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Abstract: A data center with a large number of servers, large storage, and many network devices
requires power for cooling to reduce heat generation, air conditioning, and emergency power
generation facilities, in addition to power for operation internally consumed by infrastructure
equipment. The power consumed by data centers worldwide makes up a large proportion. Although
the size of data centers is expected to increase, we are already faced with power problems because
stability is prioritized over efficiency when operating data centers in order to meet the Service Level
Agreement (SLA) conditions. Most data centers are in a virtualization environment, and virtual
machine consolidation using physical machine (PM) transitions to the idle mode through virtual
machine (VM) migration has been suggested as one of the most effective ways to reduce the amount
of power usage in a data center. This study takes into account the characteristics of virtualization
environments and presents an algorithm that effectively solves VM consolidation (VMC) through
operator design using a grouping representation method and a meta-heuristic method known as
harmony search.

Keywords: cloud datacenter; virtual machine consolidation; optimization; meta heuristics; harmony
search; grouping representation

1. Introduction

Data centers around the world are rapidly transforming itself into cloud data centers to create
and process large amounts of data due to expansion of businesses such as cloud, big data, artificial
intelligence (AI), and Internet of Things(IoT), and are evolving into hyperscale data centers. According
to data from Gartner, data center investments were US$181 billion in 2017, increasing 3.87% year on year
to US$188 billion in 2018, and is expected to reach US$190 billion by 2019. The amount of cloud-based
workloads in data centers is expected to reach 94% in 2021, up from 39% in 2012. The growth in the
number of hyperscale data centers, essential for processing and managing exponentially growing
volumes of data, has become a global trend. The number of hyperscale data centers increased by 14.2%
year on year to 386 in 2017 and to 448 in 2018. It is expected to reach 628 in 2021, a 10.17% increase
compared to 2020 [1,2].

A data center comprises a lot of servers, storage and network devices, and in addition to power
for running the equipment, they also consume a lot of energy for cooling, air conditioning, and
emergency power reserves. From 2005 to 2010, data centers saw a rapid increase of power consumption
by 24%. It was reported that data centers accounted for approximately 1.1% to 1.5% of the global
energy use and approximately 2% of the global greenhouse gas emissions during this period. Based
on this, many experts predict that data center energy consumption will continue to increase rapidly.
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Since data centers need to provide service 24/7/365 without interruption, a power-efficient design
and operation are important; however, many governments and corporations continue to operate data
centers inefficiently. In many cases, a server operates on its initial setup from its initialization to its
disposal, and the requirement for vendors to isolate and run applications is another cause of inefficient
server operation [3–8].

Many studies have been conducted to solve the power consumption problem of data centers.
Typical methodologies include a facility-efficient approach, which improves the efficiency of data
center infrastructure facilities by optimizing the airflow, temperature, cooling, and power supply, and
an operation-efficient approach, which reduces the number of servers through virtual machine (VM)
consolidation and redeployment technique. An analysis of various methodologies that can reduce
power consumption in data centers shows that the most efficient power saving method is server
transitions to the idle mode as much as possible [9,10].

Most data centers today are managed by using virtualization technology that logically reconfigures
a physical machine (PM) into multiple virtual machines (VMs). Unlike the traditional structure in which
one operating system is installed on one server, virtualization technology allows several operating
systems to be run on one server by installing virtualization software known as hypervisor, as shown
in Figure 1. In Figure 1b, one Operating Systems(OS) unit is called VM, and a certain resource
(CPU, memory, etc.) of the server is allocated to the VM. Server virtualization can be expected to
reduce complexity and costs and to increase flexibility and agility, but there are frequent service level
agreement violations even though there are enough resources available. The operation status still
shows lower-than-expected levels, with poor resource utilization due to inefficient VM deployment,
the lack of agile response due to an increased number of VMs, and a waste of power and budget of
data centers with unnecessary server operation.
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Figure 1. Traditional operating system architecture and virtualization architecture.

Hypervisor can move a running VM to another PM and supports the live migration function,
which maintains the application’s service on the move [11]. If the destination PM can allow the
resources allocated to the VM, migration is possible. If all VMs located in one PM are migrated to
another PM, the existing server can be stopped because it is empty. Migrating VMs for server transition
to the idle mode and minimizing power usage is called virtual machine consolidation (VMC), as shown
in Figure 2. This study aims to induce the transition of PMs to the idle mode, which is the most efficient
power saving method for data centers, through VMC, and proceeds with efficient algorithm design for
VMC problem solutions.
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This paper is organized as follows: Section 2 describes VMC and related research. Section 3 defines
the problems of VMC that this study aims to solve. Section 4 describes the design of metaheuristic
technique for solving VMC problems. Section 5 describes the experiment design and results, and
Section 6 describes the conclusions.

2. Literature Review

VMC basically has the same mechanism as that of the bin packing problem. The bin packing
problem is a typical NP-hard problem in which N items are filled into M bins as much as possible, under
the assumption that N items have fixed weight, size, etc. and that M bins have a limited maximum
capacity. The difference between the bin packing problem and VMC is that the bin packing problem is
to fill items into an empty bin in an initially clean state, whereas VMC is more difficult as the VM that
already exists in PM needs to be re-allocated. In addition, unlike the bin packing problem, which only
considers the surface area and, additionally, the value, VMC has many things to consider such as CPU
occupancy, memory usage, network bandwidth, and so on.

PM and VM deployment and the addition and removal of PMs and VMs due to new events are
ongoing and common tasks in data centers. Initially optimized deployment reduces the operational
efficiency and stability of systems over time due to operational changes in services and newly added
PMs and VMs. VMC technique keeps data center resources optimized by redeploying VM tasks
to remaining PM resources and migrating VMs from resource-lacking PMs to other locations [12].
This optimization is an important means of managing data centers’ Service Level Agreements (SLAs)
and Quality of Service(QoS). In addition, redeployment of resources can keep PMs in the idle state.
Research has shown that reducing the number of PMs through VMC is the most obvious way to
minimize data center energy consumption because nearly 70% of the server’s energy is consumed
even with a server simply being turned on without a VM [13]. VMC migrates VMs from underutilized
PMs to highly utilized PMs, consolidating VMs into fewer PMs than before. The state of a PM without
a VM can be changed from an active state (that is, a turned-on state) to a low energy consumption state
such as sleep mode, thereby minimizing energy consumption. Several studies on VMC have been
undertaken to balance energy efficiency with QoS, which is well known as an NP-hard problem that
can no longer solve sudden computational complexity by intuitive human judgments or optimization
methodologies using formulas such as integer programming in large-scale and complex data center
environments [10].



Sustainability 2019, 11, 6030 4 of 20

VMC can be classified by objective function into energy consumption minimization, network traffic
minimization, economical revenue maximization, performance maximization, resource utilization
maximization, and so on [14–19]. Among these, energy consumption minimization, performance
maximization, and resource utilization maximization belong to a similar theme. The most common
problem was minimizing the number of PMs or minimizing the power as calculated directly by the
researcher. The problem of minimizing energy consumption through VMC inevitably correlates with
VM migration minimization and SLA violations. Live migration is an expensive operation that includes
CPU throughput for the source PM, link bandwidth between the source and target PMs, service
downtime in the migration VM, and overall migration time. As it is a sensitive task that is also related
to the stability of service operations, minimizing VM migration also becomes an important objective
function. Migration has a different weight depending on the service sensitivity of the task. Due to
slight downtime, certain sensitive service tasks may not be able to migrate VMs if they put all of their
value on service stability rather than economic utility. SLAs are an important requirement for data
center operations to maintain the desired QoS, and QoS requirements are typically formulated in an
SLA format that specifies service level requirements for the data center in terms of minimum latency
or maximum response time.

VMC is usually a matter of determining the following three pivotal components [10]. First is
source host selection. A PM set is selected among all PMs from which the VM is to be migrated.
Generally, selection is made using threshold-based methods, which include static and adaptive methods.
The adaptive threshold-based method is generally used in most cases. Second is VM selection. At least
one VM is selected from source PM for migration. For this step, methodologies such as random choice,
minimization of VM migration, high potential growth, minimization of migration time, and maximum
correlation are commonly used. Third is destination PM selection. Lastly, destination PM selection is a
series of processes that select the PM for the deployment of the selected VM. Various methodologies
exist including random PM selection, optimization, heuristic, metaheuristic, etc.

When the existing research is classified by methodology for solving VMC, there are studies using
optimization techniques such as binary integer programming, constraint programming, dynamic
programming, integer linear programming, linear programming, etc. The limitations include that the
conditions were simplified for solutions and the execution time was too long compared to performance.
Generally, about 10 to 20 VMs are allocated to one PM. Since it is difficult to derive the optimal value
and it takes a long time when the size of PM is large, most studies used heuristics. As this is also an
NP-hard problem, it is more efficient to approach it with a heuristic or metaheuristic method than with
an optimization method. Heuristic techniques include studies using best fit decreasing (BFD), best fit
(BF), first fit (FF), and first fit decreasing (FFD), while many studies using the greedy algorithm also
exist. Recently, due to the increasing complexity of VMC following the increased size of data centers,
many studies on methodologies using metaheuristics are being conducted. Y. Gao [20] and four others
presented the ant colony optimization (ACO) suitable for a multi-objective problem in order to reduce
wasted server resources and power, and compared it with the genetic algorithm (GA) and max–min
ant system in a study. K.Y. Chen [21] and four others calculated the cost of VM deployment and solved
the problem of minimizing the cost with cut-and-search. C.C.T. Mark [22] and two others presented an
evolutionary algorithm that predicts the resource demands of VMs and optimizes VM deployment to
minimize costs. A.C. Adamuthe [23] and two others designed the GA suitable for VM deployment and
compared the performance with FFD. G. Wu [24] and three others solved the problem of maximizing
load balancing and profits and minimizing the waste of resources using GA, NSGA and NSGA-II.
Y. Wu [25] and two others used simulated annealing (SA) to solve a VM deployment problem [26],
and T. Ferreto and two others proposed the Tabu search (TS) algorithm that ensures that migration is
completed within the specified maximum time.

Virtualization has a characteristic that the size of the VMC problem is large-scale because multiple
VMs are assigned to one PM. For this reason, many studies have applied metaheuristic because it
is difficult to solve the global optimal solution. As a result of analyzing the existing studies using



Sustainability 2019, 11, 6030 5 of 20

metaheuristics, only the design of the algorithm is presented, and few studies have suggested how to
solve the large-scale problem effectively. In this study, we propose a grouping representation method
to effectively searches for optimal solutions even at large scale, reflecting the characteristics of VMC.

3. Virtual Machine Consolidation Modeling

VMC can reduce PM power through VM migration, but VM migration is one of the tasks to
avoid. This is because virtual machine migration itself is a resource-intensive task, and there is slight
downtime during the migration [11]. From a practical point of view, administrators should also be
aware of the mapping information of PMs and VMs. If the mapping information of multiple PMs and
VMs is changed frequently, the complexity of management points will increase. For these reasons,
VM migration is rarely used during operation and is used to plan a regular inspection schedule in
advance and migrate a VM that is powered off or suspended between hosts (cold migration). Therefore,
this study reflects such environments of data centers and considers the VMC’s original purpose of
reducing the amount of power and minimizing the number of VM migrations. VMC constraints are
set as follows.

VM allocation constraints: Virtualization technology makes it possible to assign multiple VMs to
a single PM. This is indicated as in Equation (1) and Ai j shows whether the VM j has been allocated to
the PM i. The value is 1 when allocated; if not, the value is 0. The condition is that a VM cannot be
assigned to multiple PMs. Therefore, the sum of Ai j for VM j should be 1 as in Equation (2), and it
means that the VM should be allocated to one PM.

Ai j =

{
1, i f VM j allocated on PM i i = 1, . . . , n, j = 1, . . . , m
0, otherwise

. (1)

∑n

i=1
Ai j = 1, j = 1, . . . , m. (2)

PM capacity constraints: The number of VMs allowed by PMi can be calculated through CPU
and memory. As in Equations (3) and (4), the CPU usage (pcli) and memory usage (pmli) of PMi is
calculated as the total sum of the CPU (vc j) and memory (vm j) of VMs allocated to the PMi. In general,
PM is set to have a workload not exceeding a certain threshold for stable operation. In other words,
PM i’s workload should not exceed the threshold (T), and thus the usage is calculated by dividing the
quantity of CPU and Memory currently being used by the total capacity of (pci , pmi) of the CPU and
Memory of the PM.

pcli =

∑m
j=1 Ai j·vc j

pci
. (3)

pmli =

∑m
j=1 Ai j·vm j

pmi
. (4)

pcli ≤ T. (5)

pmli ≤ T. (6)

PM released constraints: PMs without any VMs can be turned off to reduce power. Equation
(4) indicates the value of 0 if at least 1 VM is allocated to the PM i because PM cannot be released;
otherwise, Ri it indicates 1. It is used as the sum (NR) of the number of released PMs in the calculation
of the objective function, and is calculated as in Equation (8).

Ri =

 0, i f
∑m

j=1 Ai j ≥ 1, i = 1, . . . , n, j = 1, . . . , m
1, otherwise

. (7)

NR =
∑n

i=1
Ri . (8)
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Number of VM migration calculation: In the initial state, VMC derives Ai j, the PM–VM allocation
information through an operation. When the initial PM–VM allocation information is At−1

i j and the

PM–VM allocation information changed through VM migration is At
i j, the number of migrations is

calculated as shown in Equation (9).

NM =
∑n

i=1

∑m

j=1

∣∣∣∣At−1
i j −At

i j

∣∣∣∣
2

. (9)

Objective function: Murtazaev et al. [27] refers to migration efficiency as a performance measure
that measures the maximum of transitions of PMs to the idle mode with minimum migrations.
The higher the value, the higher the efficiency. For example, if three PMs transition to the idle mode by
three migrations, the migration efficiency is 100%. The objective function of this study is to maximize
migration efficiency, and the formula for calculation is as in Equation (10).

Maximize Z =
NR
NM

. (10)

The primary goal of this study was for PM transition to the idle mode, which is the basic purpose
of VMC, and at the same time, the goal was to maximize PM transitions to the idle mode with minimum
migrations. Since VMC is known as an NP-hard, a metaheuristic suitable for this was adopted as a
methodology. Section 4 describes the efficient metaheuristic operator design for solving VMC problems.

4. Proposed Grouping Harmony Search for Virtual Machine Consolidation

This section described the detailed procedures of harmony search (HS) and grouping harmony
search (GHS), one of the metaheuristic techniques used to solve VMC, and the contents of the operators
designed to efficiently solve VMC problems.

4.1. Overview of Harmony Search

HS is an optimization algorithm that was created based on the observation that better chords
are produced by repeated practice in improvisation of jazz. This refers to a series of processes that
the most beautiful chords (global optimum) can be made through repetitive practice (iteration) when
played by a variety of instruments.

In the case of GA, inspired by population genetics inspired by population genetics, generates
new genes from two genes, but HS generates new solution from multiple solution, which has a high
probability of searching for global optimal. Compared to SA and TS, which are typical single solution
based metaheuristics, population based HS has a high global search capability. In the case of SA and
TS, it is possible to drive a good quality through a mechanism that probabilistically adopts a bad
solution. When HS generates a new solution, it adopts a quality solution within the population and
searches for an optimal solution.

HS consists of three operators in total: memory considering, pitch adjusting, and random
playing. Each operator determines the frequency of operation based on predefined parameter values.
The pseudo code of HS is shown in Table 1.
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Table 1. Pseudo code of harmony search.

Pseudo Code 1. Harmony Search referring to [28,29]

1: Initialize the problem and Harmony Search parameters (HMS, HMCR, PAR)
2: Construct the vectors of the Harmony Memory, HM = {x1, x2, ..., xHMS}
3: Recognize the worst vector in HM, xworst

∈{x1, x2, ..., xHMS}
4: While (not termination)
5: x’= φ // new harmony vector
6: for i = 1, ... , N // N is the number of decision variables
7: If (rand() ≤ HMCR) then
8: x′i ∈

{
x1

i , x2
i , . . . , xHMS

i

}
// Memory Considering

9: If (rand ()≤ PAR) then
10: x′i = x′i ± BW // Pitch Adjusting
11: end if
12: Else
13: x′i = Xi // Random Playing
14: end if
15: end for
16: If ( f (x′) < f

(
xworst

)
) then

17: Replace f
(
xworst

)
with f (x′)

18: end while
19: Find the current best harmony

HS generates one solution (HM, harmony memory) per iteration (line 5–17). New Harmony x’ is
generated through memory considering, pitch adjusting, and random playing operators by increasing
the index (line 6). The operator of HS generates the first random number (line 7) to determine whether
to calculate the memory considering (line 8). If the first random number is smaller than the predefined
harmony memory considering rate (HMCR), memory considering is executed. If the first random
number is larger than HMCR, random playing is executed (line 13). Random playing is a method of
adopting the value of one of the feasible solution groups. Memory considering adopts the value of one
of several solutions of harmony memory size (HMS). When the solution is generated through memory
considering, the operation for pitch adjusting is determined by generating a second random number.
If the second random number is smaller than the predefined pitch adjusting rate (PAR), pitch adjusting
is executed (line 10). Pitch adjusting means the neighboring value of the solution generated by memory
considering. The target value is calculated once x’ is generated, and if it has a better value than the
target value of the worst HM in the HMS, the solution is replaced with new harmony (line 16–17).
HS repeats the above process until the end condition is met.

4.2. Grouping Representation for Virtual Machine Consolidation

Harmony search is population-based metaheuristics that generate new HMs by combining
multiple HMs and has the advantage of having a high degree of diversification; however, as a result of
controlling a large number of HMs, there is a disadvantage that computation times increase compared
to single solution metaheuristics. As the size of the node grows, the HMS also needs to grow to
increase the efficiency of searching for a solution, so the problem occurs when handling a large-scale
problem. To solve this problem, we adopted grouping representation in this study for the efficient
design of algorithms.

VMC belongs to grouping problems, and the ordering of objects within a group is meaningless.
In other words, the combination of VMs located in the PM is important, not the order in the group.
Since it also deals with virtualization environments, the number of PMs is basically smaller than the
number of VMs. Since there are multiple VMs in one PM, if the problem size is adjusted, the increase in
VM is higher than the increase in PM. If the solution is encoded in the permutation form of the VM, the
length of the solution also increases as the number of VMs increases. This method is inefficient when
searching for a solution as the solution space is increased with many duplicate solution representations.
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Therefore, PM-oriented representation is more efficient than VM-oriented solution representation.
Falkenauer [30] proposed a one-gene-for-one-group method for one solution grouping problem. With
this in mind, this study represented PM and VM information based on groups as shown in Figure 3.
The index of each array indicates the index of PM, and the value of each array indicates the index of
VM located in the corresponding PM, which is controlled in the form of a list.
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4.3. Pitch Adjustments for Virtual Machine Consolidation

HS consists of three operators—memory considering, pitch adjustment, and randomization.
Among them, the operator that directly changes the new HM is pitch adjustment. VMC has to decide
the source PM selection, VM selection, and destination PM selection as a problem of migrating VM
located in one PM to another PM. The pitch adjustment operator changes the solution by determining
the above three factors. The criteria for determining each problem are as follows.

4.3.1. Source PM Selection

The purpose of VMC is to reduce power usage by migrating VMs and turning off unnecessary
servers and to ensure stable operation of the PMs at the same time. Based on this, the selection
criteria of the source PM are the PM in the underload state and the PM in the overload state. Since
underloaded PM means low resource utilization and the number of VMs is often small, power can be
saved with minimum migration. Selecting the overloaded PM is to ensure stable operation, and PM in
the overload state should be avoided because it is likely to violate the SLA. The CPU and memory
workload status of each PM can be presented by X-Y coordinates as shown in Figure 4, and the PM
that is farthest from the PM (filled square) closest to the origin becomes the source PM.
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4.3.2. VM Selection and Destination PM Selection

When a source PM is selected, the VM to be migrated should be selected if there are more than
one VM in that PM. The selected VM is migrated from the current PM to another PM and the number
of VMs that can be migrated depends on the free capacity of the destination PM. VMC is a problem
similar to the bin packing problem, and the number of VMs loaded into the PM varies depending on
how the VM set is formed. Therefore, VM should be filled with the goal of minimizing the free capacity
of each PM. For this reason, VM selection and destination PM selection should not be considered
independently, but should be considered in the same line. In Figure 5. the VM located in the source
PM is represented by a filled circle. The VM has an unbalanced characteristic in which the workload is
biased toward the Y-axis (CPU usage). The VM can balance the usage of resources of the destination
PM if the workload migrates to the unbalanced PM. The destination PM of the VM whose workload is
unbalanced is the PM with the longest Euclidean distance. For VMs with unbalanced workloads as
in Figure 5, it is probabilistically selected based on the Euclidean distance between the VM and the
destination PM candidates.
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4.4. Procedure of GHS for Virtual Machine Consolidation

The GHS procedure for solving VMC is the same as the general HS procedure. However, there is
a difference in that the solution representation is a group representation and the calibration method of
infeasible solutions generated therefrom is added. (shown as Figure 6)
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4.5. Infeasible Solution Calibration Method

In the case of GHS, VM duplication may occur when creating a new HM in groups. VMC should
not allow duplicate VMs due to restrictions on VM allocation. In existing research, heuristic techniques
were used to design a separate operator that deletes the duplicate objects properly in the process
of solving the grouping problem. Typical heuristic techniques applied to the bin packing problem
include FFD and BFD, and an analysis showed that there is no big difference in the performance
between the two [27]. When VM duplication occurs in GHS, the heuristic technique is used to delete
the remaining VMs except the best-fit VM. In addition, a solution to which a VM is not allocated may
be generated. In this case, a list of unallocated VMs is searched and allocation to PM is done through a
heuristic technique.

5. Computational Experiments

5.1. Data Set

For VMC experiment, information about the PM’s CPU capacity, memory capacity, VM’s CPU
quota, and memory quota is needed. Test cases were generated in the same manner as data generation
in existing research [27], and were classified into eight classes in total according to the specifications of
PM and VM. In the case of class 1, 2, 5, and 6, homogeneous was 1, 2, 5, and 6 while the class that
generated heterogeneous PM was 3, 4, 7, and 8. (shown as Table 2). The specifications marked with
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an asterisk had a higher probability of generation compared to other specifications. In this case, the
probability was (1 − pm)/(number of possible values); for example, the generation of CPU values of the
PM of Class 3 was (1 − pm)/4. The value of pm was set to 0.9. The number of values VM generated
was between 25 and 500, and the VMs were sequentially allocated by generating the number of PMs
corresponding to the amount of lowerbound value multiplied by 3. The formula for calculating the
lowerbound is as in Equation (11). This was determined as the larger of the sum of CPU values of all
VMs divided by the CPU average value of all PMs and the sum of memory values of all VMs divided
by the memory average value of all PMs.

Lc = max
{[∑

j∈K
vc j/avg(ci)

]
,
[∑

j∈K
vm j/avg(mi)

] }
. (11)

Table 2. Test cases for the experiments.

Class
PM VM

Ci Mi VCj VMj

1 6 4 [1.0, 2.0] [0.5, 1.5]
2 10 6 [1.0, 2.2] [0.5, 1.5]
3 {4,5,6*,7,8} {3,4*,5} [1.0, 2.0] [0.5, 1.5]
4 {8,9,10*,11,12} {5,6*,7} [1.0, 2.2] [0.5, 1.5]
5 6 4 [1.0, 2.0] [VC j/2, VC j/2+0.5]
6 10 6 [1.0, 2.2] [VC j/2, VC j/2+0.4]
7 {4,5,6*,7,8} {3,4*,5} [1.0, 2.0] [VC j/2, VC j/2+0.5]
8 {8,9,10*,11,12} {5,6*,7} [1.0, 2.2] [VC j/2, VC j/2+0.4]

5.2. HS Parameter Determination

In the case of the metaheuristic technique, the user must set the parameter by a technique that
finds a solution through the probabilistic generation of random numbers. Since the optimal parameter
value is different for each problem to be solved, it is common to repeat the experiment by selecting
various parameter combinations by specifying an appropriate range. In the case of HS, two parameters,
HMCR for determining HMC and PAR for determining PA, must be set in advance. In this study,
in order to reduce the time required for VMC experiments, we selected parameters that derive high
quality solutions based on medium size VM for each class and applied them to other size VMs in the
same way. Table 3 shows the results of deriving the optimal parameters for Class 1. With the VM size
of 300, the average of the number of power saving PMs was analyzed by repeated experiments for
each parameter of HS. The best results were obtained when the HMCR was 0.99 and the PAR was 0.85.
GHS improved the solution through PA, and as PA is an HMC dependent operator, the overall result
was better when HMCR was higher. In the case of PAR, when HMC was properly executed, the result
was higher than that of performing PA alone.

Table 3. Experiment results for each harmony search (HS) parameter (avg. number of power saving
PMs Class 1, VM size = 300). Bold typeface indicates better solutions.

HMCR PAR 0.75 0.8 0.85 0.9 0.95 0.99

0.75 91.20 90.53 90.13 90.43 90.16 89.36
0.8 91.66 90.53 90.10 90.36 89.86 89.00

0.85 91.26 90.60 89.96 90.46 89.00 88.00
0.9 91.70 89.50 90.40 89.93 90.03 88.90

0.95 92.00 90.40 90.56 90.00 89.60 89.50
0.99 91.96 90.36 90.93 90.43 90.23 88.90
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5.3. Experimental Results: Comparison with HS and GHS

This study adopted grouping representation in designing metaheuristic technique for efficient
solutions of VMC. A popular solution representation for VMC solution is permutation encoding, which
is shown in Figure 7. The index of each array is the index of the VM, and the value of the index of each
array is the index of the PM where the VM is located.
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In this study, to verify the justification of adopting grouping representation to solve VMC, we
compared the grouping representation and permutation representation. The comparative experiments
compared the time to reach 85% of the lowerbound value of the power saving PM of HS and GHS
based on all VM sizes. The HMS of HS and GHS were set equal to the length of the array. In the case of
HS, the number of VMs is HMS, and in the case of GHS, the number of PMs was HMS. HMCR and
PAR were set equal to the values derived in 5.2.

The experiment results showed that the larger the VM size, the faster the GHS reached the target
value than HS. In addition, the trend of the time that the HS reached the target value showed a higher
slope than the time that the GHS reached the target value. Since HS determines HMS based on VM,
and GHS determines HMS based on PM, the larger the VM size, the better the GHS solution search
range and efficiency. When 750 and 1000 VMs were created to look at increases in the experiment time,
it was found that GHS tended to increase relatively linearly in comparison to HS. (shown as Figure 8).Sustainability 2019, 11, x FOR PEER REVIEW 12 of 21 
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5.4. Experimental Results

5.4.1. Experimental Environments

The purpose of VMC is to reduce power usage by migrating VMs and turning off unnecessary
servers and to ensure The VMS target value is the maximum of PM transitions to the idle mode.
Migration efficiency was considered to determine the efficiency of migration at the same time. For the
parameter of HS, HMCR was set to 0.99 and PAR was set to 0.85 as determined in 5.2; iteration was
set to 10,000 times, and the repeat experiment was performed for a total of 30 times. Experimental
environment is as in Table 4.

Table 4. Experimental environments.

Section Item Description

Experimental Parameters

Objective Function Max (turn off PM), Max (migration efficiency)
Parameter HMS = PM Size, HMCR = 0.99, PAR = 0.85
Iteration 10,000

Repetition 30

Experimental Environments

OS Windows 10, 64bit
CPU Intel Core i7 (2.67GHz)

Memory 16GB RAM
IDE Visual Studio 2017

Programming Language C# 6.0

5.4.2. Analysis for Experimental Results by Class

Figure 9 shows a comparison of the numbers of running PMs, excluding idle-transitioned PMs,
across all GHS and HS servers. The experiment results showed that GHS outperformed HS in all
eight classes. In the case of small VM sizes (25 to 100), GHS reached close to lowerbound, whereas HS
did not. The difference from lowerbound was larger for HS than for GHS as the VM size increased.
This suggests that GHS was a more efficient algorithm for VMC aimed at maximizing idle servers and
minimizing uptime servers.

Referring to Table 5 and the experimental results table in the Appendix A, in Class 1, GHS
reached 85% of lowerbound, and migration efficiency was also high at 92.3–100%. HS reached 72% of
lowerbound under the same conditions, and migration efficiency was only 72.9% on average. Even in
Class 3, 5, and 7, GHS reached 97.4–98.4% of migration efficiency, which was 26.9–30.8% higher than
HS of 68.1–71.1%. It can be said that GHS was superior even when GHS and HS were compared in
terms of migration efficiency.

Referring to Table 6 and the experimental results table in the Appendix A, In Class 2, GHS reached
about 78% of lowerbound, which was higher than HS reaching 67% of the lowerbound. Migration
efficiency also showed higher results for GHS at 65.6%, compared to HS at 50.8% on average. In Class
2, 4, and 6, HS reached 50.6–54.1% of migration efficiency, while GHS showed a migration efficiency of
63.7–69.4%. Comprehensive points of 10.6%–18.8% of the gap compared to HS proved the superiority
of GHS.

Overall, the even-numbered classes showed a difference in the number of power saving PMs
compared with the odd-numbered classes, but migration efficiency was low. Through this experiment,
the factors influencing migration efficiency were found to be the balance of the number of allocated
VMs between PMs and the number of VMs allocated to PMs. When the data sets of odd-numbered
class and even-numbered class were compared, the larger the CPU and memory size of the PM, the
more VMs were allocated to one PM. PMs with only one VM could save PM power with one migration,
but PMs with multiple VMs could save power after multiple migrations, resulting in lower migration
efficiency. In addition, if the total number of VMs was allocated to all PMs in consideration of balance,
the migration efficiency tended to be lower as well.
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Table 5. Comparison of experimental results of HS and GHS (Class 1, 3, 5, and 7). Bold typeface indicates better solutions.

VM Size
Class 1 Class 3 Class 5 Class 7

HS GHS GAP HS GHS GAP HS GHS GAP HS GHS GAP

25 73.3% 92.3% 19.0% 68.8% 92.3% 23.6% 53.3% 92.3% 39.0% 58.8% 92.3% 33.5%
50 84.6% 100.0% 15.4% 65.6% 92.6% 34.4% 61.5% 96.0% 34.5% 64.0% 96.0% 32.0%
75 65.9% 97.3% 31.4% 71.1% 97.3% 26.2% 63.6% 97.2% 33.6% 64.1% 92.3% 28.2%
100 64.4% 98.0% 33.6% 70.7% 98.0% 27.3% 69.1% 97.9% 28.8% 77.1% 97.9% 20.8%
125 78.5% 100.0% 21.5% 73.4% 95.0% 26.6% 72.7% 98.2% 25.5% 77.0% 98.4% 21.3%
150 69.6% 100.0% 30.4% 74.2% 95.8% 25.8% 71.4% 100.0% 28.6% 78.1% 100.0% 21.9%
200 79.4% 100.0% 20.6% 76.8% 100.0% 23.2% 76.8% 100.0% 23.2% 81.5% 100.0% 18.5%
250 76.1% 100.0% 23.9% 70.3% 96.7% 29.7% 72.7% 100.0% 27.3% 78.6% 100.0% 21.4%
300 75.6% 99.3% 23.7% 69.9% 99.3% 29.4% 74.8% 99.3% 24.4% 73.1% 99.3% 26.2%
350 73.1% 99.4% 26.2% 69.6% 99.4% 29.8% 73.1% 99.4% 26.3% 71.4% 99.4% 27.9%
400 73.2% 100.0% 26.8% 62.8% 100.0% 37.2% 70.6% 100.0% 29.4% 70.8% 100.0% 29.2%
450 69.8% 99.5% 29.7% 57.2% 99.5% 42.3% 68.8% 99.5% 30.7% 67.9% 99.5% 31.6%
500 64.0% 100.0% 36.0% 54.7% 100.0% 45.3% 60.9% 99.5% 38.7% 61.8% 99.6% 37.8%

Average 72.9% 98.9% 26.0% 68.1% 97.4% 30.8% 68.4% 98.4% 30.0% 71.1% 98.0% 26.9%

Table 6. Comparison of experimental results of HS and GHS (Class 2, 4, 6, and 8). Bold typeface indicates better solutions.

VM Size
Class 2 Class 4 Class 6 Class 8

HS GHS GAP HS GHS GAP HS GHS GAP HS GHS GAP

25 50.0% 70.0% 20.0% 50.0% 63.6% 13.6% 66.7% 63.6% −3.0% 75.0% 63.6% −11.4%
50 50.0% 77.8% 27.8% 50.0% 63.6% 13.6% 57.9% 62.5% 4.6% 56.5% 68.2% 11.7%
75 54.5% 67.7% 13.2% 54.5% 72.4% 17.9% 50.0% 60.6% 10.6% 50.0% 66.7% 16.7%
100 52.2% 65.0% 12.8% 50.0% 76.5% 26.5% 53.5% 63.4% 9.9% 50.0% 68.3% 18.3%
125 52.5% 69.4% 16.8% 50.8% 78.0% 27.2% 51.8% 62.7% 11.0% 51.7% 61.1% 9.4%
150 51.4% 64.5% 13.2% 51.4% 73.6% 22.2% 52.2% 62.3% 10.1% 53.4% 61.5% 8.1%
200 50.0% 70.1% 20.1% 50.5% 74.0% 23.5% 51.6% 66.7% 15.1% 50.0% 63.8% 13.8%
250 50.0% 66.3% 16.3% 50.0% 77.2% 27.2% 52.1% 68.9% 16.9% 53.2% 67.0% 13.8%
300 50.0% 63.0% 13.0% 50.0% 73.2% 23.2% 51.9% 66.9% 15.0% 53.8% 62.6% 8.7%
350 50.0% 62.9% 12.9% 50.0% 64.2% 14.2% 51.3% 62.1% 10.9% 53.3% 65.2% 11.9%
400 50.0% 60.9% 10.9% 50.0% 62.8% 12.8% 50.6% 64.6% 14.0% 52.2% 64.9% 12.7%
450 50.0% 58.4% 8.4% 50.0% 61.6% 11.6% 50.0% 63.8% 13.8% 52.2% 66.5% 14.3%
500 50.0% 56.3% 6.3% 50.0% 61.1% 11.1% 50.0% 59.6% 9.6% 51.7% 62.0% 10.3%

Average 50.8% 65.6% 14.8% 50.6% 69.4% 18.8% 53.0% 63.7% 10.6% 54.1% 64.7% 10.6%
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When the environment where PMs with multiple VMs and PMs with few VMs were mixed (=
environment with underloaded PMs based on the assigned VMs) and the environment where allocation
of VMs to PMs is well-balanced were compared, the former environment could save power with
minimum migrations from PMs with a small number of VMs, but the latter environment required
many migrations to save power as it had relatively fewer PMs with a small number of allocated VMs,
showing lower migration efficiency. Accordingly, if the PM–VM configuration of a data center did not
consider the load balance and had an environment where overload was mixed with underload, it was
appropriate to consider migration efficiency in evaluating the algorithm.

5.4.3. Summary and Future Work

VMC can be expected to have such a big effect. However, VM migration has slight downtime,
and migration itself should be avoided due to the nature of data centers that adheres to conservative
operation because migration itself causes overload. In this study, we considered maximizing server
power saving, which is the basic purpose of VMC, and at the same time, inducing efficient migration
by utilizing the concept of migration efficiency. For workloads, CPU and memory were considered
and the distance between PM and VM in X–Y coordinates was calculated to determine source PM, VM
to migrate, and destination PM selection.

To solve VMC, we proposed an effective algorithm design using harmony search among
metaheuristic techniques. In population-based metaheuristics such as harmony search, the number
of populations should increase in proportion to the increased problem size to ensure the diversity
of the search. In this case, there is a disadvantage that the cost for the solution search also increases.
VMC is targeted at virtualization environments. In virtualization environments, the number of VMs is
greater than the number of PMs. In addition, as VM is a logically divided unit, the order in which they
are located in PM does not matter. Reflecting this feature, the length of the solution will be reduced
if the solution representation is grouped based on PM rather than VM-based permutation. In this
case, as the problem size becomes larger, the increase in population will be relatively more linear,
leading to an efficient search. The performance of the algorithm proposed in this study was verified
through experiments.

This study was based on PM capacity and VM resource allocation in VMC. VMs had unique
workload patterns because they provided real-time services using CPU and memory resources. When
migrating a VM, considering the time series patterns of the VM as well as the size of allocated resources,
high quality PM–VM mapping that could operate the PM stably would be possible. Based on this,
studies should be conducted to predict the workload pattern and additionally consider the workload
balance degree as the objective function.

6. Conclusions

VMC was proposed as one of the ways of effectively solving the power consumption problem of
data centers, which is expected to intensify in the future. The power savings of running servers through
VMC could reduce the power costs of the servers and reduce the heat, leading to a direct cooling effect
in data centers. In addition, PM is a consumable with a persisting period, so the introduction and
disposal of equipment should be periodically reviewed from the perspective of operating a data center.
If the number of servers required for annual operation can be decreased through VMC, the cost of
introducing servers as well as the software licenses installed on servers can be reduced as well. This, in
turn, can indirectly reduce the data center operating costs.

In general, a virtualization environment consists of 5 to 20 VMs in one PM. In a data center, tens or
hundreds of PMs are managed at the same time. In terms of VMs, a general optimization problem will
become a large-scale problem. The size of data centers is expected to increase in the future, and single
cloud environments are shifting to multi-hybrid cloud environments. However, due to conservative
management that emphasizes stability only, inefficient operation still continues. Management points
are too extensive to rely on the intuition of administrators to operate complex data centers, and
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this can cause human errors. For efficient data center management, managers should move beyond
conservative management and examine technologies that contribute to efficient operation. Forward,
it is necessary to pursue data center automation and manualization by developing an integrated
intelligent cloud management platform using artificial intelligence and big data analysis technology.
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Appendix A

Table A1. Experiment results for Class 1.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 6.55 7 12 92.3% 0.934
50 13.13 16 23 100.0% 3.104
75 19.65 22 36 97.3% 6.022

100 25.83 27 50 98.0% 10.379
125 32.08 39 57 100.0% 16.326
150 38.33 45 70 100.0% 21.161
200 51.23 62 91 100.0% 42.113
250 64.28 75 117 100.0% 59.812
300 76.73 88 142 99.3% 92.178
350 89.17 106 161 99.4% 128.784
400 101.28 123 180 100.0% 170.812
450 113.40 138 202 99.5% 219.382
500 125.27 152 223 100.0% 262.670

Table A2. Experiment results for Class 2.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 4.30 5 7 70.0% 0.564
50 8.65 11 14 77.8% 1.707
75 13.10 18 21 67.7% 3.655

100 17.02 25 26 65.0% 5.921
125 21.38 30 34 69.4% 8.995
150 25.37 36 40 64.5% 12.271
200 33.38 46 54 70.1% 21.772
250 41.58 57 67 66.3% 33.941
300 50.00 65 85 63.0% 51.022
350 57.82 66 107 62.9% 69.698
400 66.23 75 123 60.9% 86.992
450 74.13 83 139 58.4% 112.269
500 81.67 94 151 56.3% 136.726

Table A3. Experiment results for Class 3.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 6.55 7 12 92.3% 0.927
50 13.13 14 25 92.6% 3.071
75 19.65 22 36 97.3% 6.146

100 25.83 27 50 98.0% 10.434
125 32.08 39 57 95.0% 16.191
150 38.33 46 69 95.8% 22.806
200 51.23 60 93 100.0% 41.621
250 64.28 75 117 96.7% 63.149
300 76.73 88 142 99.3% 94.986
350 89.17 107 160 99.4% 127.951
400 101.28 124 179 100.0% 169.648
450 113.40 135 205 99.5% 221.295
500 125.27 158 217 100.0% 271.288
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Table A4. Experiment results for Class 4.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 4.30 5 7 63.6% 0.558
50 8.65 11 14 63.6% 1.684
75 13.10 18 21 72.4% 3.538

100 17.02 25 26 76.5% 5.874
125 21.38 32 32 78.0% 8.970
150 25.37 37 39 73.6% 12.344
200 33.38 46 54 74.0% 21.822
250 41.58 53 71 77.2% 33.753
300 50.00 57 93 73.2% 50.135
350 57.82 71 102 64.2% 69.255
400 66.23 80 118 62.8% 90.268
450 74.13 84 138 61.6% 116.745
500 81.67 91 154 61.1% 140.142

Table A5. Experiment results for Class 5.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 6.55 7 12 92.3% 0.928
50 13.15 15 24 96.0% 2.908
75 19.48 23 35 97.2% 5.934

100 25.85 30 47 97.9% 10.313
125 31.95 39 56 98.2% 15.340
150 38.40 48 67 100.0% 22.036
200 51.23 65 88 100.0% 41.025
250 64.28 79 113 100.0% 60.559
300 76.73 94 136 99.3% 92.569
350 89.17 109 158 99.4% 122.108
400 101.28 128 175 100.0% 170.564
450 113.40 141 199 99.5% 230.187
500 125.27 163 212 99.5% 245.834

Table A6. Experiment results for Class 6.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 4.40 6 7 63.6% 0.593
50 8.87 11 15 62.5% 1.759
75 12.93 18 20 60.6% 3.331

100 17.25 25 26 63.4% 5.794
125 21.25 31 32 62.7% 8.411
150 25.60 38 38 62.3% 12.234
200 33.92 43 58 66.7% 21.919
250 42.58 56 71 68.9% 33.846
300 50.97 61 91 66.9% 51.150
350 59.10 67 110 62.1% 65.206
400 67.22 73 128 64.6% 82.934
450 75.30 77 148 63.8% 108.132
500 82.98 89 159 59.6% 137.537
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Table A7. Experiment results for Class 7.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 6.55 7 12 92.3% 0.965
50 13.15 15 24 96.0% 3.000
75 19.48 22 36 92.3% 6.186

100 25.85 30 47 97.9% 10.237
125 31.95 35 60 98.4% 15.692
150 38.40 45 70 100.0% 22.154
200 51.23 64 89 100.0% 40.758
250 64.28 80 112 100.0% 63.020
300 76.73 92 138 99.3% 97.007
350 89.17 111 156 99.4% 121.459
400 101.28 130 173 100.0% 186.162
450 113.40 140 200 99.5% 218.366
500 125.27 152 223 99.6% 248.294

Table A8. Experiment results for Class 8.

VM Size Lower Bound Used PMs Turn Off PMs Migration Efficiency Computation Times

25 4.40 6 7 63.6% 0.605
50 8.87 11 15 68.2% 1.753
75 12.93 18 20 66.7% 3.429

100 17.25 23 28 68.3% 5.916
125 21.25 30 33 61.1% 8.324
150 25.60 36 40 61.5% 12.313
200 33.92 50 51 63.8% 21.951
250 42.58 60 67 67.0% 35.059
300 50.97 65 87 62.6% 50.179
350 59.10 72 105 65.2% 70.651
400 67.22 79 122 64.9% 89.321
450 75.30 84 141 66.5% 111.878
500 82.98 90 158 62.0% 142.396
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