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Abstract: The green vehicle routing problem is a variation of the classic vehicle routing problem in
which the transportation fleet is composed of electric vehicles with limited autonomy in need of
recharge during their duties. As an NP-hard problem, this problem is very difficult to solve. In this
paper, we first propose a memetic algorithm (MA)—a population-based algorithm—to tackle this
problem. To be more specific, we incorporate an adaptive local search procedure based on a reward
and punishment mechanism inspired by reinforcement learning to effectively manage the multiple
neighborhood moves and guide the search, an effective backbone-based crossover operator to generate
the feasible child solutions to obtain a better trade-off between intensification and diversification of
the search, and a longest common subsequence-based population updating strategy to effectively
manage the population. The purpose of this research is to propose a highly effective heuristic for
solving the green vehicle routing problem and bring new ideas for this type of problem. Experimental
results show that our algorithm is highly effective in comparison with the current state-of-the-art
algorithms. In particular, our algorithm is able to find the best solutions for 84 out of the 92 instances.
Key component of the approach is analyzed to evaluate its impact on the proposed algorithm and to
identify the appropriate search mechanism for this type of problem.

Keywords: green vehicle routing problem; memetic algorithm; adaptive local search; crossover
operator

1. Introduction

Currently, environmental concerns have driven governments to develop regulations and laws
that require organizations to adopt green logistics methods in their operations [1]. As a result, major
automotive manufacturers design and produce increasingly more and better alternative fuel vehicles
(AFVs). Hence, the number of AFVs on the roads are increasing. AFVs represent a promising
opportunity for reducing costs and pollution caused by transportation and mobility operations [2].
This is because many AFV models in the market not only help reduce fuel consumption, but also
have advantages in reducing fuel costs and reducing greenhouse gas emissions. However, many
AFVs have limited travel distances and must often rely on an underdeveloped refueling infrastructure.
Therefore, it may be necessary to include the exact locations of the refueling stations in route planning.
Furthermore, refueling delays may also cause considerable negative impacts. For example, for electric
vehicles, due to their relatively short driving range and long recharging time, coupled with limited
charging infrastructure, it may lead to range anxiety, so consumers may be worried about insufficient
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energy to reach the desired destination [3]. As a result, new routing models and methods for AFVs
have emerged to help provide reliable and adequate levels of service.

As one of the most famous combinatorial optimization problems, the classic vehicle routing
problem (VRP) is concerned with designing least cost delivery routes for a fleet of vehicles to serve a
set of customers. The green vehicle routing problem (GVRP) is a variation of the classic VRP in which
the fleet is composed of alternative fuel powered vehicles with limited autonomy in need of recharge
during the execution of their duties [4]. For the GVRP, there is an unlimited homogeneous fleet of
alternative fuel vehicles with limited time that starts from a depot node 0 and returns to it with the
objective of minimizing the total travel distances incurred by all the vehicles. The vehicles must fulfill
all the requests by visiting each customer node once with the constraints on the maximum driving
time and maximum fuel capacity available [5]. Figure 1 depicts a feasible solution to a green VRP.
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The goal of this research is to propose a highly effective heuristic for solving the green vehicle
routing problem and to bring new ideas for this problem or this type of problem. The main contributions
of this paper can be summarized as follows. First, to the best of our knowledge, this work is the first
to employ a population-based algorithm (i.e., memetic algorithm (MA)) to solve the green vehicle
routing problem. Second, we propose a reward and punishment mechanism inspired by reinforcement
learning to effectively manage the multiple neighborhood moves and guide the search. Compared
with the traditional local search, the adaptive local search can manage the different neighborhood
moves to adapt to different instances. Third, a backbone-based crossover operator and a longest
common subsequence based (LCS-based) population updating strategy is devised to obtain a better
trade-off between intensification and diversification of the search. Compared to the general crossover
operator (such as one-point crossover operator), the backbone-based crossover operator can better
integrate with the problem structure by inheriting the promising customer and station sequences from
the routes. Fourth, our experimental results demonstrate that the performance of our MA is highly
effective compared to state-of-the-art approaches in the literature.

The rest of the paper is organized as follows. In Section 2, we present the review of the literature.
In Section 3, we give the problem description of GVRP. In Section 4, we provide details of our memetic
algorithm. In Section 5, we present the results of extensive computational experiments carried out to
assess the performance of the proposed algorithms in comparison to current best-performing approaches.
In Section 6, we analyze the important component (i.e., adaptive mechanism for neighborhood moves)
of the MA algorithm and study the impact on its performance. In Section 7, we discuss the proposed
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algorithm in comparison with the other methods in the literature. Finally, we provide concluding
remarks as well as potential research directions in Section 8.

2. Review of the Literature

The green vehicle routing problem was first introduced in [6], where a mixed integer linear
programming formulation and two heuristics are proposed. One of the proposed heuristics is a
modified Clarke and Wright savings algorithm (MCWS) that repairs infeasible routes by inserting fuel
vehicle stations (AFSs) using a savings criterion and removes redundant AFSs after merging the routes.

Schneider et al. (2014) [7] introduced the electric vehicle routing problem with time windows
and recharging stations (E-VRPTW), which is an extension of the VRP with a fleet of electric vehicles.
The E-VRPTW problem considers limited capacities of vehicles, time windows of customers, and
the possibility of recharging at any of the available stations using an appropriate recharging scheme.
For this problem, they proposed an MILP formulation and a hybrid metaheuristic combining variable
neighborhood search and tabu search (VNS/TS). The proposed VNS/TS explores infeasible solutions
with respect to capacity, time windows, and battery usage constraints. A dynamic penalizing scheme
is used to guide the search toward feasible solutions. Furthermore, Schneider et al. (2014) [7] made
improvement over the MILP formulation proposed by Erdogan and Miller-Hooks (2012) [6], and
they evaluated their VNS/TS and MILP approaches on the 52 instances proposed by Erdogan and
Miller-Hooks (2012) [6]. Computational experiments showed that CPLEX 12.2 was unable to solve
to optimality instances with 20 customers using their MILP model, and VNS/TS outperformed the
constructive heuristics proposed by Erdogan and Miller-Hooks (2012) [6]. Schneider et al. (2015) [8]
introduced the vehicle routing problem with intermediate stops (VRPIS) that generalizes the GVRP and
the MDVRPI. To solve this problem, they proposed an adaptive variable neighborhood search (AVNS).
Their AVNS uses a modified savings algorithm to generate an initial solution that is later improved
with local search. The algorithm uses an adaptive shaking with 24 neighborhood structures, five route
selection methods, three vertex sequence selection methods, and an adaptive mechanism to choose
the route and vertex selection methods. The solution generated at the shaking step is subsequently
improved by several greedy local searches. Furthermore, the AVNS has a dynamic penalization scheme
to guide the search toward feasible solutions and a simulated annealing acceptance criterion. Since the
green VRP is a special case of the VRPIS, Schneider et al. (2015) [8] evaluated their approach on the
instances of Erdogan and Miller-Hooks (2012) [6]. This method outperformed all previous methods
both in terms of solution quality and computational time.

More recently, Montoya et al. (2016) [5] presented a new mathematical formulation for the GVRP
and a branch-and-cut algorithm. The authors also proposed a simulated annealing heuristic and
report results on small instances with up to 20 customers and 310 refueling stations. Andelmin and
Bartolini (2019) [1] proposed a multi-start local search (MSLS) algorithm for the GVRP. Their MSLS
algorithm consists of three phases. The first two phases iteratively construct new solutions, improve
them by local search, and store all vehicle routes from these solutions in a route pool. The third
phase optimally combines vehicle routes in the route pool by solving a set partitioning problem
and improves the final solution by local search. They reported computational results on benchmark
instances with up to 470 customers, showing that the algorithm is highly competitive with the previous
best performing heuristics.

Swarm intelligence (SI) is the collective behavior of decentralized and self-organized systems,
natural or artificial. The concept is employed in work on artificial intelligence. This method is
widely employed to solve hard solving complex combinatorial decision problems [9–12]. As a type
of evolutionary algorithm [3], memetic algorithm is a general-purpose metaheuristic approach that
typically combines a local search optimization procedure with a population-based framework. Memetic
algorithm has been successfully applied to tackle many classical combinatorial optimization problems,
including the machine scheduling problem [13], graph coloring problem [14] and quadratic assignment
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problem [15]. Hence, in this paper, we first employ the memetic algorithm to tackle the famous green
vehicle routing problem.

3. Problem Description and Definitions

Problem Description

For the green vehicle routing problem, the objective is to find a set of routes of minimum total
distance such that each customer is visited exactly once; the level of the tank when the vehicle arrives
at any vertex is nonnegative; each route satisfies the maximum-duration limit; and each route starts
and ends at the depot. Figure 1 depicts a feasible solution to a green VRP.

More precisely, we are given a set N = {1, . . . , n} of n customers and a set of F = {n + 1, . . . , n + s}
of s refueling stations. There is an unlimited homogeneous fleet of alternative fuel vehicles with
limited time that starts from a depot node 0 and return to it with the objective of minimizing the total
travel distances incurred by all the vehicles. The vehicles must fulfill all the requests by visiting each
customer node once with the constraints on the maximum driving time and maximum fuel capacity
available. More precisely, GVRP can be defined on a complete weighted undirected graph G = (V, E)
with the following features.

V = N ∪ F ∪ 0 denotes the set of nodes, where N denotes the set of customer nodes, F is
the set of refueling station nodes, 0 denotes the starting and ending node, also called depot, and
E = {(u, v): u, v∈V, u,v} is the edge set.

The distance between two nodes (u, v ∈ N) is denoted by c(u, v).

• The service time at each customer node u ∈ N is denoted by stu.
• The refueling time at each refueling station node u ∈ F is denoted by f tu.
• The travel time to traverse the arc (u, v) ∈ E is denoted by ttu,v.
• The maximum fuel capacity without refueling for each vehicle is MC (i.e., the maximum fuel

capacity constraint).
• The maximum driving time of each route including the service time, traversal time and refueling

time is MT (i.e., the maximum driving time constraint).
• A route traveling from i to j consumes c(i, j) units of distance and t(i, j) units of time. The time t(i, j)

is assumed to be proportional to the distance c(i, j) from i to j and computed as t(i, j) = c(i, j)/v
where v is the vehicle speed.

Let R be one route in a solution S and R = {u0 = 0, u1, u2, . . . , um−1, um = 0}, where uk is the kth
node visited in R(0 ≤ k ≤ m). It is worth noting that the GVRP expresses the maximum driving range
of a vehicle as its maximum fuel capacity MC. However, since vehicle fuel consumption is assumed
to be linearly dependent on the distance traveled, the maximum driving range can be equivalently
expressed as a distance value. Letting K be the constant rate of fuel consumption per distance unit, the
maximum distance Q that a vehicle can travel without refueling is thus defined as Q = MC/K.

If the visited node is a customer node (i.e., uk ∈ N), the corresponding fuel surplus of the vehicle
after visiting it is f s(uk) = f s(uk−1) − c(uk−1, uk)/K. For each node in the route, the corresponding
fuel surplus must be non-negative. Note that all vehicles departing from the depot and the refuel
stations are assumed to be fully refueled having the maximum fuel amount MC. We denote by
DT(R) =

∑m−1
k=0 ttuk,uk+1 the total traversal time, ST(R) =

∑m−1
k=1 stuk the total service time if uk is the

customer node, and FT(R) =
∑m−1

k=1 f tuk if uk is the refuel station node. The corresponding total
duration of each route including the traversal time, service time and refuel time cannot exceed the given
maximum driving time, i.e., DT(R) + ST(R) + FT(R) ≤ MD(the maximum driving time constraint).
The objective is to find a feasible solution with the minimum total travel distance as follows:

Minimize f (s) =
∑
|S|

i=1
DT(R i) ∗ v, (1)
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where DT denotes the traversal time and v denotes the vehicle speed.

4. Memetic Algorithm

4.1. Main Framework

A memetic algorithm is a general-purpose metaheuristic approach that typically combines a local
search optimization procedure with a population based framework, which has been successfully applied
to tackle many classical combinatorial optimization problems, including the job shop scheduling
problem [16], p-center problem [17] and nurse rostering problem [18]. The purpose of combining
local search and population-based strategies is to take advantage of both the crossover operator as
a diversification mechanism for discovering promising unexplored regions of the search space and
the local optimization as an intensification procedure to obtain high quality solutions within a search
region. We outline our proposed memetic algorithm for GVRP in Algorithm 1. At the beginning of the
algorithm, we iteratively employ a hybrid heuristic method to generate the initial population (line 1).
Following this, we employ an adaptive local search to optimize the solutions in the population (lines
2–4). Later, we iteratively combine two parent solutions randomly selected from the population to
generate offspring solutions using a backbone-based crossover operator until the stopping criterion,
i.e., maximum computing time, is satisfied (lines 5–7). After each use of the crossover operator,
we improve the generated offspring solution using an adaptive local search to guide the search to
promising regions (line 8). During this process, S∗ records the best solution found so far (lines 9–11).
We then apply the longest-common-sequence-based (LCS-based) population updating strategy to
possibly replace the worst individual in the population with the improved offspring solution (lines
12–15).

Algorithm 1. Framework of the memetic algorithm for solving GVRP

Require: Benchmark instance (B); the maximum computing time (Tmax)
Ensure: Best-found solution (S∗)
/* Generate np feasible solutions as an initial population (Section 4.2) */
1: Pc =

{
S1, . . . , Snp

}
← Initial solutions (B)

/* Improve each individual Si in the population with an adaptive local search (Section 4.3) */
2: for i = 1, . . . , np do
3: Si ← Adaptive local search (Si)
4: end for
5: while the maximum computing time Tmax is not reached do
6: Randomly select parent solutions Si and S j, from P where 1 ≤ i, j ≤ np an i , j
/* Generate offspring Sc from Si, and S j, (Section 4.4) */
7: Sc ← Si ⊕ S j = Backbone-based-crossover (Si, S j)
/* Improve Sc with an adaptive local search (Section 4.3) */
8: Sc ← Adaptive-local-search (Sc)
9: if Sc is better than S∗ then
10: S∗ ← Sc

11: end if
/* The longest-common-subsequence based population updating strategy (Section 4.5) */
12: Determine the worst individual Sw where the goodness value GS(Sw, Pc) = min

{
GS(Sk, Pc)

}
, 1 ≤ k ≤ np

(see Equation (7))
13: if GS(Sc, Pc ∪ Sc) > GS(Sw, Pc ∪ Sc) then
14: Pc ← Pc ∪ Sc\Sw

15: end if
16: end while
17: return (S∗)
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4.2. Initial Solutions

In this section, we employ a constructive heuristic based on a greedy generation method called
k-Pseudo Greedy proposed by Felipe et al. (2014) [2] to generate the initial population. The k-Pseudo
Greedy focuses more on feasibility and diversification, producing multiple different feasible solutions,
rather than on quality or cost that are to be improved later. Specifically, the k-Pseudo Greedy method
creates feasible solutions by starting from an empty solution and iteratively extending it (i.e., adding
customers and fuel stations in route) until a complete solution is constructed. Specifically, the method
first finds up to k unvisited customers that are closest to the current node and are reachable according
to capacity, autonomy and time availability, and then select one of them, denoted by j, at random.
More precisely, if it is possible to reach the depot directly form j, then j is added to the initial route.
If it is possible to reach the depot from j by visiting a recharge node r, the j and r are both added to the
initial route. Otherwise, the current route is ended in depot. The above procedure iteratively continues
until all the customers are added in the initial solution.

If k = 1, it reduces to a nearest neighbor greedy algorithm, visiting the closest customer and
recharging at the closest recharge station when needed, until the capacity or time limit is reached.
If k > 1, the next node to be visited is chosen randomly from the set of k closest candidates, allowing the
generation of different feasible solutions in different runs. This algorithm is focused more on feasibility
and diversification, producing multiple different feasible solutions, rather than on quality or cost,
that are to be improved later. However, if k is small, the produced solutions are expected to have an
acceptable quality.

Generally speaking, the initial solution procedure will have an insignificant impact on the
performance of the overall algorithm, if the algorithm itself is powerful enough. Therefore, we adopt
in this study this simple but effective initial solution construction process above to generate the
initial population.

4.3. Adaptive Local Search

One of the key components of our memetic algorithm is the adaptive local search procedure that
plays the critical role of intensifying the search. With the exception of tabu search, traditional local
search utilizes a set of moves to search the solution regions without maintaining a memory of the
process, while the local search based on our reinforcement learning mechanism is able to effectively
exploit memory to manage the neighborhood moves and guide the search to promising regions.

4.3.1. Neighborhood Moves

Our algorithm employs both intra-route moves (performed in the same route) and inter-route
moves (performed between two different routes) as follows:

• Intra-node-insertion (hereafter denoted as M1): This operator selects a customer node removed
from a given route and tries to relocate it in the same route. Specifically, it first removes node i
and relocates it between customers k and l to contains the customer sequence (k, i, l), as shown in
Figure 2.

• Intra-nodes-swap (M2): two customer nodes in the same route exchange their positions. Specifically,
it first removes nodes i and k and relocates them in the current route to contains the customer
sequences (AFS1, k, j) and (AFS2, i, l), as shown in Figure 3.

• Intra-arc-insertion (M3): this operator selects an arc of two customers from a given route and tries
to relocate it somewhere else of the same route. Specifically, it first removes one arc between two
successive customers i and j. It then tries to reconnect the route so that it contains the customer
sequence (AFS2, k, j, 0), as shown in Figure 4.

• Intra-arcs-swap (M4): two arcs of consecutive customers exchange their positions. See an example
shown in Figure 5.
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• Inter-node-insertion (M5): different from the intra-node-insertion operator, this operator selects
a customer node removed from a given route and tries to relocate it in a different route. To be
specific, it first removes node i in route 1 and relocates it between customers k and l to contains
the customer sequence (k, i, l) in route 2, as shown in Figure 6.

• Inter-nodes-swap (M6): different from the intra-nodes-swap, this operator selects two customers
in different routes to exchange their positions. See an example in Figure 7.

• Inter-arc-insertion (M7): different from the intra-arc-insertion operator, this operator relocates a
customer arc into another route. See an example in Figure 8.

• Inter-arcs-swap (M8): different from the intra-arcs-swap operator, this operator exchanges the
positions of two customer arcs between two different routes. See an example in Figure 9.
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In our local search, we only consider neighborhood moves that can satisfy both two constraints,
i.e., the maximum driving time, and maximum fuel capacity constraints.

4.3.2. Reward and Penalty Strategy Based on Adaptive Mechanism

Reinforcement learning is an area of machine learning concerned with how an agent should take
actions in an environment to maximize cumulative reward. The intuition underlying reinforcement
learning is that actions that lead to large rewards should be made more likely to recur.

We employ a reward and penalty strategy to dynamically manage the neighborhood moves and
guide the search based on the expectation that different neighborhood moves may be preferable for
different problem instances or search landscapes. Consequently, we keep track of a score for each
neighborhood move, which measures how well the move has performed for the current instance or
landscape, adopting the perspective that alternating among different moves based on the proposed
adaptive mechanism may yield more robust performance.

To select moves, we assign scores to different moves and use the roulette wheel selection principle.
If we have n moves with scores sci(i ∈ 1, 2, . . . , n), move k is selected with probability λk, where

λk =
n∑

i=1

sck
sci

,k = 1, 2, . . . , n. (2)

At the beginning of the search, each neighborhood move has the same score sc0 and hence the
same probability of being chosen. After each iteration j, the score of the neighborhood used is updated
as follows:

sci, j+1 = sci, j + α ∗ βl, i, j = 1, 2, . . . , n; l = 1, 2. (3)

where the reaction factor α controls how quickly the score adjustment function reacts to changes
according to the performance of the moves, and parameter β denotes the different incremental scores
according to the following several situations. If one move can produce a new best solution, we reward
this neighborhood move by choosing β1 in Equation (3). If one move can generate a better solution than
the current solution, the neighborhood move would still be rewarded β2. However, if the generated
solution is worse than the current solution, then we punish the move by multiplying the score by γ
as follows:

sci, j+1 = γ ∗ sci, j, i, j = 1, 2, . . . , n. (4)

The adaptive local search phase proceeds with iterative exploitation of the eight neighborhood
moves as shown in Algorithm 2. In each iteration, one neighborhood move is picked with probability λi
(lines 3–4). Then, if the neighborhood solution S’ obtained by this neighborhood move cannot
improve the current solution S, the next neighborhood move is chosen from those remaining;
otherwise, the current solution S is replaced by the best neighborhood solution S′ generated by
current neighborhood move (lines 5–10). Subsequently, the score of the neighborhood move Ni is
updated by Equations (3) and (4) (line 11). During this process, Sb records the best solution found in
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the local search, S∗ preserves the best found solution so far, and no_improve_iter denotes the number
of iterations without improving the best found solution Sb (lines 12–16). When none of the moves can
improve the current best solution, we apply a simple perturbation strategy to achieve a better trade-off

between diversification and intensification of the search (lines 17–19).

Algorithm 2. Adaptive local search procedure

Require: Initial current solution (S);
Ensure: Best found solution (Sb) during the search
/*The set of neighborhood moves denoted by I including the eight neighborhood operators proposed in
Section 4.3.1*/
1: I = {M1, M2, . . . , MM8}, I0 ← I, Sb

← S, no_improv_iter← 0
2: while no_improv_iter < n∗ ε do
3: Calculate the probability λi of each neighborhood move Mi by Equation (2)
4: Randomly select one neighborhood move Mi from I with probability λi, where 1 ≤ i ≤ |I0|

5: Choose the best neighboring solution S′ from the set of neighboring solutions generated by Mi move,
(i.e., S′ ← S⊕Mi)

6: if S′ is not better than S then
7: I← I\{Mi}

8: else
9: S← S′, I← I0

10: end if
11: Update the score of the neighborhood move Mi by Equations (3) and (4)
12: If S′ is better than S∗

(
or Sb

)
then

13: S∗
(
or Sb

)
← S′ , no_improv_iter← 0

14: else
15: no_improv_iter← no_improv_iter + 1
16: end if
17: if |I|= 0 then
18: S← Perturbation(Sb), I← I0

19: end if
20: end while
21: return (Sb)

To apply the perturbation operator, we randomly delete part of the customer nodes (n/ζ) from
the current solution and re-insert the deleted customer nodes into the partial solution based on a
greedy strategy.

4.4. Backbone-Based Crossover Operator

The crossover operator is another key component of our memetic algorithm. In practice, it is
important to devise a dedicated recombination operator that has strong “semantics” with respect to
the studied problem. In the last few years, several kinds of crossover operator have been used in the
literature. Li et al. [19] introduced a complicated crossover operator based on the tree representation
and Cherkesly et al. [4] proposed an adapted-order-based crossover operator. Both operators can
only be used for the pickup and delivery constraints. In this study we propose a dedicated crossover
operator for GVRP, which has the following features: first, our crossover operator always generates
feasible solutions with respect to all the constraints, i.e., the maximum driving time and the maximum
fuel capacity constraints. Thus, it is unnecessary to employ the repair strategy to ensure feasibility of
the generated solutions. Second, based on a greedy chosen mechanism, our crossover operator can
obtain high-quality offspring solutions.

The proposed backbone-based crossover operator operates in the following two sequential steps:

• Step 1. We select the chosen customer and station sequence of a route from the corresponding
parent solutions as a route of the child solution. To illustrate this, Figure 10 depicts an example
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with two parents Sa and Sb, where Route 1 and Route 2 denote the two routes of the parent
solutions, respectively. The best chosen route selected from the candidate routes of two parent
solutions is the one yielding the minimum ratio value of ∆:

∆ = δ( f )/θ (5)

where δ( f ) represents the incremental objective value after selecting the candidate route as a route
in the child solution Sc, and θ denotes the number of customers in the current route. As shown in
Figure 10, we first select Route 1 from Sb in the first iteration, and Route 2 from Sb in the second
iteration. At the last iteration we select Route 1 from Sa.

• Step 2. We delete the customers in the chosen route from the remaining routes in two parent
solutions. As shown in Figure 10, we delete the customers from both two parent solutions, which
appear in Route 1 after we select Route 1 from Sa in the first iteration. The reason is that it is
necessary to remove the same customer from both parent solutions in order to avoid redundancy
after each iteration.
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For the crossover operator, both steps are iteratively alternated until all the customers are included
in the offspring solution. It is intuitive that our proposed crossover operator is able to generate the
feasible offspring solution since the offspring solution inherit all the feasible routes (or the subset of the
routes) from the parent solutions.

In our proposed crossover operator, the first step aims to select the most promising customer
and station sequences from the routes according to a dedicated equation. The second step iteratively
deleted the chosen customers and stations each time. Compared to the general and typical crossover
operators, the proposed backbone-based crossover based on these two steps with the iterated greedy
strategy is able to integrate well with the problem structure. Hence in this study, we employ the
backbone-based crossover operator as the component of our algorithm.

4.5. LCS-Based Population Updating Strategy

To maintain healthy diversity of the population, we use the LCS-based population updating
strategy introduced by Cheng et al. [16] to solve the job shop scheduling problem, to decide whether
the improved solution should be inserted into the population or discarded. This population updating
strategy simultaneously considers the solution quality and the distances among the individuals in the
population to guarantee diversity of the population. The underlying idea is that the similarity of two
solutions based on the longest common subsequence could clearly match the neighborhood moves
based on the insert and swap operations. For this purpose, we first make two definitions as follows:

Definition 1. Distance between a solution and its population
Given a solution Si and the population PP = {S1, S2, . . . , Snp}, the distance between the solution Si and its

population PP can be defined as follows:

Dist(Si) = Min{2 ∗ (n + s) − lcs(si, s j) : 1 ≤ i, j ≤ np, i , j}, (6)

where 2 ∗ (n + s) and lcs(si, s j) denote the number of all the customer and refuel station nodes and the length of
the longest common subsequence between Si and S j, respectively.

Definition 2. Goodness score of a solution in the population
The goodness score GS(Si) of a solution Si is defined by its objective function value, as well as its distance

to the population, as follows:

GS(Si) = δ×
fmax − fSi

fmax − fmin + 1
+ (1− δ) ×

Dist(Si) −Distmin

Distmax −Distmin + 1
(7)

where fmax and fmin denote the maximum and minimum objective values of the individuals in the population
PP, and Distmax and Distmin are the maximum and minimum distances between a solution to the population,
respectively. The number 1 is used to avoid the possibility of a 0 denominator and δ is a constant parameter.

In each generation, the offspring individual is inserted into the population if the goodness score of the
offspring is better than the worst solution in the population according to the goodness score. Otherwise, the
offspring individual is discarded. It is clear that the greater the goodness score GS(Si) is, the better is the
solution Si. It is noted that this goodness score function simultaneously considers the factors of solution quality
and population diversity. On the one hand, we should maintain a population of elite solutions. On the other
hand, we have to emphasize the importance of the diversity of the solutions to avoid premature convergence of
the population.
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5. Computational Studies

In this section we report extensive computational studies conducted to assess the performance of
our proposed memetic algorithm (MA) with the state-of-the-art reference algorithms in solving public
benchmark instances of GVRP.

5.1. Benchmark Instances and Experimental Protocols

For experimental evaluations, we employ two data sets for GVRP. The first set of benchmark
instances (called EMH) was proposed in [6], which consists of 52 instances with 20–500 customers
and 3–28 refueling stations. Most of these instances (40 out of 52) consist of 20 customers and 2–10
refueling stations and have been randomly constructed to represent different types of customer and
refueling station configurations. The second set of instances (denoted by AB) was created by [20] by
extracting a subset of customers from the larger EMH instances. The number of customers for the AB
instances ranges between 50 and 100. These instances are divided into two subsets called AB1 and AB2.
The AB1 instances have the same characteristics as the EMH instances, whereas the AB2 instances
have the same customers and refueling stations as those in AB1, but the vehicles are assumed to travel
at a higher speed of v = 60 miles/h and have a maximum driving autonomy of 280 miles. Notice that
the AB2 instances allow longer vehicle routes with respect to the EMH and AB1 instances due to the
higher vehicle speed.

In this study we coded our MA algorithm in C++ and ran it on a PC with an AMD Athlon 3.0 GHz
CPU and 2Gb RAM operating under the Windows 7 operating system. To evaluate the performance of
MA, we compare it with the following state-of-the-art heuristics from the literature:

• The adaptive variable neighborhood search (AVNS) [7]. Algorithm AVNS was evaluated on a
desktop computer with an Intel Core i5 2.67 GHz processor with 4GB RAM, running Windows
7 Professional.

• The multi-space sampling heuristic (MSH) proposed by Montoya et al. (2016) [5]. Algorithm
MHS was evaluated on a computing cluster with 2.33 GHz Intel Xeon E5410 processors with 16GB
of RAM running under Linux platform.

• The multi-start local search (MSLS) proposed by Andelmin and Bartolini (2019) [1]. Algorithm
MSLS was evaluated on Intel i5-3570K desktop clocked at 3.40 GHz with 8GB RAM running
Windows 10 Home 64 Edition.

5.2. Parameter Tuning

Table 1 presents the settings of the MA parameters used in the reported experiments. We tuned the
parameters with the iterated F-race (IFR) proposed by Birattari et al. [21] and an automated configure
method that is part of the IRACE package from [22]. We performed the tuning process on ten instances
111c_24s, 111c_26s, 111c_28s, 200c_21s, 250c_21s, 300c_21s, 350c_21s, 400c_21s, 450c_21s, and 500c_21s
with 109-471 vertices. For each parameter, IFR requires a limited set of values as input to choose from
the “candidate values” which are empirically determined and presented in Table 1. We set the total
time budget for IRACE to 100 executions of MA, with a time limit of 60 minutes for the GVRP instances
111c_24s, 111c_26s, 111c_28s, 200c_21s, 250c_21s and 300c_21s, and 200 min for the GVRP instances
350c_21s, 400c_21s, 450c_21s and 500c_21s. We denote the parameters setting suggested by IFR as
Final Value in Table 1.
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Table 1. Settings of some important parameters for memetic algorithm (MA).

Parameter Description Candidate Values Final Value

k The parameter (the number of the candidate customers)
in the initial population phase 1, 3, 5 3

α
The reaction factor that controls how quickly the score
adjustment function reacts to changes according to the

performance of the moves
0.1, 0.2, 0.3 0.2

β1
The reward parameter if a move produces a new best

solution 1, 5, 10 5

β2
The reward parameter if a move improves the current

solution 1, 2, 5 1

γ
The punishment parameter if a generated solution is

worse than the current solution 0.8, 0.9, 0.99 0.9

ζ
The parameter of the ratio of the number of request

nodes deleted in the perturbation strategy (n/ζ) 4,5,6 5

np The number of individuals in the population 5, 10, 15 15

δ
The constant parameter to balance the objective value

and the distance in the goodness value 0.4, 0.7, 0.9 0.7

5.3. Computational Results on the EMH Benchmark Instances

In this section we evaluate the performance of MA in solving GVRP in comparison with the
best-performing algorithms (i.e., AVNS, MSH and MSLS). Specifically, we applied MA to solve
each instance for ten times. As depicted in Tables 2 and 3, the columns n, s and Γ report for each
instance the number of customers, the number of stations, and the number of arcs in G, respectively.
The column under the heading CPLEX shows the results obtained with an improved version of the
model implemented by Schneider et al. [3] and solved with CPLEX with a 3-h time limit. The cases
in which a feasible solution could not be found within the time limit are tagged with a-sign results.
The following columns fbest, Veh, favg and Time report the best objective value, i.e., the minimum
travelled distance, the number of vehicles corresponding to the best solution, the average objective
value over the ten runs, and the computing time, respectively. In addition, the row #Best indicates the
numbers of instances for which the associated algorithm obtains best objective values in terms of fbest
compared with the reference results reported in the literature, and the row denotes the average value
over all the instances in the set.

Table 2 presents the result on the 20-customer EMH instances. Considering this part of instances is
small-scale with only 20 customers, we limit the computational time of the algorithm to 0.01 s for each
instance. Note that for this instance set with the smallest scale, CPLEX solver cannot find solutions
for four instances within the specified time limit (i.e., 3 h). Our proposed MA algorithm can obtain
the best results for 38 out of 40 instances. The best and average objective values are better than the
state-of-the-art MSLS algorithm (1635.42 vs. 1636.84, and 1636.94 vs. 1635.52).

Table 3 shows the experimental results on the large EMH instances with 109–471 customers.
From Table 3, we observe that the proposed MA algorithm outperforms the reference algorithms AVNS,
MSH and MSLS in terms of the indicators fbest and favg. In particular, MA achieves better results than
the current best-performing algorithm MSLS in terms of obtaining the best objective value for 9 out
of the 12 instances, while only slightly worse for 3 instances. Moreover, MA is able to obtain better
result in terms of fbest and favg than MSLS (10,301.37 vs. 10,303.43, and 10,316.86 vs. 10,319.86) within a
relatively close computing time (49.65 m vs. 49.70 m). The experimental results based on the large
EMH instances above show that our proposed MA algorithm is highly competitive in comparison with
the best-performing algorithms in terms of solution quality and computational efficiency. Note that,
we indicate the best objective values found by the corresponding algorithms in bold.
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Table 2. Results for solving public benchmark 20-customer EMH instances. Time is measured in minutes.

Instances n s Γ CPLEX
AVNS MSH MSLS MA

fbest favg Time Veh fbest favg Time Veh fbest favg Time Veh fbest favg Time

20c3sU1 20 3 558 1797.49 1797.49 1797.49 0.16 6 1797.49 1797.49 0.08 6 1797.5 1797.5 0.005 6 1797.49 1797.49 0.01
20c3sU2 20 3 570 1574.77 1574.78 1574.78 0.15 6 1574.78 1574.78 0.07 6 1574.78 1574.78 0.005 6 1574.78 1574.78 0.01
20c3sU3 20 3 594 1704.48 1704.48 1704.48 0.13 6 1704.48 1704.48 0.07 6 1704.48 1704.48 0.005 6 1704.48 1704.48 0.01
20c3sU4 20 3 588 1482 1482 1482 0.17 5 1482 1482 0.07 5 1482 1482 0.005 5 1482 1482 0.01
20c3sU5 20 3 558 1689.37 1689.37 1689.37 0.18 6 1689.37 1689.37 0.07 6 1689.37 1689.37 0.005 6 1689.37 1689.37 0.01
20c3sU6 20 3 586 1618.65 1618.65 1618.65 0.15 6 1618.65 1618.65 0.07 6 1618.65 1618.65 0.005 6 1618.65 1618.65 0.01
20c3sU7 20 3 528 1713.66 1713.66 1713.66 0.19 6 1713.66 1713.87 0.07 6 1713.67 1713.67 0.004 6 1713.66 1713.66 0.01
20c3sU8 20 3 544 1706.5 1706.5 1706.5 0.16 6 1706.5 1706.5 0.07 6 1706.5 1706.5 0.004 6 1706.5 1706.5 0.01
20c3sU9 20 3 488 1708.81 1708.82 1708.82 0.19 6 1708.82 1709.65 0.07 6 1708.82 1708.82 0.004 6 1708.82 1708.82 0.01

20c3sU10 20 3 624 1181.31 1181.31 1181.31 0.23 4 1181.31 1181.31 0.07 4 1181.31 1181.31 0.005 4 1181.31 1181.31 0.01
20c3sC1 20 3 772 1173.57 1173.57 1173.57 0.38 4 1173.57 1173.57 0.07 4 1173.57 1177.49 0.006 4 1173.57 1177.49 0.01
20c3sC2 19 3 538 1539.97 1539.97 1539.97 0.21 5 1539.97 1539.97 0.08 5 1539.97 1539.97 0.005 5 1539.97 1539.97 0.01
20c3sC3 12 3 278 880.2 880.2 880.2 0.15 3 880.2 880.2 0.04 3 880.2 880.2 0.004 3 880.2 880.2 0.01
20c3sC4 18 3 608 1059.35 1059.35 1077.71 0.23 4 1059.35 1059.94 0.06 4 1059.35 1059.35 0.005 4 1059.35 1059.35 0.01
20c3sC5 19 3 362 - 2156.01 2156.01 0.14 7 2156.01 2156.04 0.1 7 2156.01 2156.01 0.004 7 2156.01 2156.01 0.01
20c3sC6 17 3 276 2758.17 2758.17 2758.17 0.14 8 2758.17 2758.17 0.08 8 2758.17 2758.17 0.003 8 2758.17 2758.17 0.01
20c3sC7 6 3 38 1393.99 1393.99 1393.99 0.04 4 1393.99 1393.99 0.06 4 1393.99 1393.99 0.002 4 1393.99 1393.99 0.01
20c3sC8 18 3 232 3139.72 3139.72 3139.72 0.08 9 3139.72 3139.72 0.12 9 3139.72 3139.72 0.003 9 3139.72 3139.72 0.01
20c3sC9 19 3 480 1799.94 1799.94 1799.94 0.16 6 1799.94 1799.94 0.1 6 1799.94 1799.94 0.004 6 1799.94 1799.94 0.01

20c3sC10 15 3 222 - 2583.42 2600.39 0.09 8 2583.42 2583.42 0.07 8 2640 2640 0.003 8 2583.42 2583.42 0.01
S1 2i6s 20 6 896 1578.12 1578.12 1578.12 0.16 6 1578.12 1578.12 0.07 6 1578.12 1578.12 0.007 6 1578.12 1578.12 0.01
S1 4i6s 20 6 972 1413.96 1397.27 1397.27 0.16 5 1397.27 1397.27 0.07 5 1397.27 1397.27 0.008 5 1397.27 1397.27 0.01
S1 6i6s 20 6 744 1560.49 1560.49 1560.49 0.2 5 1560.49 1560.49 0.07 5 1560.49 1560.49 0.005 5 1560.49 1560.49 0.01
S1 8i6s 20 6 822 1692.32 1692.32 1692.32 0.17 6 1692.32 1692.32 0.07 6 1692.32 1692.32 0.007 6 1692.32 1692.32 0.01
S1 10i6s 20 6 1186 1173.48 1173.48 1173.48 0.24 4 1173.48 1173.48 0.07 4 1173.48 1173.48 0.009 4 1173.48 1173.48 0.01
S2 2i6s 20 6 848 1633.1 1633.1 1633.1 0.19 6 1633.1 1633.1 0.09 6 1633.1 1633.1 0.008 6 1633.1 1633.1 0.01
S2 4i6s 19 6 920 1555.20 1505.07 1505.07 0.14 6 1505.07 1505.07 0.09 6 1505.07 1505.07 0.007 6 1505.07 1505.07 0.01
S2 6i6s 20 6 560 - 2431.33 2431.33 0.13 7 2431.33 2431.33 0.07 7 2431.33 2431.33 0.007 7 2431.33 2431.33 0.01
S2 8i6s 16 6 292 2158.35 2158.35 2158.35 0.09 7 2158.35 2158.35 0.06 7 2158.35 2158.35 0.004 7 2158.35 2158.35 0.01
S2 10i6s 16 6 466 - 1585.46 1585.46 0.15 5 1585.46 1585.46 0.06 5 1585.46 1585.46 0.005 5 1585.46 1585.46 0.01
S1 4i2s 20 2 518 1582.21 1582.21 1582.21 0.13 6 1582.21 1582.21 0.07 6 1582.21 1582.21 0.004 6 1582.21 1582.21 0.01
S1 4i4s 20 4 708 1460.09 1460.09 1460.09 0.16 5 1460.09 1460.09 0.07 5 1460.09 1460.09 0.006 5 1460.09 1460.09 0.01
S1 4i6s 20 6 972 1397.27 1397.27 1397.27 0.16 5 1397.27 1397.27 0.07 5 1397.27 1397.27 0.008 5 1397.27 1397.27 0.01
S1 4i8s 20 8 1320 1403.57 1397.27 1397.27 0.17 5 1397.27 1397.27 0.07 5 1397.27 1397.27 0.01 5 1397.27 1397.27 0.01
S1 4i10s 20 10 1494 1397.27 1396.02 1396.02 0.23 5 1396.02 1396.02 0.07 5 1396.02 1396.02 0.012 5 1396.02 1396.02 0.01
S2 4i2s 18 2 548 1059.35 1059.35 1069.42 0.23 4 1059.35 1059.94 0.06 4 1059.35 1059.35 0.004 4 1059.35 1059.35 0.01
S2 4i4s 19 4 838 1446.08 1446.08 1449.17 0.21 5 1446.08 1446.08 0.09 5 1446.08 1446.08 0.006 5 1446.08 1446.08 0.01
S2 4i6s 20 6 924 1434.14 1434.14 1445.35 0.2 5 1434.14 1435.95 0.08 5 1434.14 1434.14 0.007 5 1434.14 1434.14 0.01
S2 4i8s 20 8 1256 1434.14 1434.14 1434.14 0.2 5 1434.14 1435.95 0.08 5 1434.14 1434.14 0.01 5 1434.14 1434.14 0.01
S2 4i10s 20 10 1528 1434.13 1434.13 1455.31 0.24 5 1434.13 1435.94 0.09 5 1434.13 1434.13 0.014 5 1434.13 1434.13 0.01

#AVG
#Best

1635.43
38 1637.45 0.17 1635.42

38 1635.62 0.07 1636.84
35 1636.94 0.006 1635.42

38 1635.52 0.01
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Table 3. Results for solving public benchmark large EMH instances. Time is measured in minutes.

Instances n s Γ BKS
AVNS MSH MSLS MA

fbest favg Time Veh fbest favg Time Veh fbest favg Time Veh fbest favg Time

111c_21s 109 21 57,462 4770.47 4770.47 4791.53 1.78 17 4777.91 4781.85 4.94 17 4771.97 4774.2 1.87 17 4770.47 4790.51 2.01
111c_22s 109 22 58,480 4767.21 4776.81 4797.31 1.94 17 4774.65 4778.8 4.69 17 4767.21 4769.77 1.96 17 4767.21 4769.77 2.33
111c_24s 109 24 64,588 4767.14 4767.14 4790.84 2.16 17 4773.67 4778.62 5.64 17 4767.14 4768.4 2.42 17 4767.14 4768.48 3.62
111c_26s 109 26 66,814 4767.14 4767.14 4782.6 2.04 17 4773.67 4778.62 5.23 17 4767.14 4769.5 2.57 17 4767.14 4769.5 3.54
111c_28s 109 28 68,878 4765.52 4765.52 4781.26 1.73 17 4772.46 4777.03 5.54 17 4765.52 4767.97 2.78 17 4765.52 4767.97 3.99
200c_21s 192 21 191,884 8766.04 8886 8970.14 3.61 31 8839.62 8879.98 19.96 31 8766.04 8790.8 10.48 31 8766.04 8790.8 9.15
250c_21s 237 21 303,962 10,379.98 10,487.15 10,531.2 3.67 37 10,482.52 10,518.32 21.58 37 10,379.98 10414.45 21.46 37 10,381.21 10,402.27 15.23
300c_21s 283 21 424,602 12,202.49 12,374.49 12,514.78 4.94 44 12,367.6 12,421.75 47.53 43 12,202.49 12,209.94 35.44 43 12,206.16 12,215.78 31.84
350c_21s 329 21 576,896 13,908.96 14,103.66 14,271.56 7.11 50 14,073.34 14,226.03 63.01 49 13,908.96 13,929.89 60.99 49 13,910.02 13,931.57 57.99
400c_21s 378 21 743,346 16,398.13 16,697.21 16,839.23 12.7 59 16,660.2 17,119.89 71.7 58 16,398.13 16,424.29 111.84 58 16,389.27 16,412.81 101.27
450c_21s 424 21 931,852 17,938.85 18,310.6 18,512.47 13.19 65 18,241.48 18,902.03 80.75 64 17,938.85 17,973.93 145.73 64 17,931.21 17,956.77 172.06
500c_21s 471 21 1,128,354 20,207.81 20,609.67 20,874.5 19.51 73 20,496.5 20,997.04 89.95 71 20,207.81 20,245.13 198.97 71 20,198.74 20,225.52 196.43

#AVG 10,442.98 10,538.11 6.19 10,419.46 10,579.99 35.04 10,303.43 10,319.86 49.7 10,301.37 10,316.86 49.95

#Best 1 0 8 9
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5.4. Computational Results on the AB Benchmark Instances

In view of its good performance, we further compare the MA algorithm with the state-of-the-art
heuristic algorithm MSLS for the second instance set (i.e., AB instances). As shown in Table 4, the
first two columns present the instance identifiers and the number of the customers, respectively.
The following two columns (s and Γ) report the number of the number of refuel stations, and arcs
in graph G. The best-known results found by all the previous algorithms proposed in the literature
are presented in column BKS. The number of the vehicles (Veh*) corresponding to the best solution
(BKS) found by the reference algorithms, and the lower bound for each AB instance are presented in
the following two columns. The average gaps above the BKS values in percentages reported under
columns %Best and %Avg are computed with respect to the best and average upper bound, respectively,
obtained over 10 runs. As shown in Table 4, MA outperforms the state-of-the-art algorithm MSLS in
terms of all the indicators (0.01 vs. 0.12, 0.30 vs. 0.32, 11.85 vs. 11.87, 123.99 s vs. 125.98 s). In particular,
the MSLS algorithm can find the best-known solution for 24 instances out of 40 instances, while MA
algorithm can obtain the best-known solutions for 37 instances, larger number of instances, out of
40 instances.

Table 4. Results for solving public benchmark AB instances. Time is measured in seconds.

Instances n s Γ BKS Veh LB
MSLS MA

%Best %Avg Veh Time %Best %Avg Veh Time

AB101 50 21 10,590 2566.62 9 2566.62 0 0 9 10.98 0 0 9 5.12
AB102 50 21 12,768 2876.26 10 2876.26 0 0 10 12.8 0 0 10 6.79
AB103 50 21 12,604 2804.07 10 2804.07 0 0 10 15.82 0 0 10 12.67
AB104 47 25 7420 2634.17 9 2634.17 0 0 9 48.16 0 0 9 21.56
AB105 73 21 21,002 3939.96 14 3939.96 0 0 14 31.5 0 0 14 30.88
AB106 74 21 24,956 3915.15 13 3915.15 0.09 0.37 14 32.69 0 0.12 14 27.2
AB107 75 21 35,694 3732.97 13 3732.97 0 0.04 13 43.44 0 0.02 13 40.19
AB108 75 21 31,972 3672.4 13 3672.4 0 0.05 13 41.49 0 0.01 13 42.69
AB109 75 24 29,358 3722.17 13 3722.17 0 0.01 13 43.27 0 0.01 13 45.61
AB110 75 24 29,420 3612.95 13 3572.11 0.2 0.59 13 44.16 0.18 0.46 13 47.12
AB111 71 25 21,462 3996.96 14 3996.96 0 0.06 14 142.9 0 0.07 14 80.23
AB112 100 21 52,858 5487.87 18 5487.87 0.6 1.27 19 90.01 0.45 1.27 19 89.5
AB113 100 21 53,902 4804.62 17 4804.62 0.04 0.3 17 93.22 0 0.39 17 99.1
AB114 100 21 53,686 5324.17 18 5324.17 0.01 0.35 18 87.07 0 0.41 18 67.23
AB115 100 21 50,764 5035.35 17 5035.35 0 0.27 17 84.08 0 0.36 17 67.12
AB116 100 21 58,286 4511.64 16 4511.64 0.03 0.22 16 102.26 0 0.2 16 81.05
AB117 99 22 47,174 5370.28 18 5370.28 0.12 0.18 18 80.83 0.05 0.17 18 60.12
AB118 100 22 48,770 5756.88 19 5756.88 0 0.14 19 81.04 0 0.08 19 78.01
AB119 98 25 47,884 5599.96 19 5599.96 0 0 19 95.21 0 0 19 90.12
AB120 96 25 47,658 5679.81 19 5679.81 0 0 19 81.84 0 0 19 88.13
AB201 50 21 19,442 1836.25 6 1836.25 0 0 6 30.85 0 0 6 35.65
AB202 50 21 19,978 1966.82 6 1966.82 0 0.02 6 58.1 0 0.02 6 63.87
AB203 50 21 19,454 1921.59 6 1921.59 0 0 6 40.91 0 0 6 57.93
AB204 50 25 17,874 2001.7 6 2001.7 0 0 6 130.92 0 0 6 80.65
AB205 75 21 42,814 2793.01 9 2793.01 0.09 0.2 9 79.21 0 0.2 9 86.12
AB206 75 21 45,478 2891.48 9 2891.48 0 0 9 79.23 0 0 9 95.23
AB207 75 21 54,458 2717.34 8 2717.34 0.09 1.4 8 160.15 0 1.2 8 123.15
AB208 75 21 49,572 2552.18 8 2552.18 0 0.17 8 110.63 0 0.17 8 156.54
AB209 75 24 51,422 2517.69 8 2517.69 0 0.01 8 170.88 0 0.01 8 167.34
AB210 75 25 52,968 2479.97 8 2479.97 0 0.02 8 158.25 0 0.02 8 198.45
AB211 75 24 47,230 2970.56 9 2928.47 0 0.48 9 322.42 0 0.48 9 257.57
AB212 100 21 82,248 3341.43 11 3341.43 0.7 0.71 11 230.68 0 0.71 11 256.73
AB213 100 21 90,166 3133.24 10 3133.24 0 0.28 10 277.51 0 0.28 10 286.52
AB214 100 21 83,186 3384.28 11 3364.16 0.03 0.5 11 210.35 0 0.5 11 256.84
AB215 100 21 83,320 3480.52 11 3443.58 0.11 0.29 11 241.63 0 0.29 11 312.45
AB216 100 21 84,618 3221.78 10 3200.47 0.55 1.22 10 259.79 0 1.22 10 382.56
AB217 100 22 87,072 3714.94 11 3714.94 0 1.14 11 259.11 0 1.14 11 259.11
AB218 100 22 89,430 3658.17 11 3658.17 0.14 0.29 11 256.52 0 0.29 11 256.52
AB219 100 25 103,576 3790.71 11 3757.28 1.68 1.75 12 418.06 0 1.75 11 246.79
AB220 100 25 88,330 3737.88 11 3737.88 0.35 0.51 11 281.61 0 0.51 11 299.21

#AVG 0.12 0.32
11.87 125.98 0.01 0.30 11.85 123.99

#Best 24 37
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To summarize, the results of the above extensive computational studies demonstrate the efficacy
of MA for solving GVRP in terms of both solution quality and computational efficiency in comparison
with the state-of-the-art algorithm.

6. Analysis on the Impact of the Adaptive Mechanism

To highlight the importance of the adaptive mechanism for managing the multiple neighborhood
moves employed in local search phase, we carried out the following computational studies. Specifically,
we use MA and its variant (called WMA) to denote the memetic algorithm based on the adaptive
neighborhood moves management mechanism and the memetic algorithm without the adaptive
mechanism, respectively. In other words, under WMA, the neighborhood moves are chosen in a token
ring fashion (i.e., N1, . . . N8) with the same fixed probability without the reward and punishment
strategy to select the neighborhood moves, while other ingredients are kept unchanged.

We selected 13 representative and large EMH instances for this test, and independently solved
each instance for ten times by using MA and WMA. We report the computational results in Table 5,
which shows the best objective value and average objective value, fbest and favg, respectively, for each
instance, and the average computing time per successful run, i.e., Time, where we indicate the best
objective values between the two algorithms in bold.

Table 5. Comparison of the memetic algorithms (MA and WMA) with and without the adaptive
mechanism on 13 representative EMH instances. Time is measured in minutes.

Instances n s Γ
WMA MA

fbest favg Time fbest favg Time

111c_21s 109 21 57,462 4770.47 4789.37 1.89 4770.47 4790.51 2.01
111c_22s 109 22 58,480 4767.21 4779.56 1.45 4767.21 4769.77 2.33
111c_24s 109 24 64,588 4767.14 4769.51 4.18 4767.14 4768.48 3.62
111c_26s 109 26 66,814 4767.14 4769.79 2.69 4767.14 4769.5 3.54
111c_28s 109 28 68,878 4765.52 4767.12 3.73 4765.52 4767.97 3.99
200c_21s 192 21 191,884 8766.04 8791.45 5.28 8766.04 8790.8 9.15
250c_21s 237 21 303,962 10,380.17 10,411.56 21.44 10,381.21 10,402.27 15.23
300c_21s 283 21 424,602 12,207.28 12,221.69 27.67 12,206.16 12,215.78 31.84
350c_21s 329 21 576,896 13,913.64 13,933.86 41.78 13,910.02 13,931.57 57.99
400c_21s 378 21 743,346 16,394.56 16,421.03 111.9 16,389.27 16,412.81 101.27
450c_21s 424 21 931,852 17,939.46 17,978.97 168.53 17,931.21 17,956.77 172.06
500c_21s 471 21 1,128,354 20,221.7 20,231.56 169.17 20,198.74 20,225.52 196.43

#AVG 10,304.86 10,322.12 46.64 10,301.67 10,316.81 49.95
#Best 7 12

Table 5 shows that when the adaptive mechanism is used, MA outperforms WMA on five instances.
In particular, in terms of the best and average objective values, MA obtains better values than WMA
for all the tested instances, as illustrated by WMA’s 10,304.86 and 10,322.12 versus MA’s 10,301.67 and
10,316.81. As for the average running time, the two algorithms are very close to each other, i.e., WMA’s
49.95 m versus MA’s 46.64 m. The above results indicate that our adaptively selected neighborhood
moves play a crucial role in boosting the performance of MA in solving GVRP.

7. Discussion

As mentioned above, we propose a novel memetic algorithm for solving the green vehicle routing
problem. This population-based algorithm incorporates an adaptive local search procedure based on
a reward and punishment mechanism inspired by reinforcement learning to effectively manage the
multiple neighborhood moves and guide the search, an effective backbone-based crossover operator to
generate the feasible child solutions, and a longest common subsequence-based population updating
strategy to effectively manage the population. Compared with the traditional local search, the adaptive
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local search can manage the different neighborhood moves to adapt to different instances. Compared
to the general crossover operator (such as one-point crossover operator), the backbone-based crossover
can better integrate with the problem structure by inheriting the promising customer and station
sequences from the routes. Based on the extensive experimental results reported earlier, one can
observe that the proposed memetic algorithm is a highly effective heuristic in comparison with the
best-performing methods in the literature for solving the green vehicle routing problem.

8. Conclusions and Future Research

Our proposed memetic algorithm (MA) for the green vehicle routing problem demonstrates
the effectiveness of its key features, including an adaptive local search procedure, a backbone-based
crossover operator to generate the feasible child solution, and a longest-common-subsequence-based
population updating strategy.

Experimental evaluations on two sets of public benchmark instances show that our MA
performs very favorably compared to the current state-of-the-art reference algorithms in the literature.
In particular, MA is able to obtain highly competitive results in terms of both computational efficiency
and solution quality for two sets of the EMH and AB instances. In addition, our computational
studies demonstrate the effectiveness of the key strategy (i.e., adaptive mechanism to manage multiple
neighborhood moves) incorporated into our proposed MA.

The main limitation of this research is the algorithmic generality. The algorithm presented in this
paper does not guarantee the effectiveness of solving other types of GVRP problems, such as GVRP
problems with the popular pickup and delivery constraints. Therefore, in order to solve other variant
problems better, we need to consider adding more general strategies.

These outcomes motivate future research to extend our work in the following directions. First, it
would be interesting to employ a powerful tabu search method (such as granular tabu search [23])
to improve the search capability of the adaptive local search phase. Second, the design of our
approach implies that the development of related procedures that combine its strategies with those of
other population-based frameworks like path-relinking [24] should be very promising. Finally, the
success of these ideas for tackling the GVRP problem suggests that it would be worthwhile to test
their performance in dealing with other variants of the vehicle routing problem [25] or scheduling
problems [26].
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