or multiple geospatial covariates or
categorical ancillary datasets that influence the variations in the densities and distribution of population
within the administrative units [33].

The most commonly employed geospatial covariates include: land cover and land use types,
intensity of nightlights, climatic factors, human settlements, urban/rural extents, water features, road
networks and topographic elevation and slope. In this regard, LandScan and WorldPop population
grids use multiple best-available local or global covariates that are statistically assessed to produce a
weighted layer that is used as input in the dasymetric modelling method [8,12,16]. Here, the resulting
population grids show an asymmetrical distribution of population counts per administrative unit, in
which each grid cell is assigned a portion of the population depending on the individual calculated
weights [34]. While sophisticated, this technique presents a number of limitations and disadvantages.
For example, the assignment of relative weights to each individual covariate layer is subjective and
based on local relationships [35,36]. In other words, the model is country-specific limiting the direct
transferability of the model to global scales [8]. Moreover, temporal agreement between all covariate
layers and population census data is difficult to achieve, restricting the production of a globally
consistent population dataset. Finally, the use of multiple covariate layers reduces the applicability of
the final population grids, as explained by Balk et al. [3].

In this framework, however, it has been demonstrated that not all the commonly used geospatial
covariates are equally important for population disaggregation. According to the research presented
by Nieves et al. [4], geographical data pertaining to the built-up environment and urban extents are
the two most important covariates for predicting population densities and are significantly more
important than other covariates at both regional and global scales. In this respect, the GHS-POP and
HRSL population grids are processed using a binary-dasymetric mapping approach, restricting the
distribution of population only to those grid cells identified as human settlements. The GHS-POP
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uses the Global Human Settlement Layer built-up grids (GHSL-BUILT) [37], while the HRSL uses a
binary mask of areas identified as human-made buildings extracted from very high-resolution satellite
imagery. While this modelling approach is less complex and allows global transferability [33], the
population mapping accuracies of these products largely depend on the complete identification of
building structures and are affected by omission and commission errors [13].

In this context, the German Aerospace Center (DLR) has developed dedicated global layers
and related analysis tools that describe the built-up environment and its characteristics with high
accuracy and high spatial resolution. The first includes the Global Urban Footprint (GUF) dataset,
which was released in 2016 [38]. The GUF was produced based on an operational framework that
automatically processed and analysed over 180,000 TerraSAR-X/TanDEM-X radar images collected
during 2011–2013. It provides a global human settlement map at 12 m resolution [39], which up to
now, has been employed by more than 500 institutions for a broad scope of applications [40], including
studies focused on population disaggregation [12,41,42]. Currently, the DLR is working on a suite of
follow-on products—the World Settlement Footprint (WSF)—with an extended semantic depth, based
on the joint analysis of Landsat 8 and Sentinel 1 optical and radar imagery [43]. The first two releases
of this new suite will include: (i) a binary settlement mask named WSF-2015 outlining settlements
globally at 10-m resolution; and (ii) the experimental WSF-2015-Density layer. which estimates the
percent of impervious surface for the pixels labelled as settlement in the WSF-2015 [43].

Impervious surfaces are primarily associated with streets, sidewalks and building structures.
They can be defined as surfaces consisting of materials such as asphalt, concrete or stone that seal
the soil surface, eliminating water infiltration [44]. Impervious surfaces extracted using different
remote sensing methodologies have been examined in a small number of population distribution
studies [45,46]. In these studies, the authors have demonstrated that impervious surfaces are highly
correlated to population counts, making them good predictors of population distribution. Nevertheless,
these studies have only focused on limited areas, thus leading to results and methodologies that are not
globally transferable. In the same way, in producing population distribution maps based on settlement
extent products, Reed et al. [34] showed that an initial version of the WSF-2015 layer was capable of
producing population distribution maps with predictive accuracies higher than the GHSL layer and
relatively close to the HRSL layer, employing different population distribution methods. However,
while currently the HRSL layer is available only for a limited number of countries, the novel WSF-2015
and the experimental WSF-2015-Density layers have the potential to become the ideal covariates to
support population disaggregation methods and to produce global population distribution datasets
with improved accuracy and higher spatial resolution than those currently available.

Following this premise, the main goal of this research was to examine the suitability of the WSF-2015
and the—thus far experimental—WSF-2015-Density layers as input covariates for the development of
a new global population distribution dataset. Population distribution maps were produced using a
dasymetric mapping approach in combination with the finest population census data available at global
scale at the time of writing. We specifically focused on the systematic cross-comparison between the
performance of the binary and the impervious layer, to investigate if quality and accuracy improvements
in population disaggregation can be achieved with the WSF-2015-Density layer, compared to the
already established binary approach that has been employed by other population datasets and their
baseline settlement layers.

Through a comprehensive quantitative assessment, we evaluated the mapping performance of
each covariate layer, addressing the influence of: (i) the spatial resolution of the input census data;
(ii) the quality of the input covariate layers; and (iii) the spatial distribution of the built-up environment,
on the final results.

The corresponding analyses were conducted for nine representative countries of different size
and different levels of urbanisation and population aggregation.
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2. Materials and Methods

2.1. Input Geospatial Covariates: WSF-2015 and WSF-2015-Density Layers

2.1.1. WSF-2015 Layer

The WSF-2015 is a novel layer outlining the extent of human settlements globally at 10-m
resolution. The dataset has been derived by jointly exploiting multi-temporal Sentinel-1 Synthetic
Aperture Radar and Landsat-8 optical satellite imagery collected during 2014–2015, of which ~107,000
and ~217,000 scenes have been processed, respectively.

The basic underlying hypothesis is that the dynamics of human settlements over time are sensibly
different with respect to those of all other non-settlement classes. Accordingly, for all the scenes
available for the given target region, key temporal statistics (e.g., temporal maximum, minimum,
mean, variance, etc.) have been concurrently computed for: (i) the original Sentinel-1 backscattering;
and (ii) different spectral indices extracted from the Landsat-8 data after removing clouds and cloud
shadows. Next, candidate training samples for the settlement and non-settlement class have been
extracted on the basis of specific thresholds determined—based on extensive empirical analysis—for
some of the resulting temporal features. Classification is then performed separately for the optical-
and radar-based features by means of Support Vector Machines (SVMs) and, finally, the two outputs
are properly combined. The WSF-2015 exhibited high accuracy and reliability, outperforming all
other existing similar global layers. Specifically, this has been quantitatively demonstrated through an
extensive validation exercise performed in collaboration with Google where 900,000 reference samples
have been labelled by crowd-sourcing photointerpretation for a collection of 50 globally distributed
test sites of 1 × 1 lat/lon degree size. The layer is currently available for online browsing on the ESA
Urban-TEP platform; furthermore, a comprehensive description of the classification system and the
validation results is provided in [43].

2.1.2. WSF-2015-Density Layer

The WSF-2015-Density is one of the first experimental developments of the WSF product and
service portfolio, aiming to enhance the semantic and thematic scope of the WSF-2015; in particular,
the layer describes the percent impervious surface (PIS) within areas categorised as settlements in the
WSF-2015. Effectively mapping the PIS is of high importance to assess—among others—the risk of
urban floods, the urban heat island phenomenon as well as the reduction of ecological productivity.
Furthermore, it is generally considered as an effective proxy for the housing density, thus making it
particularly suitable for supporting spatial population distribution [45–47]. The current processing
methodology follows the approach originally described by Marconcini et al. [48] and is based on the
assumption that a strong inverse relation exists between vegetation and impervious surfaces (i.e.,
the higher the presence of vegetation is, the lower the corresponding imperviousness is). Accordingly,
the core idea is to compute and analyse for each pixel the temporal maximum of the Normalised
Difference Vegetation Index (NDVI), which depicts the status at the peak of the phenological cycle.
To this purpose, the NDVI available from the TimeScan dataset [40,49] has been used, which has been
derived globally from Landsat-8 scenes acquired during 2014–2015. Figure 1 shows a subset of the
WSF-2015-Density layer for Toluca state in Mexico. Values range between 0 and 100, with red and
green tones highlighting high and low PIS, respectively.
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Figure 1. Covering the area of Toluca in Mexico and subset comparing the layer against VHR imagery.
White areas: Pixels outside the WSF-2015 settlement mask.

2.2. Input Census Data

For this research, population census data for nine low-, middle- and highly urbanised countries [50]
located in four different macro-regions of the world were collected to analyse how the differences in
the level of spatial granularity of the available administrative boundaries and the variability in the
morphology of built-up landscapes influence the accuracy of each covariate layer. To achieve these
objectives, countries were selected on basis of the availability of population census data at different
spatial aggregation levels. In other words, countries were selected only if the census data allowed for
the spatial aggregation of the administrative boundaries up to four administrative levels.

The Center of International Earth Science Information Network (CIESIN) provided geographic
administrative boundaries and corresponding population counts for Cambodia, Côte d’Ivoire, England,
France, Germany, Malawi, Mexico, and Vietnam. CIESIN population data were selected for this
research, as it has been used in the production of other population dataset such as GPWv4, GHS-POP,
WorldPop and the HRSL. CIESIN collected census data at the highest spatial detail available from the
results of the 2010 round of Population and Housing Censuses, which occurred between 2005 and
2014. CIESIN data include two types of population estimates: census-based and UN-adjusted, both
estimated for the years 2000, 2005, 2010, 2015 and 2020. Initial population estimates were derived for
each administrative unit by means of an exponential model fitted on at least two census counts for
each country [17]. However, to allow for global comparisons, CIESIN adjusted the census counts to the
target year of 2010, which were then then interpolated and extrapolated to produce the UN-adjusted
estimates with the objective to correct for over- or under estimations [6,7]. The 2015 UN-adjusted
estimates were used in this research.

For Myanmar, population data were collected from the Ministry of Immigration and Population
in reference to the Population and Housing Census of 2014 [51] and was joined with publicly available
geographic administrative boundaries [52]. The population data were released on May 2015 and the
original population counts were used in this research.

For each country, administrative boundaries and population counts were aggregated at four
levels of spatial resolution using attribute information stored within the data. Table 1 shows the total
population for 2015 for each country as well as the official administrative unit nomenclature at each
spatial aggregation level, the number of administrative units, the average area and the average spatial
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resolution (ASR). The ASR is calculated as the square root of each country total area divided by the
number of administrative units, representing the effective resolution units within each country [3].

Table 1. Input Census Data Characteristics.

Country
(ISO)/Census Year

Total Population
2015

Official Admin. Unit
Nomenclature

No. of
Units

Average Area
of Units (km2) ASR (km)

CIV
Côte d’Ivoire

2014
22,701,552

Sub-Prefectures (Adm 3) 517 621.85 24.99
Departments (Adm 2) 110 2907.6 54.17
Region (Adm 1) 35 9220.92 96.03
National (Adm 0) 1 322,744.29 568.11

DEU
Germany

2014
80,688,539

Enumeration Area (EA Level) 11,292 31.26 5.59
Districts (NUTS3) 402 878.25 29.64
States (NUTS1) 16 22,066.28 148.55
National (NUTS 0) 1 353,060.51 594.19

ENG
England

2014
54,376,281

Enumeration Area (EA Level) 6791 19.2 4.38
District (Adm 2) 326 400.16 20.00
Region (Adm 1) 9 14,494.94 120.39
National (Adm 0) 1 130,454.54 361.18

FRA
France2009

64,395,348

Enumeration Area (EA Level) 36,562 15.09 3.89
Departments (NUTS3) 96 5749.86 75.83
Regions (NUTS2) 22 25093.51 158.41
National (NUTS 0) 1 552,057.38 743.01

KHM
Cambodia

2008
15,394,276

Commune (Adm 3) 1633 109.66 10.47
District (Adm 2) 197 909.06 30.15
Province (Adm 1) 25 7163.40 84.64
National (Adm 0) 1 179,084.95 423.18

MEX
Mexico

2010
129,731,190

Enumeration Area (EA Level) 65,477 27.7 4.91
Municipality (Adm 2) 2456 804.65 25.36
States (Adm 1) 32 59,898.45 222.15
National (Adm 0) 1 1,579,248.33 1256.68

MMR
Myanmar

2014
50,279,900

Township (Adm 3) 330 2032.66 45.09
District (Adm 2) 74 9064.6 95.21
Regions (Adm 1) 15 44,718.7 211.47
National (Adm 0) 1 670,780.63 819.01

MWI
Malawi

2010
17,215,235

Enumeration Area (EA Level) 12,550 7.19 2.68
Traditional Authority (Adm 3) 357 252.92 15.90
District (Adm 2) 32 2821.69 53.12
National (Adm 0) 1 90,294.35 300.49

VNM
Vietnam

2009
93,447,596

District (Adm 3) 688 477.52 21.85
Municipality-Province (Adm 2) 63 5214.87 72.21
Region (Adm 1) 6 54,756.19 234.00
National (Adm 0) 1 328,537.15 573.18

2.3. Population Distribution: Dasymetric Mapping Approach

Population distribution maps for 2015 were generated for each country at each administrative
unit level using a dasymetric mapping approach, where population census data from administrative
boundaries (source zones) are disaggregated into smaller areal units of fixed spatial resolution (target
zones). The size of the target zones is normally defined by the pixel resolution of the different ancillary
datasets employed to restrict and refine the distribution of the population within each administrative
unit [53]. The estimated population per grid cell is defined in Equation (1):

Popt = Pops
At ∗Wp∑
t∈s

(
AtWp

) (1)

where Popt is the population of the target zone, Pops is the population of the source zone, At represents
the area of the target zone and Wp is the weight of a grid cell within the target zone. With this
modelling approach, population counts are maintained (volume-preserving property) at each original
input source zone.
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In this research, two types of dasymetric mapping techniques were used. The first method is the
traditional binary approach, which relies on the WSF-2015 layer to assign a weighting factor of 1 to
built-up pixels and a 0 for non-built-up pixels. The second method uses the WSF-2015-Density layer
to assign a weighting factor that ranges from 0 to 100, estimating the PIS for the pixels classified as
settlement in the WSF-2015.

2.4. Quantitative Accuracy Assessment

As stated by Bai et al. [54] “quantifying the accuracy of population distribution maps has been
recognized as a critical and challenging task”. Determining the spatial and quantitative uncertainties
of population distribution products is fundamental yet very difficult due to the lack of independent
and compatible reference data [10]. Nevertheless, through well-established accuracy methods, it is
possible to assess the effectiveness of new models (disaggregation methods and/or covariate layers)
and investigate if higher population distribution accuracies can be reached in comparison to previous
approaches. For this research, the accuracy of the two covariate layers was assessed by computing
the difference between the estimated population counts extracted from maps produced using coarser
administrative units (input units) and the actual population counts of the finest administrative units
(validation units). This accuracy method has been widely employed in previous research [13,17,34,42,55];
however, it still presents some limitations, as high-resolution boundaries and population data (e.g.,
enumeration area level) are not publicly available for all countries.

For this reason, to gain a more comprehensive and detailed understanding of the mapping
capabilities of each covariate layer, the final population distribution maps were evaluated following a
series of thorough quantitative analyses performed at the validation unit level and the input level of
the administrative units. The analysis at the validation unit level was divided in two parts. In the first
part, an overall accuracy assessment was carried out to examine the influence of the spatial resolution
of the input census data on the results. Here, population distribution maps were produced using three
spatial aggregation levels of the administrative boundaries as input units (Analyses I–III in Table 2).

Table 2. Spatial aggregation levels of the administrative boundaries used as input units and validation
units for each analysis (finest to coarser spatial detail) (EA, Enumeration Area).

Country (ISO) Analysis Level of Administrative
Input Units

Level of Administrative
Validation Units

KHM
CIV

MMR
VNM

I Adm 2
Adm 3II Adm 1

III Adm 0

ENG
I Adm 2

EAII Adm 1
III Adm 0

FRA
I NUTS 3

EAII NUTS 2
III NUTS 0

DEU
I NUTS 3

EAII NUTS 1
III NUTS 0

MWI
I Adm 3

EAII Adm 2
III Adm 0

MEX
I Adm 2

EAII Adm 1
III Adm 0
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For each analysis, four main descriptive statistics were calculated to measure the overall accuracies
of each layer. These metrics are briefly described in Table 3 and include: the MAE (Mean Absolute
Error), the MAPE (Mean Absolute Percentage Error), the Root Mean Square Error (RMSE) and the
coefficient of determination (R2).

Table 3. Descriptive statistics for overall accuracy assessment at the validation unit level for
Analyses I–III.

Metric Description

MAEi =

∑n
VU=1|PEVU − PVU|

n
(2)

MAE is the mean absolute error at each level of analysis (i),
calculated as the average of the sum of the absolute differences
between the estimated population (PEvu) and the actual
population (PVU) at each validation unit.

MAPEi =
MAEi

Av. Pop
x100% (3)

MAPE is the mean absolute percentage error at each level of
analysis (i), calculated as the MAEi divided by the average
population of each country.

RMSEi =

√∑n
VU=1 (PVU − PEVU)

2

n
(4)

RMSE is the root mean square error at each level of analysis (i),
calculated as the square root of the mean of the sum of squares
of the differences between the estimated population at (PEvu)
and the actual population (PVU) at each validation unit.

R2

Defined as the coefficient of determination at each level of
analysis, derived from classical linear least square modelling
with constant intercept at 0. It is also defined as the square of
the Pearson correlation coefficient, to measure the variation
between the estimated population and the actual population of
all validation units. Readers can refer to [56] for detailed
calculations.

The second part of the analysis was carried out only for the population maps produced using
the finest input units (Analysis I in Table 2). Here, similar to the methodology and classification
presented by Bai et al. [54], the Relative Estimation Error (REE) metric was used to identify the amount
and distribution of error produced by each covariate layer. The REE for each validation unit was
calculated as:

REEVU = ((PEVU − PVU)/PVU) ∗ 100% (5)

where PEVU is the estimated population of the validation unit and PVU is the actual population of the
validation unit. Using the REEVU, validation units were grouped and classified into different REE
ranges (Table 4).

Table 4. REE classification [54].

REE Ranges Description

[−100%, −50%) Greatly underestimated
[−50%, −25%) Underestimated
[−25%, 25%] Accurately estimated
(25%, 50%] Overestimated

(50%, ≥100%] Greatly overestimated

From this classification, two sub-analyses were conducted for each country. First, for a better
understanding of the error distribution associated with each covariate layer, we calculated the
percentage of each country’s total population that fell within each error range. Second, for each
country, we calculated the average actual population and average number of settlements pixels for the
validation units that fell within each error range. This last analysis was done to identify if there is any
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relationship between the amount of population that needs to be distributed (PVU) and the number of
available settlement pixels, and if the ratio between these two parameters can explain the REE values
reported in the validation units.

Finally, as the reported accuracy at the validation unit level is only a reflection of the capability of
each input covariate layer to correctly allocate population counts at the input unit level, a series of
analyses were carried out at the input unit level, focusing only on Analysis I (Table 2). First, we used
the RMSE metric as a summary of the error within each original input unit, following the methodology
presented by Mennis and Hultgren [57]. RMSE was calculated as the square root of the mean of the
sum of squares of the difference between the actual population counts and estimated population counts
of all validation units within an input unit:

RMSEIU =

√∑
VU∈IU (PVU − PEVU)

2

n
(6)

where PVU is the actual population at validation unit, PEVU is the estimated population at validation
unit and n is the number of validation units within an input unit. To compare the effectiveness of
the covariate layers, input units were grouped according to the layer that produced the lowest RMSE
values and for each group the percentage of each country’s total population was calculated.

Second, on basis of these results, we undertook a series of analyses to identify and describe the
regions where one layer outperformed the other. For this analysis, we derived the Settlement Size
Coverage (SSC) index, which classifies each input unit according to (i) the number of small-, medium-
and large-settlement objects that can be found within each unit; and (ii) the proportion of each input
unit’s total area that is covered by these settlements objects. To calculate the SSC index, settlement
objects were created, where each object is composed of connected settlement pixels via at least one
pixel edge or corner (8-neighbourhood), as described by Esch et al. [58]. The SSC index within each
given input unit was derived as:

SSCIU =

(
#settlement pixels

#settl. objects

)
∗

(
Sum of the area settl. objects

Total area of input unit

)
∗

(
Area of largest settl. objects
Mean area of settl. objects

)
(7)

where high SSCIU values indicate dense built-up environments and low SSCIU values indicate sparse
built-up environments. To allow country cross-comparisons, we normalised the SSC index values
from 0 to 10 and divided it into three classes, as shown in Table 5. Thresholds were visually derived
and evaluated against all available countries. For each SSC class, we calculated the average RMSE
produced by each layer.

Table 5. Settlement Size Complexity Index classification scheme.

SSC Index Class Description

Low (>0–1) Small size settlements and low coverage of the total area of the input units

Medium [1–1.8) Mix of small and medium size settlements and medium coverage of the total area of the
input units

High [1.8–10) Mix of medium and large size settlements with high coverage of the total area of the
input units

3. Results

3.1. Visual Assessment of the Population Distribution Maps

The WSF-2015-Density and the WSF-2015 layers were used to produce population distribution
maps for each country at each spatial aggregation level of the administrative units, representing the
estimated night-time population (population counted at place of domicile) as the number of people
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per grid cell for the year 2015. The final spatial resolution of the population distribution maps equals
the spatial resolution of the input covariates (~10-m at the equator).

Because the volume of results (72 population distribution maps) is too large to present here in full,
we focused on one representative country to visually inspect the thematic differences between the maps
produced using the WSF-2015-Density and the WSF-2015 layers before turning to the quantitative
analyses of all the maps. Figure 2 shows the final population distribution maps produced using the
finest administrative units for Germany (enumeration areas), depicting the local metropolitan areas of
Berlin and Munich. Note that, for the finest administrative units, these two areas have been modelled
using a single census unit were local differences between the binary and the weighted disaggregation
approaches are rather clear.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 24 
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Figure 2. In this example: Estimated population as the number of people per grid cell for Germany in
2015 produced at the finest aggregation level of the input data (enumeration areas). The population
distribution is displayed as the result of dasymetric approach using the WSF-2015 layer and the
WSF-2015-Density layer. Detailed examples show the metropolitan areas of Berlin and Munich.

As illustrated in Figure 2, population disaggregation based on the WSF-2015 layer
produces homogeneous population counts within each administrative unit in comparison to the
WSF-2015-Density layer, which offers more spatial heterogeneity. As a result of the proportional
allocation produced by the binary layer, it is possible to observe abrupt changes from high to
low population counts between neighbouring administrative units. The transitions are considerably
smoother when using the WSF-2015-Density layer, due to the weight given by the percent of impervious
surface, which rarely changes abruptly at the boundaries of the administrative units.

3.2. Accuracy Assessment

3.2.1. Analyses at the Validation Unit Level

A summary of the accuracy assessment results using the WSF-2015-Density and WSF-2015 layers
is presented in Table 6. Results show that, for each layer and each country, the highest R2, the lowest
MAE, the lowest MAPE and the lowest RMSE values are reached using the finest administrative input
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units (Analysis I, Table 2). Furthermore, from one level of spatial aggregation to the next, the values
for the R2 decrease, while the MAE, MAPE and RMSE values increase.

From the RMSE and MAE metrics, it can be seen that, for Analysis I, for most countries, errors
remain below the size of the average population using any of the two covariate layers. While for all
countries the MAE values remain below the average population size for Analyses I–III, RMSE exceeds
this threshold in Analysis II in Germany and France and in Analysis III in Mexico and Myanmar.
Additionally, the difference between the RMSE and the MAE values tends to increase as the spatial
detail of the input units decreases, with significant higher differences in countries such as Côte d’Ivoire,
France, Myanmar and Vietnam. In case of the three latter, the large differences can be explained by the
large variances between the errors of the validation units within each country.

Comparing the results between the WSF-2015-Density and the WSF-2015 layers, it can be seen
that, for Cambodia and Malawi, the best overall accuracies are reported using the WSF-2015 layer at all
levels of aggregation. For the rest of the countries, the WSF-2015-Density layer performs better at all
levels of aggregation, except for Mexico and Myanmar where there is a transition between layers in
Analysis III.

Focusing only on the population distribution maps produced using the finest input units (Analysis I,
Table 2), further analyses were performed at the validation unit level. First, to understand the amount
of error produced by each input covariate layer, we calculated the percentage of each country’s total
population that fell within each REE range. Classifying the REE values in different error ranges
(Table 4), we calculated the percentage of each country’s total population that fell within each REE
range for each covariate layer, as shown in Figure 3 and Table 7.

The percentage bar charts in Figure 3 show that, for each country, both covariate layers distribute
approximately the same amount of population with comparable accuracies. From here, it can be
seen that, for all countries, the largest percentage of the population was “accurately estimated” with
estimation errors ranging from −25% to 25% for both covariate layers. For Côte d’Ivoire, Germany,
England and Myanmar, this represents more than 50% of the total population; for France, Cambodia
and Vietnam, between 40% and 50% of the total population; and, for Malawi and Mexico, between
30% and 40% of the total population. Moreover, for the majority of the countries, the second largest
percentage of the population was either “underestimated” or “overestimated” (from ±25 to ±50%).
For all countries, less than 15% of the total population was underestimated, while, for most countries,
except Germany and Myanmar, from 15% to 25% of the total population was overestimated. Finally,
the smallest percentage of the population for all countries was “greatly underestimated” or “greatly
overestimated” (≥50% or ≤−50%), with Malawi reporting an average of ~30% of the total population
within these ranges, followed by Mexico with ~25%, and France and Vietnam with ~17%.
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Table 6. Accuracy assessment results using the WSF-2015 and the WSF-2015-Densinty covariate layers. Values of MAE and RMSE represent number of people.

WSF-2015-Density WSF-2015
Country

ISO
Average

Population Analysis No. of Input
Unit

No. of
Validation Units MAE MAPE (%) RMSE R2 MAE MAPE (%) RMSE R2

CIV 43,910.16
I 110

517
10,029.04 22.84% 40,198.00 0.7803 10,375.16 23.63% 44,814.26 0.7224

II 35 11,851.45 26.99% 41,343.98 0.7725 11,862.96 27.02% 45,593.19 0.7130
III 1 15,016.82 34.20% 47,045.80 0.5684 15,118.44 34.43% 50,124.64 0.3891

DEU 7145.64
I 402

11,291
828.86 11.60% 2261.67 0.9975 984.10 13.77% 2824.88 0.9961

II 16 1897.35 26.55% 12,580.46 0.9316 2281.22 31.92% 14,409.45 0.9094
III 1 2481.30 34.72% 23,280.14 0.9170 2999.64 41.98% 26,407.33 0.9010

EN 8007.11
I 326

6791
2218.00 27.70% 3309.71 0.1744 2347.93 29.32% 3401.02 0.1415

II 9 2776.75 34.68% 4310.88 0.1000 3208.51 40.07% 4619.30 0.0474
III 1 3098.81 38.70% 4666.95 0.0634 3642.90 45.50% 5017.18 0.0167

FRA 1761.26
I 96 36,562 589.00 33.44% 4605.53 0.8777 685.47 38.92% 5242.17 0.8352
II 22 702.31 39.88% 9543.18 0.7698 817.24 46.40% 10,950.33 0.6333
III 1 821.41 46.64% 11435.96 0.5279 954.06 54.17% 12495.90 0.3390

KHM 9426.99
I 197

1633
3425.38 36.34% 4898.26 0.6174 3241.26 34.38% 4694.16 0.6204

II 25 4325.54 45.88% 6680.15 0.5244 4078.17 43.26% 6027.73 0.5371
III 1 4738.49 50.27% 8363.82 0.5333 4343.88 46.08% 6270.24 0.5662

MEX 2915.00
I 2456 65,477 954.40 32.74% 2424.57 0.3841 1031.51 35.39% 2599.99 0.3672
II 32 1080.44 37.06% 2440.33 0.3176 1194.89 40.99% 2611.97 0.3162
III 1 1719,04 58.97% 30507.37 0.2326 1702,60 58.41% 3464.93 0.2604

MMR 76,263.92
I 75

330
32,257.60 42.30% 47,374.91 0.8214 34,301.82 44.98% 49,602.98 0.7986

II 15 41,755.91 54.75% 58,807.41 0.7611 44,506.83 58.36% 64,708.38 0.7071
III 1 83,960.45 110.09% 111,546.15 0.5243 66,606.76 87.34% 88,449.93 0.4051

MWI 1371.73
I 357 12,550 712.08 51.91% 1038.03 0.3231 687.40 50.11% 1001.41 0.3290
II 32 795.36 57.98% 1219.17 0.1732 766.46 55.88% 1177.45 0.2050
III 1 836.53 60.98% 1310.94 0.1924 792.69 57.79% 1182.53 0.2423

VNM 135,824.99
I 63

688
46,646.67 34.34% 76,804.15 0.6018 47,837.20 35.22% 87,481.13 0.5218

II 6 57,187.23 42.10% 94,536.29 0.4317 61,288.84 45.12% 99,151.92 0.3578
III 1 61,323.29 45.15% 95,472.76 0.3617 63,825.03 46.99% 100,829.93 0.2636



Sustainability 2019, 11, 6056 13 of 24

To identify if there is any significant relationship between the actual population to distribute in a
particular validation unit and the number of available settlement pixels, we calculated the average
actual population and the average number of settlement pixels for the validation units that fell within
each REE range. Figure 4a shows the ratio between these two parameters for each REE range, where the
general tendency indicates that, for most countries, errors of underestimation are mainly reported in
validation units where a relatively low number of settlement pixels were identified in comparison to the
average actual population reported for those validation units. In other words, errors of underestimation
tend to increase as the ratio between the population and the number of settlement pixels increases.
On the other hand, for most countries, errors of overestimation tend to increase as the ratio between
the average actual population and the number of settlement pixels decreases, indicating that a large
number of settlement pixels have been detected in relation to the average actual population reported
for those validations units.

Table 7. Summary of the percentage of each country’s total population that fell within each REE range.

REE Range [−100%, −50%) [−50%, −25%) [−25%, 25%] (25%, 50%] (50%, ≥100%]
D W D W D W D W D W

CIV %Population 1.11% 4.30% 18.22% 13.44% 69.40% 72.84% 6.98% 4.47% 4.29% 4.95%
DEU %Population 0.34% 0.51% 5.90% 9.63% 85.78% 79.69% 6.05% 7.19% 1.92% 2.97%
ENG %Population 2.78% 3.94% 21.40% 23.09% 58.22% 53.00% 9.21% 10.30% 8.39% 9.67%
FRA %Population 10.82% 16.73% 20.42% 17.57% 47.06% 40.70% 10.79% 11.34% 10.92% 13.66%

KHM %Population 13.35% 12.50% 16.87% 15.48% 45.23% 47.55% 11.73% 13.40% 12.82% 11.07%
MEX %Population 17.37% 21.42% 24.97% 23.90% 37.50% 33.73% 8.09% 7.76% 12.07% 13.19%
MMR %Population 3.92% 4.27% 10.14% 13.22% 69.30% 65.06% 11.74% 11.73% 4.92% 5.73%
MWI %Population 23.44% 22.23% 18.03% 17.80% 31.87% 33.33% 9.25% 9.54% 17.41% 17.11%
VNM %Population 12.84% 15.04% 15.66% 14.20% 49.78% 47.47% 10.50% 12.43% 11.23% 10.86%
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Figure 4. REE distribution: (a) ratio between the average population and the average number of
settlement pixels for the validation units that fell within each REE range; and (b) percentage of validation
units that fell within each REE range.

For a better understanding of the error distribution, the percentage of validation units that reported
similar ratios and fell within each REE was quantified for each country. From the percentage bar charts
in Figure 4b, it is possible to observe that, for countries such as Cambodia, Mexico, Malawi and Vietnam,
more than 30% of the validations units reported errors of underestimation (from −100% to −25%), with
Mexico, Malawi and Vietnam reporting ~20% of the validation units “greatly underestimated” (from
−100% to −50%). In the same way, France reported the largest percentage of the validation units (~41%)
with errors of overestimation (from 25% to ≥100%), followed by Mexico (~30%), Malawi and Germany
(~25%). Here, Mexico reported the largest percentage of validation units “greatly overestimated”, with
~20% of the validation units with REE larger than 100%.
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3.2.2. Analyses at the Input Unit Level

To evaluate the actual performance of each covariate layer, results at the validation unit level
were used to calculate the RMSEIU metric of the original input census units used for population
disaggregation according to Equation (6). Input units were grouped according to the input covariate
layer that produced the lowest RMSEIU values and for each group the percentage of each country’s
total population was calculated.

Figure 5 illustrates the percentage bar charts for each country. As one can notice, for Germany,
France and Mexico, the predominance of the WSF-2015-Density is clear, distributing more than 75%
of each country’s total population with overall lower RMSE values in comparison to the WSF-2015
layer. On the other hand, for Cambodia and Malawi, the WSF-2015 layer performs better, distributing
more than 75% of the population more accurately compared to WSF-2015-Density layer. In the rest of
the countries (i.e., Côte d’ Ivoire, England, Myanmar and Vietnam), both layers perform equally, with
the WSF-2015-Density layer distributing a slightly larger amount of the population better than the
WSF-2015 layer.
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To identify the regions where each covariate layer produced higher accuracies, the input units of
each country were classified according to the SSC index (Equation (7), Table 5). The map in Figure 6
illustrates the results of this classification for Côte d’ Ivoire. Here, most of the input units fell within
the “low” SSC class, which is characterised by small size settlement objects that cover a low percentage
of each input unit’s total area. A few input units fell within the “medium” SSC class, characterised by a
mix of medium and small size settlements objects, and only two input units fell within the “high” SSC
class, characterised by large size settlement objects that cover a large extent of each input unit’s total
area. For Côte d’ Ivoire, some of the most populated cities are located within the “high” and “medium”
input units, such as Abidjan, Bouake, Korhogo and Divo.
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Following this classification, the same analysis was carried out for each country. Figure 7 shows
the percentage of each country’s total area (pie charts) and corresponding population (boxes) derived
from the input units according to the SSC index.
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Figure 7. Percentage of each country’s total area (pie charts) and corresponding population (boxes),
classified according to the SSC index.

For Côte d’ Ivoire, Cambodia, Mexico, Myanmar and Malawi, the largest percentage of the total
area fell within the “low” SSC class. For all these countries, more than 70% of the population is located
within these areas, except for Mexico, where the majority of the population (54.79%) is located within
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areas belonging to the “high” SSC class. For Germany, England, France and Vietnam, the largest
percentage of the total area fell within the “high” SSC class, where more than 80% of the population is
located. For most countries, the second largest percentage of the area fell within the “medium” SSC
class. In these areas, the second largest percentage of the population is located, however it does not
exceed more than 17% of the total population.

For each SSC class, we computed the average RMSE error produced by each covariate layer and
the percentage difference between the two layers (Table 8). The results indicate that, for all countries,
the WSF-2015-Density layer performed better in regions that fell within the “high” SSC class, with
improvements ranging from 1.12% to 31.20% over the WSF-2015 layer. For regions within the “low” or
“medium” SSC classes, the behaviour of the covariate layers is more variable among the countries. For
Germany, England, France and Myanmar, the WSF-2015-Density layer performed better for regions
within the “low” SSC class, with improvements ranging from 4.36% to 22.40%, while. for Côte d’ Ivoire,
Cambodia, Malawi and Vietnam, the WSF-2015 layer performed better with improvements ranging
from 2.12% to 9.82%. For the regions within the “medium” SSC class, the WSF-2015-Density layer
performed better in Germany, England, France, Malawi and Vietnam, with improvements ranging
from 6.62% to 21.03%, as opposed to Côte d’ Ivoire, Cambodia, Mexico and Myanmar, where the
WSF-2015 layer performed better with improvements ranging from 6.69% to 30%.

Table 8. RMSE (number of people) and percentage difference reported for each covariate layer at each
SSC index class. D, results of the WSF-2015-Density layer; W, results of the WSF-2015 layer; positive
bold values, countries where the WSF-2015-Density performed better; negative values, countries where
the WSF-2015 performed better.

Low SSC Class Medium SSC Class High SSC Class
RMSE (D) RMSE (W) %Diff. RMSE (D) RMSE (W) %Diff. RMSE (D) RMSE (W) %Diff.

CIV 6195.88 5824.85 −6.17% 13,385.74 9893.41 −30.00% 121,500.76 138,430.55 +13.03%
DEU 598.65 701.99 +15.89% 1169.94 1422.94 +19.51% 1715.78 2100.37 +20.16%
ENG 2449.15 2879.85 +16.16% 2580.89 3013.39 +15.46% 2908.04 2980.60 +2.46%
FRA 517.12 647.56 +22.40% 975.40 1207.01 +21.03% 4391.66 5124.74 +15.41%

KHM 4041.02 3785.02 −6.54%) 3536.39 3084.83 −13.64% 6372.06 6443.97 +1.12%
MEX 892.80 874.05 −2.12% 2107.69 2253.53 −6.69% 2376.74 2626.13 +9.97%
MMR 33,452.74 34,943.76 +4.36% 39,432.66 32,580.79 −19.03% 43,682.69 59,832.04 +31.20%
MWI 819.79 768.93 −6.40% 778.43 831.73 +6.62% 1150.90 12,20.03 +5.83%
VNM 47,476.56 43,030.73 −9.82% 32,471.05 27,000.96 +18.40% 63,679.29 65,272.30 +2.47%

4. Discussion

In the above sections, we present a set of comprehensive analyses to compare the relative accuracies
of population distribution maps produced using the WSF-2015 and the experimental WSF-2015-Density
layers. The first analysis consisted of an overall accuracy assessment carried at the validation unit level,
where metrics such as MAE, MAPE, RMSE and R2 (Table 3) were used to evaluate maps produced
using three spatial aggregation levels of the administrative units (Table 2). The results presented in
Table 6 show that, for all countries and both covariate layers, the highest accuracy values were reported
for population maps produced using the finest input census units (Analysis I, Table 2), with accuracies
decreasing from one level of spatial aggregation to the next. These results are directly in line with
previous findings [17,35,55], and confirm the premise that higher accuracies in population mapping
can be achieved with improvements in the resolution of the input census data. In the same way, from a
comparative point of view, the overall accuracy results showed that, for the majority of the countries,
except Cambodia and Malawi, the WSF-2015-Density layer performed better than the WSF-2015.

When interpreting and comparing the overall accuracy results between countries and between
covariate layers, there are, however, a set of considerations that need to be taken into account. First, it is
important to understand, that regardless of the input covariate layer used for population disaggregation,
high accuracies can be reached, when the number and ASR of the of the administrative units used for
validation are similar to those of the administrative units used as input data (Table 2). This can be seen,
for example, by examining the results of Analysis I for Côte d’Ivoire, Myanmar and Vietnam (Table 6).
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The fact that these countries reported relatively good accuracy results is more likely to be due to the
small difference between the number of administrative units used as input and validation units (407,
225 and 625, respectively) and the small ratio between their ASR (2.16, 2.11 and 3.30, respectively).
These results are linked to the scale effect of the modifiable areal unit problem (MAUP), where the
correlation between variables increases as the areal unit size becomes similar [59].

A second consideration to keep in mind is to avoid the use of the R2 metric as unique statistical
indicator to report the accuracy of population distribution models. Previous research has demonstrated
that the lack of variability in the data influences the coefficient of determination [60]. For example,
for England, where significantly low R2 values were obtained in comparison to the MAE, MAPE and
RMSE metrics, these can be related to the fact that the original census data reports similar population
counts for a large number of the administrate units used for validation. This can be seen in the
boxplots of Figure 8, where the reported actual population counts of the validation units of England
are constrained within a small range of values. This small variability in the data, according to Goodwin
et al. [60], results in a poor correlation between the estimated population counts and actual population
counts as exemplified in the scatter plots of Figure 9. Here, it is possible to observe an amorphous or
non-structured appearance of the data points for England in comparison to France, which results in a
poor correlation, signalised by the almost horizontal trend-line.
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The aforementioned findings indicate that the use of single statistics metrics can be misleading
and that population distribution maps can report high accuracy results independently of the quality
of the underlying covariate layers used for population disaggregation. Therefore, it is important to
emphasise, not only that full dissemination of the data used for modelling and validation is essential
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when reporting accuracy results [3,6,35,54], but also that, to evaluate the real effectiveness of the
covariate layers, it is necessary to undertake more in-depth analyses using complementary metrics.

In this research, with the use of the REE statistical metric (Equation (5)), it was possible to evaluate
the amount and distribution of error generated by each covariate layer (Figure 3 and Table 7), and
identify the areas where large errors of underestimation and large errors overestimation can be expected
(Figure 4). Our results show that both layers perform similarly, distributing approximately the same
percentage of each country’s total population with the same REE values. For all countries, the largest
percentage of the population has been estimated with errors ranging from −25% to 25%, which in
previous research has been considered as “accurately estimated” [54]. Nevertheless, only in Côte
d’ Ivoire, Germany, England and Myanmar this represent more than 50% of the total population,
which indicates that, for the rest of the countries, a significant percentage of the total population was
distributed with larger errors of underestimation and errors overestimation.

We attribute these errors to the quality (completeness) of the covariate layers and to the fact
that they do not take into account information on the land or building use. On the one hand, our
findings indicate that errors of underestimation are reported in validation units where not enough
settlement pixels have been found for population disaggregation. These errors increase as the ratio
between the actual population and the number of settlement pixels increases (Figure 4a). This means,
for example, that, in countries where a large percentage of the population and validation units were
“greatly underestimated” (Table 7 and Figure 4b), such as France, Cambodia, Mexico and Malawi, this
can be explained by the large amount of validation units where zero or very few settlement pixels have
been identified (Figure 10). Therefore, despite the fact that the thematic accuracy of the WSF-2015 layer
clearly outperforms any of the currently existing global human settlements masks [43], it is clear the
data still show limitations with respect to a complete detection of all building structures. This can be
explained by the spatial resolution of the Sentinel-1 and Landsat imagery used as input data, which
restricts the identification of building structures, especially in regions where the settlement pattern is
characterised by wide-spread single houses or very small hamlets.
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On the other hand, errors of overestimation are reported in validation units where a large number
of settlement pixels have been reported in comparison to the amount of actual population, and that
they increase as the ration between these two parameters decreases (Figure 4a). After a visual analysis
of VHR satellite imagery, we found that large errors of overestimation are mainly reported in validation
units where seaports and industrial complexes exist. Figure 11 shows an example of the population
distribution results for an input unit in England with this particular built-up environment. The red line
represents the geographical boundary of the input unit used for population disaggregation and the
blue lines represent the geographical boundaries of the validation units. Here, it is possible to observe
industrial areas in the southern parts of the input unit. These areas capture a large amount of the
population counts comparable to high-density residential areas, reporting large errors of overestimation
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in the validation units. In the selected validation unit, for example the WSF-2015-Density layer reported
a higher REE (186.56%) in comparison to the WSF-2015 (154.49%). This does not mean, however, that
in every validation unit where this built-up environment exists the binary layer will perform better
than the impervious layer. Depending on the extent and geographical boundaries of the input units,
industrial or port areas can be mixed with residential areas, influencing the performance of each layer.
More detailed information on and discussion of this aspect is provided at the end of this section in the
context of the SSC index.
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Similar accuracy limitations have been reported in the production of the GHS-POP and the HRSL
population datasets [10,17]. Even when several local studies have demonstrated that information
on the building use has the potential to improve population distribution results [61,62], this remains
a major source of limitation in the production of global population datasets, as it is not possible to
derive detailed semantic information on the building use through remote sensing methodologies.
Population datasets such as LandScan and WorldPop integrate land use and land cover covariates to
improve their results; however, as mentioned above, this introduces global transferability limitations
and applicability restrictions.

For this reason, in this study, we began to analyse the relationship between the inherent
characteristics of the underlying built-up environment and the performance of each covariate layer,
as an alternative approach that could be used to minimise the errors introduced by the quality and
lack of functional characterisation of the input covariate layers. Here, we introduced the SSC index
as a globally transferable metric to categorise the input units in terms of the size and coverage of the
underlying settlement objects. Our results clearly indicate that WSF-2015-Density layer distributes
population with higher accuracies in regions with high SSC index values, reaching improvements up
to ~30% over the WSF-2015 layer (Table 8). For regions with low and medium SSC index values, the
performance of each covariate layer varies from country to country. Figure 12 shows the distribution
of the SSC index values and the mean SSC index value for the “low” and “medium” SSC classes for
each country.
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Focusing on the distribution of the “low” SSC class, countries where the WSF-2015 reported in
average less RMSE values are also the countries where more than half of the input units reported SSC
index values lower than 0.40. In other words, the SSC index values fell below the mean of the “low”
SSC class that ranges from >0 to 1. For the “medium” SSC class, the distribution of the SSC index
values among countries is relatively similar. The mixture of medium to highly populated cities and
rural areas within these input units represent challenging modelling regions where further analyses
are required to identify the particular circumstances where one layer outperforms the other.

Nevertheless, it is important to notice that the WSF-2015-Density layer performed better in all
three classes of the SSC index for countries such as Germany, France and England, hence suggesting
that the overall performance is largely driven by an accurate identification of building structures
within the rural areas of each country. In this context, it is expected that limitations derived from the
current underestimation of smaller settlements and isolated buildings can be overcome by the future
integration of Sentinel-2 data in the production of future WSF datasets, due to its increased spatial
resolution [40].

As a final note, it is important to mention that, even when the population distribution maps
presented in this research have been produced using the most frequently employed population
census data, the difficulties in the acquisition of the finest census data, the challenges in integrating
census data with spatial boundaries and the uncertainties of population estimates based on statistical
projections, are additional sources of errors and uncertainty limiting the accuracy of the population
distribution models. Therefore, as stated by Doxsey-Whitfield et al. [6], acquiring up-to-date global
population census data at the highest spatial detail possible should remain a priority for improving
global population mapping.

5. Conclusions

The presented study focused on the cross-comparison of population distribution maps produced
using the WSF-2015 and the experimental WSF-2015-Density layers. The main objective was to
investigate if higher accuracies in population distribution mapping can be achieved using additional
information on the build-up environment, such as the percentage of impervious surface, in comparison
to the already established binary approach employed by other population datasets and their baseline
settlement layers.

The results of the quantitative assessment showed that the overall accuracies between both
covariate layers are comparably similar, with the best accuracy results reported for population
distribution maps produced using the finest input census data. Our results indicate that, while both
layers distribute the largest percentage of each country’s total population with estimation errors
ranging from −25% to 25%, remaining limitations derived from: (i) the incomplete identification of
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settlement pixels; and (ii) the lack of information on the building use, still introduce large errors of
underestimation and errors overestimation in a considerable percentage of the population.

Notwithstanding these limitations, from a comparative point of view, our results have shown
that population distribution maps produced on basis of the WSF-2015-Density layer provide a more
realistic representation of the spatial distribution of the population, as the heterogeneous allocation of
population counts prevents the appearance of artificial patterns between neighbouring administrative
census units. Furthermore, it has been demonstrated that the WSF-2015-Density layer produces higher
accuracies in high-density built-up environments and is capable to improve the estimation accuracies
of the WSF-2015 layer up to ~30%, especially in those countries where a good percentage of building
structures have been identified within the rural areas. The fact that the WSF-2015-Density layer is
derived from remote sensing approaches that do not require a priori knowledge of the land cover
makes it a strong suitable proxy capable to improve global population distribution methodologies,
and, as it is not based on local relationships, it has no applicability restrictions in comparison to other
existing products. Moreover, it provides global coverage and can be straightforward updated allowing
time agreement with census population data, enabling the production of a consistent global population
distribution dataset with higher accuracy and spatial resolution than those currently available.

One of the strengths of our study is the implementation of the SSC index, used to investigate
the correlation between the built-up environment and the performance of each covariate layer. Our
results suggest that higher accuracies in population disaggregation could be achieved with the correct
preselection of the input covariate at the input unit level; however, to implement this preselection,
additional research is still necessary, as the SSC index cannot provide a complete distinction between
the covariate layers in areas with middle SSC index values.

However, in the light of these highly promising results, future research will focus on the validation
and open release of the WSF-2015-Density layer, expanding the accuracy assessment of population
mapping to other regions of the world, with special focus on arid and semi-arid areas, and comparing
the results against other existing global population distribution datasets. Within this outlook, deeper
research on the SSC index will also be included, to develop a methodology that can help minimise
the inherent distribution errors derived from the quality and functional characterisation of the input
covariates, as well as in the production of a new global population dataset.
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