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Abstract: Ecosystem services management should often expect to deal with non-linearities due
to trade-offs and synergies between ecosystem services (ES). Therefore, it is important to analyze
long-term trends in ES development and utilization to understand their responses to climate change
and intensification of human activities. In this paper, the region of Uxin in Inner Mongolia, China,
was chosen as a case study area to describe the spatial distribution and trends of 5 ES indicators.
Changes in relationships between ES and driving forces of dynamics of ES relationships were analyzed
for the period 1979–2016 using a stepwise regression. We found that: the magnitude and directions
in ES relationships changed during this extended period; those changes are influenced by climate
factors, land use change, technological progress, and population growth.
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1. Introduction

Ecosystem services (ES) refer to the conditions and utilities of the natural environment, as well as
to the benefits people obtain from these ecosystems [1]. ES not only maintain the life cycle process,
ensure biodiversity, purify the environment, and perform other functions and ecological processes
humans rely on, but they also provide raw materials, food, fiber, clean water and recreation, which are
necessary for human well-being and production [2,3]. Over the past decades, the average life span of
humankind significantly improved, and poverty alleviated in some areas. At the same time, adequate
knowledge of ES and understanding of scientific principles of effective management of ES are still
lacking. For example, the excessive pursuit of provisioning services, approximately 60% (15 out of 24)
of the ES are being degraded in the Millennium Ecosystem Assessment [4]. The degradation and loss
of ES have a negative impact on human well-being, and directly threaten regional, national, and global
ecological security [5].

The nonlinear relationship between different ES and complex patterns of their utilization by
humans are common [6], which often makes ES dependent on each other and interact in multiple
ways, displaying both trade-offs and synergies [7]. Trade-offs, or negative relationships, refer to
an increase in the supply of one ES that leads to the reduction in the supply of another ES [8].
On the contrary, synergies, or positive relationships, mean that the supply of multiple ES increases
or decreases simultaneously [5]. Due to the existence of such relationships, unexpected outcomes
of ecosystem management practice are common. For example, the increase of provisioning services
(grain, wood, etc.) may lead to the reduction of regulating services (nutrient cycling, soil conservation,
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etc.) [9]. As another example, an increase in soil retention would improve soil carbon sequestration
capacity [10]. Some European countries tried to encourage farmers to adopt more environmentally
friendly cultivation techniques by offering financial incentives. However, these measures had no effect
on the conservation of endangered species [11]. Therefore, consideration of trade-offs and synergies
between ES is crucial for landscape planning and land management. It will help avoid costly adverse
effects, and promote multi-functionality [12].

Influenced by natural and anthropogenic drivers, relationships between ES change spatially and
temporally. Studies have analyzed the common drivers that underlie changes in ES, including climate
change, land use changes, as well as policy interventions [13–15]. For example, the transformation of
cultivated land into shrub and grassland enhanced soil conservation (SC) and carbon sequestration
capacity but reduced water yield (WY) in the Loess Plateau, China [16]. In northern Shaanxi, SC and
net primary productivity (NPP) had variable synergistic relationships in different land use types [10].
Finally, in the Yanhe river, SC, water retention (WR), and WY changed at sub-basin scale after the
implementation of the Grain to Green Program (GTGP) [17]. Moreover, ES relationships occur at a
different spatial and temporal scale [8], which increases uncertainties to be managed [18]. Previous
studies have documented trade-offs and synergies among multiple ES [19–23]. However, they were
mainly focused on single time periods and did not consider temporal changes [24]. Few studies have
recently focused on changes in those relationships at different temporal scales. For example, simulations
of ES relationships for the period of 2001−2070 revealed changes in some of those relationships involving
regulating services [24]. A case study of Switzerland focused on a ten-year period assessment of ES
and revealed robustness of the determined relationships between regulating and cultural services [25].
Although quantitative testing of ES and their relationships across temporal scales have been conducted
recently, more evidence is needed to understand their dynamics and elucidate mechanisms underlying
changes in ES relationships in a longer term to sustainably manage multiple ES.

In this study, we attempted to: (1) describe the spatial distribution and spatial trends of 5 ES
indicators (i.e., livestock breeding (SHEEP); grain production (GRAIN); NPP; sandstorm prevention
(SP); and WR) from 1979 to 2016 in the region of Uxin; (2) quantify changes in ES relationships over the
same period; and to (3) reveal the driving factors behind change in the ES and their relationships.

2. Materials and Methods

2.1. The Study Area

Uxin is located in the southeast part of the Ordos Plateau in Inner Mongolia, North China. It has
an average altitude of 1300 m, and extends in latitude from 37◦38′ N to 39◦23′ N and in longitude
from 108◦17′ E to 109◦40′ E. Uxin has a typical temperate continental climate, with a mean annual
precipitation of about 350 mm, a mean annual evaporation of 2200 mm, and a mean annual temperature
of 6.8 ◦C. Fixed and moving sand dunes cover the majority of its landscape. Aeolian sandy soils and
kastanozems are the most common soil types. Shrubs and subshrubs are the dominant vegetation
type (e.g., Caragana intermedia and Artemisia ordosica). As a typical agro-pastoral transitional zone of
northern China, the main land use is livestock husbandry and farming (Figure 1).
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Figure 1. (a) Map of the case study area, Uxin is located in the southwestern part of Inner Mongolia, China. 
(b) LULC map in 2016 and (c) LULC change in Uxin in the period 1979–2016. 

2.2. Quantification of Ecosystem Services 

We investigated 5 ES indicators, including livestock breeding (SHEEP), grain production (GRAIN), 
net primary productivity (NPP), sandstorm prevention (SP), and water retention (WR). The selection 
criteria included the following. ES should: (1) be relevant to the well-being of local households and 
surrounding ecosystem; (2) has available remotely sensed data for spatially explicit monitoring of ES; and 
(3) require data that were available for long-term temporal ES relationship assessment. SHEEP and 
GRAIN are important to human well-being of local households. NPP reflects the growth status of 
vegetation. SP helps to reduce sandstorm disasters for Uxin and downwind areas (e.g. Xi'an city, Shaanxi 
Province, etc.). WR plays an important role in ecosystem vegetation recovery and household livelihoods. 
We mapped the annual value layer for each indicator from 1979 to 2016, which was then used to describe 
changes in ES. All data were resampled to a spatial resolution of 250 m (The results of 5 ES are available 
in Supplementary Materials). 

2.2.1. Data sources 

Table 1 shows the data used to assess the 5 ES indicators. Climate data, such as mean temperature, 
precipitation, and wind speed, were interpolated using ArcGIS 10.3. Based on data availability, we used 
land use and land cover (LULC) maps of the years 1978, 1987, 1992, 1997, 2002, 2007, 2012, 2014, and 2016 

Figure 1. (a) Map of the case study area, Uxin is located in the southwestern part of Inner Mongolia,
China. (b) LULC map in 2016 and (c) LULC change in Uxin in the period 1979–2016.

2.2. Quantification of Ecosystem Services

We investigated 5 ES indicators, including livestock breeding (SHEEP), grain production (GRAIN),
net primary productivity (NPP), sandstorm prevention (SP), and water retention (WR). The selection
criteria included the following. ES should: (1) be relevant to the well-being of local households and
surrounding ecosystem; (2) has available remotely sensed data for spatially explicit monitoring of ES;
and (3) require data that were available for long-term temporal ES relationship assessment. SHEEP
and GRAIN are important to human well-being of local households. NPP reflects the growth status
of vegetation. SP helps to reduce sandstorm disasters for Uxin and downwind areas (e.g., Xi’an city,
Shaanxi Province, etc.). WR plays an important role in ecosystem vegetation recovery and household
livelihoods. We mapped the annual value layer for each indicator from 1979 to 2016, which was then
used to describe changes in ES. All data were resampled to a spatial resolution of 250 m (The results of
5 ES are available in Supplementary Materials).

2.2.1. Data Sources

Table 1 shows the data used to assess the 5 ES indicators. Climate data, such as mean temperature,
precipitation, and wind speed, were interpolated using ArcGIS 10.3. Based on data availability, we used
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land use and land cover (LULC) maps of the years 1978, 1987, 1992, 1997, 2002, 2007, 2012, 2014,
and 2016 to represent the conditions for the following intervals: 1979–1987, 1987–1992, 1992–1997,
1997–2002, 2002–2007, 2007–2012, 2012–2014, and 2014–2016.

Table 1. Description and sources of the data used to assess the 5 ecosystem services (ES) indicators.

Data Data Description Data Source

Climate data
Daily mean temperature;
daily mean wind speed;
daily rainfall

China Meteorological Data Service Center
(http://data.cma.cn/)

Normalized Difference Vegetation
Index (NDVI)

NOAA/AVHRR NDVI at 2000 m spatial
resolution (1979–2001);
MODIS MOD13Q1 NDVI at 250 m spatial
resolution (2000–2016)

Chinese Academy of Agricultural Sciences;
The Level-1 and Atmosphere Archive &
Distribution System (LAADS) Distributed
Active Archive Center (https:
//ladsweb.modaps.eosdis.nasa.gov/search)

Soil data Sand fraction; silt fraction; clay fraction; organic
carbon; calcium carbonate; bulk density

Harmonized World Soil Database V1.2
(http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/)

DEM SRTM 90 m Digital Elevation Data Digital
Elevation Model

The CGIAR Consortium for Spatial
Information (srtm.csi.cgiar.org)

Land use and land cover
(LULC)/vegetation map

Landsat 3 MSS at 90 m spatial resolution (1978);
Landsat 5 TM at 30 m spatial resolution (1987,
1992, 1997, 2002, 2007); HJ-1B at 30 m spatial
resolution (2012); Landsat 8 OLI at 30 m spatial
resolution (2014, 2016)

LULC was classified into 9 categories;
vegetation was classified into 6 categories
and 16 sub-categories (the details are shown
in Table 2). Those layers were visually
interpreted and digitized on screen in
ArcGIS 10.3

2.2.2. Livestock Breeding (SHEEP) and Grain Production (GRAIN)

SHEEP and GRAIN data were acquired from statistical yearbooks of Uxin for the period 1979–2016.
The SHEEP is expressed in sheep units, where 1 cattle or horse equals to 4.5 sheep units [26]. In order
to convert the aggregated, or non-spatial, statistical data into a spatial layer, the normalized difference
vegetation index (NDVI) from remotely sensed satellite data was selected as a proxy to characterize the
capacity of an ecosystem to provide forage. The density of sheep units is dependent on accumulated
NDVI values as follows:

dSUi = SUi/NDVIi,sum, (1)

SUi,spati = dSUi ∗NDVIi,max, (2)

where SUi, a vector map with map unit attributes linked to livestock numbers in 6 counties of Uxin.
NDVIi, sum was aggregated within the boundaries of each county for the year i. NDVIi, max is the
maximum value component (MVC) for the year i. SUi, spati is the spatial layer of the livestock number
for the year i.

The method of preparing spatial data for the GRAIN was similar to the one used for the livestock
number. In this paper, farmland is extracted according to the NDVI threshold of 0.34. With the ArcGIS
Zonal Statistics tool [27], this statistic mean value is calculated for each cropland zone defined by a
zone dataset, based on values from NDVI dataset (a value raster). This method is consistent with the
method of spatial representation of livestock number.

2.2.3. Net Primary Productivity (NPP)

The Carnegie-Ames-Stanford Approach (CASA) model was used to calculate the NPP [28].
This model takes into account the effects of solar radiation, temperature, and water stress on NPP.

NPP(x, t) = APAR(x, t) × ε(x, t), (3)

http://data.cma.cn/
https://ladsweb.modaps.eosdis.nasa.gov/search
https://ladsweb.modaps.eosdis.nasa.gov/search
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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where APAR(x, t) is the vegetation photosynthetic effective radiation (g C·m−2
·month−1) absorbed by

grid x at month t; and ε(x, t) is the actual utilization rate of light energy of vegetation (g C). APAR(x, t)
was calculated using the following equation:

APAR(x, t) = SOL(x, t) × FPAR(x, t) × 0.5, (4)

where SOL(x, t) is the total amount of solar radiation (MJ·month−1) at grid x for a specific month t [29];
0.5 refers to the proportion of the solar effective radiation (the wavelength is 0.4–0.7 µm) to the total
solar radiation; FPAR(x, t) is the absorption ratio of vegetation photosynthetic effective radiation.
The utilization rate of light energy by vegetation is mainly affected by temperature and water conditions
and calculated as follows:

ε(x, t) = Tε1(x, t) × Tε2(x, t) ×Wε(x, t) × εmax, (5)

where εmax represents the maximum light energy utilization (g C·MJ−1); Tε1(x, t) and Tε2(x, t) indicate
the stress effects of the lowest and the highest temperatures on the utilization of light energy by
vegetation; and Wε(x, t) is the influence coefficient of water stress, which was set to 0.542 gC·MJ−1 for
the case study area [30].

2.2.4. Sandstorm Prevention (SP)

Based on the Revised Wind Erosion Equation (RWEQ) [31], sandstorm prevention (SP) can
be estimated as the difference between potential wind erosion (SLp) and actual wind erosion (SL).
The formulas are as follows:

SP = SL,P − SL, (6)

SL =
2z
S2 QMAXe−(z/S)2

, (7)

S = 150.71(WF× EF× SCF×K′ ×C)−0.3711, (8)

QMAX = 109.8(WF× EF× SCF×K′ ×C), (9)

SLp =
2z
S2

P

QMAXpe−(z/SP)
2
, (10)

SP = 150.71(WF× EF× SCF×K′)−0.3711, (11)

QMAXp = 109.8(WF× EF× SCF×K′), (12)

where SL (t·km−2
·a−1) is the actual soil loss caused by wind erosion; SLp (t·km−2

·a−1) is the potential
soil loss; QMAX (kg·m−1) is the maximum transfer capacity; S (m) is the critical field length, defined as
the distance at 63% of QMAX; z (m) is the maximum wind erosion distance, set to 50 m for the study
area; WF (kg·m−1) is the climate factor, influenced by soil moisture, wind speed, and snow cover; EF is
the soil erodibility factor; SCF represents soil crusting; C is the vegetation cover factor; and K’ is the
surface roughness factor. For the detailed formulas of RWEQ, see Jiang, et al. [32].
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Table 2. The vegetation/land-use and land-cover categories.

Vegetation Categories
Level I Vegetation Categories Level II

Land-use and
Land-Cover
Categories

Area Ratio of
2016(%)

Maximum
Root Depth

(mm)
Kc

Forest vegetation Artificial forest Forest 0.70% 3000 0.2993

Shrubs and herbaceous
vegetation in
sandy land

Artemisia ordosica community on fixed
sandy land

Fixed sand land

27.80% 600 0.2073

Sabina vulgaris community 2.46% 2000 0.2373

Caragana intermedia Kuang et H.C.Fu
and A. ordosica community 4.44% 2000 0.2236

A. ordosica, Sophora alopecuroides L.,
Cynanchum hancockianum (Maxim.) Al.

Iljinski. community
0.24% 600 0.2004

Salix cheilophila,
S. psammophila community

Semi-fixed
sand land

7.77% 1000 0.2220

Artemisia ordosica community on
semi-fixed sandy land 9.65% 600 0.2034

C. hancockianum (Maxim.) Al., S.
alopecuroides L., Iljinski., Agriophyllum

squarrosum (Linn.) Moq.
and A. ordosica community

0.67% 300 0.2722

Pioneer community on moving
sand Land Moving sand Land 27.74% 200 0.1941

Meadow and marshes
Carex duriuscula C.A.Mey. community

Marshland
7.17% 200 0.2149

Achnatherum splendens community 2.13% 300 0.2459

Halophyte vegetation

Suaeda glauca (Bunge) Bunge and
Salicornia europaea community

Saline alkali land
1.04% 300 0.3104

Kalidium foliatum (Pall.) Moq. and
Nitraria sibirica Pall community 0.04% 1000 0.6047

Agricultural
vegetation Cropland Cropland 6.29% 300 0.3991

Others
Water body Water body 1.11% 0 0.6446

Town or Village Town or Village 0.75% 0 0.2083

2.2.5. Water Retention (WR)

Considering factors such as topography, soil thickness, and permeability, WR was estimated based
on the principle of water balance at watershed scale [33] as follows:

WR = Min
(
1,

249
Velocity

)
×Min(1, 0.3TI) ×Min

(
1,

Ksat

300

)
×WY , (13)

where WR is the average water retention (mm); Velocity is the flow coefficient [29]; TI is the topographic
index; Ksat is the soil saturated hydraulic conductivity (cm·d−1) [34]; and WY is the water yield of the
basin (mm), calculated by InVEST 3.1.0 [33]. It is calculated as follows:

Yieldxj =
(
1−AETxj/Px

)
Px, (14)

where Yieldxj (mm) is the annual water yield for LULC type j in a given grid x; Px (mm) is the annual
precipitation of grid cell x; and AETxj is the annual actual evapotranspiration (mm) of the LULC type j
in the grid x. The AETxj was calculated using the following equations:

AETxj/Px = 1 + PETxj/Px −
[
1 +

(
PETxj/Px

)ωx]1/ωx
, (15)

ωx = Z(AWCx/Px) + 1.25, (16)

where ωx is the parameter of natural climate and soil properties, defined as the ratio of annual water
demand for plants and precipitation; PETxj is the annual potential evapotranspiration of LULC type j
in grid x [35]; Z is the seasonal parameter for seasonal rainfall distribution, which was set to 11.54 for
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the study area [36]; AWCx (mm) is the available water for plants in grid x [37]. In addition, the InVEST
water yield model also requires tabulated biophysical parameters including the maximum root depth
of the vegetation of each LULC type and the evapotranspiration coefficient (Kc). The details are shown
in Table 2.

2.3. Statistical Analysis

2.3.1. Trend Analysis of ES and Their Relationships

An image trend analysis was conducted to analyze ES changes in the period 1979–2016 in Uxin
using the following equation:

b =
lXY
lXX

, (17)

lXY =
n∑
k

xkyk −

n∑
k

xk

n∑
k

yk/n, (18)

lXX =
n∑
k

xk
2
−

 n∑
k

xk

2

/n, (19)

where, yk represents a specific ES layer in year k (k = 1979, 1980 . . . , 2016, n = 38 years). xk is a grid
layer; each grid cell is set to the same value for the year k; b is the trend slope layer; A grid cell with
b < 0 indicates a decreasing trend in ES in the period analyzed, while a grid cell with b > 0 indicates an
increasing trend. The Arcpy scripts for trend analysis is available in Supplementary Materials.

ES relationships can be modeled by the Pearson correlation coefficient [18]. For some services,
a positive correlation indicates a synergy, while a negative correlation represents a trade-off. It is
calculated as follows:

r =
lXY√
lXXlYY

, (20)

lYY =
n∑
k

yk
2
−

 n∑
k

yk

2

/n, (21)

where, r is correlation coefficient layer of an ES pair. In spatial distribution characteristics of trade-offs
analysis, xk and yk represent 5 ES layers in year k (k = 1979, 1980 . . . , 2016, n = 38 years). In temporal
dynamics of ES trade-offs analysis, xk and yk represent kth pixel value of each ES pair in a specific year
(e.g., 1979, 1980 . . . , 2016).

The significance of b value and r were assessed by t-test using 2-tail t-distribution at 95%
confidence interval.

2.3.2. Driving Forces of Ecosystem Services Interactions

Climate change, humans activities, and technological progress are main drivers of quantity and
quality changes in ES [38]. We hypothesize 5 ES indicators are driven by climate factors and land
use and indirectly influenced by technical progress and population growth, which might result in
spatiotemporal changes in relationships of 5 ES. Land cover transformations driven by economy
and population growth on one hand and technological progress, on the other, change the demand
for natural resources and affect consumption patterns of different ES. To test this hypothesis, 7
independent variables were selected to perform a stepwise regression (Table 3), which minimizes the
problem of multi-collinearity in variables. A max-min standardization was performed for all variables;
the statistical analysis was performed using R 3.5.0 [39]. The full reproducible R code and data are
available in Supplementary Materials.
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Table 3. The driving forces of ecosystem services relationships.

Variable Type Variable Name Abbreviation Unit Description

Climate change

Growing season
precipitation PRCP mm Cumulative value of precipitation

during 3–10 months

Cumulative temperature TEM ◦C Cumulative value of annual
temperature over 10 ◦C

Cumulative wind speed WIN m·s−1 Annual cumulative value of wind
speed over 5 m/s

Land use changes

Land use
intensity change FAM_LUI –

Equal to grain yield divided by
sown area of each year. The
greater the value, the greater the
intensity of land use, representing
the improvement of the
intensification level of
crop planting

Grazing pressure GRS_PRS –

Equal to the annual number of
breeding livestock divided by the
annual NDVI cumulative value
(minus the area of cultivated land).
The greater the value, the greater
the grazing pressure of natural
grassland utilization, which may
result in grassland degradation

Technical progress
Total mechanical power

of agriculture and
animal husbandry

AGMACH ×104

KW

Mechanical input in crop farming
and irrigation for artificial
grassland, and in
animal husbandry

Population change Total population POP People The demand for ecosystem
services from population growth

3. Results

3.1. Trends in Ecosystem Services

3.1.1. SHEEP

SHEEP increased in 38 years, from 7.64 × 105 sheep units (SU) in 1979 to 12.24 × 105 SU in
2016, with an annual increase of 1.21 × 104 SU (see Figure 2-A1). SHEEP showed a slow declining
trend (1.92 × 105 SU) from 1979 to 2001, and an increasing trend from 2002 to 2016, incrementing
from 6.89 × 105 SU to a peak of 15.50 × 105 SU in 2007. Mean spatial SHEEP values for the 38-year
period range from 8 to 12 SU·hm−2, i.e., about 37% highest than the lowest values (Figure 2-A2).
The region with the lowest values is in the northwest of Uxin (< 3 SU·hm−2) while the northeast,
central, and southern parts of Uxin are characterized by higher SHEEP values. About 71% of the total
area, mainly in the northeast and west of the region exhibited an increasing trend in SHEEP values,
with slopes (b value, Equation (12)) ranging from 0 to 0.75 (see Figure 2-A3). Decreasing trends in
SHEEP values with slopes between –0.15 and 0 are found in 4.87% of the total area, mainly exhibiting
scattered patterns.
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Figure 2. Maps of mean values and change trends of 5 ecosystem services (ES) from 1979 to 2016 in
Uxin. A1-E1 represents the aggregated ES variation from 1979 to 2016; A2-E2 represents the mean
38-years value of ES; and A3-E3 represents the spatial distribution of the change trend in ES in the
38 years analyzed.
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3.1.2. GRAIN

During the 38-year period GRAIN also increased 7.54 times from 1.50 × 104 t to 1.28 × 105 t,
with an average annual change of 2.98 × 103 t (see Figure 2-B1). The highest value of GRAIN is found
in about 10% of the total area, mainly in the southeastern, eastern, and northern parts of Uxin. Areas
with lowest GRAIN value are scattered across the Uxin region and occupy about 4% of the total area
(see Figure 2-B2). GRAIN exhibited an increasing trend (see Figure 2-B3), especially in the southern
region, where its slope ranged from 0.38 to 0.60 (with an area ratio of 1.37%). The slope of the eastern
and northern regions was between 0.03 and 0.38 (with an area ratio of 9.07%).

3.1.3. Net Primary Productivity

Two trends of NPP can be identified over the past 38 years (see Figure 2-C1). NPP decreased
gradually during 1979–2000, from the maximum of 2.96 × 106 t C in 1987 to 1.81 × 106 t C in 2000,
resulting in the total decrease of 1.16 × 106 t C. In the period 2001–2016, it showed an increasing trend,
with an average annual NPP of 2.35 × 106 t C, indicating vegetation recovery in this area. Highest mean
NPP (300–500 g·m−2) is mainly observed in the north and south of Uxin, with an area ratio of 6.88%.
These regions showed a declining trend in NPP (Figure 2-C2 and Figure 2-C3). Lowest mean NPP is
found in the western and northwestern Uxin (9.03%). These areas had an increasing trend of NPP.

3.1.4. Sandstorm Prevention (SP)

SP exhibited an increasing trend (Figure 2-D1) during the 38-year period (the cumulative wind
speed in Uxin is shown in Supplementary Materials), with the maximum value in 2010 (9.47 × 1010 t)
and the lowest in 1980 (1.97 × 1010 t). The annual average SP was 8.35 × 1010 t, which reduced the
threat of sandstorm disasters in Uxin and downwind region of Mid-western China. Highest SP values
are mainly located in the moving sand dune area in the northern part of Uxin (with a SP higher than
200 t·km−2). Lowest SP values are mainly found in the south of Uxin (Figure 2-D2). SP showed a
consistent increasing trend its distribution characteristics were similar to its spatial distribution (see
Figure 2-D3).

3.1.5. Water Retention

Different from the study of similar region in Xilin River Basin [36], WR showed an increasing
trend in the period 1979–2016, with its rate changing from 3.75 × 108 m3 in 1979 to 7.65 × 108 m3 in
2016 resulting in an annual change of 1.03 × 107 m3 (see Figure 2-E1). The mean WR was greater than
15 mm in more than 90% of the total region area, mainly in the east and south of Uxin (see Figure 2-E2).
About 24.16% of the total region area had mean WR in the range of 15–30mm; 49.54% had mean WR of
30–50 mm; and 16.82% had mean WR of 50–100 mm. Over 16.33% of Uxin, mainly the northeastern
area, showed a slight increasing trend for WR. Only 1.88% of the total region, areas scattered the south
and central part, showed a decreasing trend for WR (see Figure 2-E3). Water is the main limiting factor
of vegetation growth and agricultural production in this area. With WR increased gradually, there
will be enough water resources to meet the demand of agricultural expansion and population growth,
and indirectly reducing vegetation degradation.

3.2. Change Trajectories of ES Relationships

3.2.1. Temporal Dynamics of ES Relationships

Trends in ES relationships varied in the 38 years analyzed (Figure 3, the bottom-right triangle
diagram matrix). Positive correlations between SHEEP–GRAIN, SHEEP–NPP, and GRAIN–NPP have
been gradually strengthening, while negative correlations among some ES pairs, such as SHEEP–SP,
GRAIN–SP, and NPP–SP, displayed a weakening trend during the study period. Yet some positive
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correlations, such as for SHEEP–WR, GRAIN–WR and NPP–WR, switched into negative correlations.
The SP–WR pair is characterized by almost an equal number of positive and negative correlation.
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3.2.2. Spatial Patterns of ES Relationships

According to the spatial patterns of relationships between various ES (Figure 3, the top-left triangle
diagram matrices), the pairs GRAIN–NPP, NPP–WR and SP–WR exhibited almost uniform positive
correlation across the whole region, while SHEEP–GRAIN, SHEEP–NPP, SHEEP–SP and NPP–SP
exhibited a spatial clustering in positive and negative correlations. Finally, no specific patterns are
observable for other pairs of ES.

3.3. Driving Forces of ES Relationship Changes

We used the stepwise regression to analyze the driving forces of change in the 10 relationships
among ES pairs (see Table 4). In the period 1979–2016, SHEEP–GRAIN showed a positive relationship
with GRS_PRS and AGMACH, suggesting that both the increased grazing pressure and the investments
in the mechanical power of agriculture and animal husbandry promoted an improvement of the
synergies with SHEEP–GRAIN. SHEEP–NPP also showed a positive relationship with GRS_PRS and
AGMACH, while the increase of POP tended to inhibit the increase of these two synergy relationships.
SHEEP–SP was negatively correlated with WIN and AGMACH. SHEEP–WR had a negative correlation
with AGMACH, indicating that the increase in investments in artificial grassland by herdsmen were
accompanied by an increase in sheep number and by an excessive consumption of groundwater, which
tended to decrease their synergy relationships. GRAIN–NPP had a positive correlation with TEM,
whereby increases in cumulative temperature tended to increase the synergies with GRAIN–NPP.
GRAIN–SP was positively correlated with TEM, while GRAIN–WR was negatively correlated with
changes in AGMACH. NPP–SP had a significantly positive correlation with TEM. NPP–WR was
negatively correlated with GRS_PRS. SP–WR was positively correlated with WIN, GRS_PRS, and POP,
and was negatively correlated with AGMACH.

3.4. Temporal Dynamics of ES Relationships

The temporal dynamics of the trade-offs and synergies among ES reflected the responses to social
and environmental changes [24]. Furthermore, this study also found that both trade-offs and synergies
were not invariable in the long period. On the contrary, they were likely influenced by a variety of
drivers, such as climate, human activities, and technological progress. According to the results of
the stepwise regression (see Table 4), there are four possible types of relationship between driving
forces and ES pairs (see Figure 4). The direct and indirect driving forces of the relationship between
ecosystem service pairs are shown in Table 5. The four types of relationships between driving forces
and ES pairs are briefly described below.

(i) Driving factors directly affect two ES, increasing or decreasing the provision of ES, and resulting
in changes in trade-offs and synergies (see Figure 4a). In this study we showed the presence of a
synergistic relationship between SHEEP and GRAIN (see Figure 2, bottom-right part), which followed
an increasing trend over the 38 years analyzed. The stepwise regression analysis showed that SHEEP
and GRAIN were positively affected by technical progress factors. The mechanical input in crop
farming and cultivated land during the last three decades led to an increase in food production by
farm families. Triggered by the prohibition of open grazing policy since the early 2000s [40], herdsmen
families increased their investments in irrigation for artificial pasture and fenced grazing, resulting in
an increase in sheep breeding. Water is the main limiting factor of vegetation growth and agricultural
production in this area. This study showed that the synergies between GRAIN–WR were transformed
into trade-offs in the 38 years analyzed (see Figure 3), and were negatively affected by technical
progress factors (see Table 4). By the late 1990s, when the mechanical input in crop farming increased,
the water consumption by intensive agriculture increased gradually, while the WR in the region did not
increase significantly (see Figure 2). Therefore, the synergy between GRAIN–WR gradually changed
into a trade-off. Like GRAIN–WR, SHEEP–WR was negatively correlated with AGMACH, suggesting
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that the mechanical input in artificial grassland directly increased SHEEP provision and an excessive
consumption of groundwater, tending to decrease their synergy relationship.

Table 4. Driving forces analysis of changes in ES relationships.

Dependent Variable Model Coefficient t Value Pr(>|t|) Model Summary

SHEEP–GRAIN

(Intercept) 0.334 *** 4.624 0.000
R2 = 0.61
F = 12.86
p = 0.00

GRS_PRS 0.353 ** 2.739 0.010
AGMACH 0.605 * 2.446 0.020

POP −0.431 −1.348 0.187

SHEEP–NPP

(Intercept) 0.773 *** 12.367 0.000
R2 = 0.42
F = 5.95
p = 0.00

GRS_PRS 0.276 * 2.470 0.019
AGMACH 0.820 *** 3.831 0.001

POP −0.934 ** −3.371 0.002

SHEEP–SP
(Intercept) −0.022 −0.427 0.672 R2 = 0.46

F = 14.70
p = 0.00

WIN −0.534 *** −5.366 0.000
AGMACH −0.228 ** −3.243 0.003

SHEEP–WR
(Intercept) 0.070 * 2.270 0.029 R2 = 0.19

F = 8.53
p = 0.01

AGMACH −0.195 ** −2.921 0.006

GRAIN−NPP
(Intercept) 0.339 *** 14.042 0.000 R2 = 0.326
FAM_LUI 0.211 *** 3.800 0.001 F = 8.46
AGMACH −0.093 −1.626 0.113 p = 0.00

GRAIN–SP
(Intercept) −0.236 *** −13.412 0.000 R2 = 0.17

F = 7.35
p = 0.01

TEM 0.093 ** 2.711 0.010

GRAIN–WR

(Intercept) 0.149 *** 3.217 0.003
R2 = 0.57
F = 13.64
p = 0.00

PRCP −0.110 −1.612 0.116
GRS_PRS −0.122 −1.677 0.103

AGMACH −0.185 * −2.180 0.036

NPP–SP

(Intercept) −0.413 *** −19.878 0.000
R2 = 0.61
F = 12.84
p = 0.00

TEM 0.115 * 2.222 0.033
FAM_LUI −0.127 −1.505 0.142
GRS_PRS 0.143 1.487 0.146

POP 0.081 1.370 0.180

NPP–WR
(Intercept) 0.088 *** 2.729 0.010 R2 = 0.11

F = 4.52
p = 0.04

GRS_PRS −0.105 * −2.126 0.040

SP–WR

(Intercept) −0.931 ** −3.415 0.002

R2 = 0.34
F = 3.33
p = 0.02

WIN 1.061 ** 3.464 0.002
FAM_LUI −0.478 −1.903 0.066
GRS_PRS 0.610 * 2.520 0.017

AGMACH −1.379 ** −3.151 0.004
POP 2.146 ** 3.409 0.002

Significance codes: *** p < 0.001; ** p < 0.01; * p < 0.05. The dependent variable ES1–ES2 represents the relationship
(correlation coefficient) between two ES in the 38 years.
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Table 5. Direct and indirect driving forces of relationships among ES.

Dependent Variable Driving Force Direct Driver Indirect Driver

SHEEP–GRAIN
GRS_PRS SHEEP

AGMACH SHEEP, GRAIN

SHEEP–NPP
GRS_PRS SHEEP, NPP

AGMACH SHEEP NPP
POP SHEEP NPP

SHEEP–SP
WIN SP

AGMACH SHEEP SP

SHEEP–WR AGMACH SHEEP, WR

GRAIN–NPP FAM_LUI GRAIN

GRAIN–SP TEM GRAIN SP

GRAIN–WR AGMACH GRAIN, WR

NPP–SP TEM NPP SP

NPP–WR GRS_PRS NPP

SP–WR

WIN SP
GRS_PRS SP, WR

AGMACH WR SP
POP WR SP

(ii) Driving factors directly affect one ES and indirectly affect another ES, resulting in changes in
trade-offs and synergies (see Figure 4b). SHEEP–NPP showed a negative relationship with POP. Over
the 38 years investigated, population growth led to a direct increase in sheep supply and to an increase
in water consumption, thereby indirectly inhibiting the increase of NPP. SHEEP–SP had a negative
correlation with AGMACH (see Table 4), indicating that increased investments in artificial grassland
by herdsmen were accompanied by an increase in sheep number and by an excessive consumption of
groundwater, which prevented vegetation recovery, thereby indirectly decreasing SP. GRAIN–SP was
positively correlated with TEM. Due to the extension of growing seasons thanks to climate warming,
which increased both grain yield [41] and biomass (NPP) [42], vegetation restoration was promoted,
which indirectly increased SP. Similarly, thanks to climate warming (TEM), NPP gradually increased,
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which in turn led to changes in the supply of SP, resulting in the increase of the synergy relationship
between NPP and SP during the period investigated. The increase in AGMACH resulted in an increase
in the trade-offs between SP and WR. The increase of mechanical input in crop farming directly
decreased the supply of WR, and had a negative impact on vegetation restoration in the surrounding
ecosystems, which in turn indirectly reduced SP provision. SP–WR was positively correlated with POP.
Population growth directly led to an increase in water use (i.e., a decrease in WR), and reduced the
trend of the adverse impact of vegetation restoration on SP. SP and WR both decreased at the same
time, thus increasing the synergy between SP and WR.

(iii) Driving factors directly affect one ES, while having at the same time a smaller effect on another
ES. Changes in the supply capacity of only one ES, will eventually lead to changes in trade-offs and
synergies (see Figure 4c). SHEEP–SP showed a positive relationship with WIN. The decrease in wind
speed led to an increase in SP, which led to an increase in the synergistic relationship between them.
FAM_LUI had a positive impact on GRAIN–NPP. Agricultural intensification promoted an increase
in grain yield, thus increasing the synergistic relationship between them. The increase in grassland
utilization (GRS_PRS) resulted in a decrease in NPP. Both WR, and the trade-offs between NPP and
WR, recorded an increase in the 39 years investigated. SP–WR was positively correlated with WIN,
indicating that the decrease of the average wind speed led to an increase in SP. Moreover, the increase
in WR fostered an increase in the synergistic relationship between them.

(iv) Driving factors indirectly affect two ES, changing their supply rate and influencing their
trade-offs and synergies (see Figure 4d). SP–WR was positively correlated with GRS_PRS, suggesting
that the increase of grazing pressure on grassland directly reduced vegetation cover, thereby indirectly
reducing SP and WR, and increasing the synergistic relationship between them.

4. Discussion

4.1. Trade-offs and Synergies, and ES Spatial Heterogeneity

Our results demonstrate that trade-offs and synergies among ES are spatially heterogeneous.
Li et al. (2017) revealed that in grasslands, the relationships between ES tend to be in the form of
synergies, while in built-up land and farmland they tend to be in the form of trade-offs [43]. In
our research, SHEEP–GRAIN, SHEEP–NPP, SHEEP–SP, and NPP–SP exhibited a spatial clustering
in positive and negative correlations. Land use conflicts were one of the causes of trade-offs and
synergies between ES [12,44,45]. The heterogeneity of ES is usually caused by land use [46], whereby
different types of land use provide different levels of ES [10]. For example, the spatially heterogeneous
relationship between SHEEP and NPP, caused by their regional distribution (see Figure 2-A2 and C2),
resulted in an imbalance in ES trade-offs. The area with the lowest SHEEP value is located in the
northwestern part of Uxin, while the areas with a lower vegetation coverage showed a decrease trend
(see Figure 2-A3). The areas with high SHEEP values are located in the northeastern and southern
regions, and showed an increasing trend over the 38 years analyzed (see Figure 2-A3). NPP exhibited
similar spatial patterns (see Figure 2-C2). However, it showed trends of change that are opposite to
those of SHEEP (see Figure 2-C3). Xu et al. (2017) also found that, due to the presence of hot-spot areas
of ES in Ningxia, which contains 37% of the cultivated land and produces 57% of grain, the provision
and regulation services in the region did not appear to develop trade-off relationships [44].

4.2. Management Implications

Our research suggests that it is necessary to perform a long-term analysis of ES and their drivers,
to better understand the trade-offs and synergies among them. Due to the different sensibility of
ES to climate change and human disturbance, changes in ES relationships can be abrupt with high
inter-annual precipitation variations [24]; hence, the ES were chosen at different time periods, and this
may have influenced the results of the various ES interactions (see Figure 5). Hence, combined with
the statistical test, the timely assessment and monitoring of ES and their relationships are needed to
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robustly identify the change trends of each ES, to detect threshold or lag effects in ES interactions [43],
to help avoid surprising trade-offs, and to take advantage of emerging synergies [24].
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and t2-t3, and a synergy relationship after t3.

According our study, the magnitude and direction of ES trade-offs and synergies may also vary,
responding to changes in both natural and anthropogenic drivers. Our results suggest that more
adaptive approaches for ecosystem management are required [47]. For example, revegetation in
arid areas creates potentially conflicting demands for water between the ecosystem and humans [48];
these processes, although enhancing biomass storage or carbon sequestration, may decrease water
availability [10,49]. In this case, the relationships between GRAIN–WR and NPP–WR will change from
synergies into trade-offs. Under the warming and drying trend of regional climate [16], the continuous
water demand by agriculture and humans may cause a decline in WR, and eventually result in
vegetation degradation. Therefore, the implementation of a high-efficiency water saving agriculture
(e.g., through drip irrigation or plastic film) is necessary to reduce water consumption rates and to
improve cropland productivity, thereby improving other services as complementary or insurance
measures for ecological rehabilitation [10].

According to our study, the inner relationship between driving forces should be cautious about.
And relationship among drivers may display both trade-offs and synergies or interaction effect.
For example, population variation and technical progress would affect the change of land use,
and eventually lead to the change of ES supply in this region. Restricted by prohibition of open grazing
policy since the early 2000s, herdsmen families in Uxin increased mechanical power in artificial pasture.
Such changes in land management increased sheep breeding and reduced grazing pressure on nature
grassland [40]. Farm families increased their investment in crop farming and cultivated land during
the last three decades, which resulted in cropland expansion hot-spot areas and increase of grain
production. It was founded in “Grain for Green” project region in Ningxia, China, the hot-spot areas of
37% of well managed land had contributed 57% of grain output [44]. Similarly, Pretty et al. (2006)
found that farming systems adopting sustainability enhancing practices had increased productivity
and improving the supply of ES [50].

4.3. Uncertainties in ES Assessment

Our study has some limitations and uncertainties. Input data accuracy is one of the sources
of errors, such as those stemming from the 250-m MODIS data products and 1-km NOAA NDVI
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data used in the NPP calculation process. We used a regression method to bridge the resolution gap
between these two data sources. However, due to the high contrast of sand land when in proximity
to other land covers, uncertainties are unavoidable when using NOAA data, which have a coarse
spatial resolution. Our analysis showed a higher variability of NPP in the period 1979–1999 than in
the period 2000–2016. The models used in this study also have some limitations. SP was based on
the RWEQ model, which was developed in the 1980s for the Great Plains region in the USA. The use
of recommended parameters in our study is another source of uncertainty. Therefore, measurement
data should be acquired in future research, to provide a basis for the verification of parameters and
results from the local application of this model. This should allow for a more accurate evaluation of
ecosystem services in the sandy area of grassland.

5. Conclusions

The analysis of long-term trends in ES is important to understand their responses to climate
change and human activities. In this paper, we analyzed the trends of ES, and the changes in trade-offs
and synergies between ES and their driving forces, in the period 1979–2016. Our study highlights the
importance of considering long-term trends of ES and their drivers in understanding ES interactions.
Our results demonstrate that the magnitude of ES trade-offs and synergies vary in the long period,
and may even switch for some pairs of ES. Trade-offs and synergies also showed regional distribution
characteristics. The analysis of the driving forces of ES relationship change found that climate factors,
land use change, technological progress, and population are the main factors behind changes in ES and
in the relationships between them.
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