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Abstract: Distributed generation (DG) units are utilized to feed their closed loads in the autonomous
microgrid. While in the grid-connected microgrid, they are integrated to support the utility by their
required real and reactive powers. To achieve this goal, these integrated DGs must be controlled well.
In this paper, an optimal PQ control scheme is proposed to control and share a predefined injected
real and reactive powers of the inverter based DGs. The control problem is optimally designed and
investigated to search for the optimal controller parameters by minimizing the error between the
reference and calculated powers using particle swarm optimization (PSO). Microgrid containing
inverter-based DG, PLL, coupling inductance, LC filter, power and current controllers is implemented
on MATLAB. Two microgrid cases with different structure are studied and discussed. In both cases,
the microgrid performance is investigated under different disturbances such as three-phase fault and
step changes. The simulation results show that the proposed optimal control improves the microgrid
dynamic stability. Additionally, the considered microgrids are implemented on real time digital
simulator (RTDS). The experimental results verify the effectiveness and tracking capability of the
proposed controllers and show close agreement with the simulation results. Finally, the comparison
with the literature confirms the effectiveness of the proposed control scheme.

Keywords: distributed generation; dynamic stability; microgrid; and PQ Control

1. Introduction

With the fast-growing greenhouse gas emissions and other environmental issues, distributed
generations (DGs) are rapidly connected to the electricity network [1,2]. Connecting different distributed
energy resources (DER) with a group of loads is defined as a microgrid [3]. It acts as a single controllable
entity with respect to the grid where it can be connected or disconnected from the grid to operate in
both grid-connected and island modes respectively [3]. Different renewable sources and microgrid
objectives such as stability, reliability resource penetration, AC and DC analysis, sustainability analysis,
controlling voltage source converter (VSC) and DG integration are recently discussed extensively [4–8].
Integrating DGs with the grid can solve several typical problems of conventional AC network such as
energy security and cost saving [2]. Microgrid capability to inject power to the grid while maintaining
the system stability after getting disturbed is considered as one of the microgrid challenges [9,10].
Different control techniques such as active–reactive power control (PQ control), active power–voltage
control (PV control) and voltage–frequency control (VF control) are utilized to control the DG units and
achieve the required goals [11,12]. PQ scheme is used to control the exchanged real and reactive powers
between the DG and grid [11]. Vf control is employed to keep the inverter voltage at constant value
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and return the frequency to its nominal value after getting real power disturbance [12]. For integrating
inverter-based DG with the power system, several PQ control schemes such as hysteresis, dead-beat
(DB) controllers, proportional–integral (PI) controllers and proportional–resonant (PR) have been
proposed [13–19]. Hysteresis control is simple and has fast responses, but the output current contains
high ripples leading to poor current quality and finding some difficulties to design the output filter [13].
DB predictive control is widely used because it offers high performance for current-controlled DGs.
Nevertheless, it is quite complicated and sensitive to system parameters [14]. If the target is to
compensate multiple harmonics behind eliminate the steady-state error and regulate the sinusoidal
signals, PR control scheme in the stationary (α, β) reference frame is popular [15]. However, to maintain
good performance, the resonant frequency and the varying grid frequency should be identical [16].
PI controller has many advantages such as instantaneous control, better wave shaping and fixed
inverter switching frequency resulting in known harmonics [17–19]. PQ controller usually adopts
double loop controls [20]. Based on power target, the outer power loop produces the reference current
while the current inner loop plays the role of fine-tuning [20]. The current control is implemented in
the rotating (synchronous) dq reference frame because the synchronous frame controller can eliminate
steady state error and has fast transient response.

In the literature, several PQ control techniques have been presented to control the injected powers
of the DGs in the grid-connected microgrid [21–26]. In our previous work [21], a power controller
was implemented to calculate the dq reference currents using the dq output voltages and reference
real and reactive powers. Utilizing Newton–Raphson-based parameter estimation and feed forward
control approaches, a robust servomechanism voltage controller and a discrete-time sliding mode
current controller were used to control the DG power flow in the grid-connected mode [22]. For a
single-phase grid-connected fuel cell system, a second order generalized integrator to control the active
and reactive powers was presented [23]. Based on six control degrees, an individual-phase decoupled
PQ controller was anticipated for a three-phase VSC [24]. In grid-connected microgrid, utilizing
maximum power point tracking (MPPT), a PQ control method was proposed to control the power
of the solar photovoltaic and battery storage [25]. PQ control was used in the load-following mode
and PV control was utilized in maximum power point tracking mode to control a solar photovoltaic
in distribution systems [26]. Unfortunately, all the previous presented work suffers from the bad
performance especially under dynamic loads and generation variations since they are relying on deeply
empirical engineering rules for designing the multivariable parameters of the PQ controllers [26].
Designing an optimal PQ controller is essentially to overcome the aforementioned problems and to
solve the constrained optimization problem [26]. Recently, optimal control using swarm algorithms
and popular evolutionary has been effectively utilized in power systems and power converters [27–32].
Moreover, designing an optimal PQ controller has been reported in a few works [26,30]. In [26],
an optimal active and reactive power control was developed for a three-phase grid-connected inverter
in a microgrid by using an adaptive population-based extremal optimization algorithm (APEO). In the
grid-connected microgrid, a particle swarm optimization (PSO)-based PQ control technique under
variable loads conditions was proposed [30]. This important work has confirmed the importance
of PSO in the automatic tuning of PQ control parameters for optimized operation during abrupt
load changes. However, this work did not optimize the controller parameters of the two current
controllers in the designed control system. Therefore, the problem may not be considered as an
incomplete optimization process for designing PQ controllers [26]. Moreover, they did not consider
the optimization of the filter components which they have a great effect on the microgrid stability [3].
Additionally, the microgrid will be under more stress and the controller design needs to be more
accurate when we have a generation disturbance not a load disturbance as presented in [26].

In this paper, an efficient PI power controller is proposed to regulate the predefined injected real
and reactive powers to the grid. The control problem is optimally designed based on minimizing
the error between the calculated and the injected powers to get the optimal controller parameters.
Particle swarm optimization (PSO) is employed to design the controller parameters and LC filter
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components. Different microgrid structures are implemented and examined in MATLAB. Firstly,
the optimal proposed controller is designed to control the injected real and reactive powers of one
inverter-based DG. Secondly, the optimal proposed controller is designed for two different rated
inverter-based DG units to share their injected powers to the grid. Sever disturbances such as step
up/down changes of real and reactive injected powers, three-phase fault and losing DG unit are applied
to investigate the proposed controller effectiveness and to ensure the system stability after getting
disturbed. Additionally, to validate the usefulness of the proposed controller, the considered microgrid
is implemented on real time digital simulator (RTDS). To confirm the effectiveness of the proposed
optimal control scheme, it is compared with the exiting work in [21] through extensive simulation and
experiments under various disturbances. The results confirm the superiority of the proposed control
strategy in providing a fast, accurate and decoupled power control with a lower AC current distortion.

The major contributions of this work are described as follows:

(1) A new optimal PQ control scheme is proposed for inverter-based grid-connected microgrid to
improve the microgrid dynamic stability.

(2) The proposed scheme is compared with the exciting control scheme to validate the proposed
controller robustness. The superiority of the proposed control is confirmed using both MATLAB
simulation and RTDS experimental results for an inverter-based grid-connected microgrid.

(3) The proposed controller has been verified for a two inverter-based grid-connected microgrid.
(4) To the best of the authors’ knowledge, an optimal PQ control technique is firstly implemented

in real time digital simulator (RTDS) to control the injected real and reactive powers of the
inverter-based DGs in the grid-connected microgrid.

(5) The superiority of the proposed method is demonstrated by experimental results using RTDS.

2. System Description

Microgrid is defined as one or more DG units connected closely with loads through coupling
inductance and LC filter [3]. DGs such as PV generate DC power therefore; they usually utilize
an inverter to convert the DC power to AC. Microgrid operates in two different modes; island and
grid-connected modes. In the island or autonomous mode, maintaining the voltage and frequency of
the system and supporting the required active and reactive powers is the main task [27–31]. In the
grid-connected mode, the main target is to control the delivered DGs powers into the grid. In this
paper, to control a predefined real and reactive powers to the grid, two cases are considered. In the
first case, an inverter-based DG is delivering power to the grid through a coupling inductance and LC
filter as shown in Figure 1. While in the second case, two inverter-based DG units are sharing their
powers to the grid at the point of common coupling (PCC) through a coupling inductance and LC filter
as shown in Figure 2.
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Figure 1. Grid-connected microgrid (One distributed generation’s (DGs) case). Figure 1. Grid-connected microgrid (One distributed generation’s (DGs) case).
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Figure 2. Grid-connected microgrid (Two DGs case).

From Figures 1 and 2:

Cf, Lf and Rf are the capacitance, inductance and resistance of the LC filter,
Lc and Rc are the inductance and resistance of the coupling inductor,
Rd is the damping resistance,
iL is the coupling inductor current,
io is the inverter output current,
ic is the capacitor current,
VI is the inverter output voltage,
Vo is the PCC voltage,
Vg is the grid voltage.
Cf1, Lf1 and rf1 are the capacitance, inductance and resistance of the LC filter for DG1,
Cf2, Lf2 and rf2 are the capacitance, inductance and resistance of the LC filter for DG2,
iL1 and iL2 are the coupling inductor currents of DG1 and DG2 respectively,
ic1 and ic1 are the capacitor currents of DG1 and DG2 respectively,
VI1 and VI2 are the inverter output voltages of DG1 and DG2 respectively,
rd1 and rd2 are the damping resistances.

In both cases, it is worth mentioning that each DG inverter is assumed to be connected to a
constant DC power source, so there no need to regulate the DC-link voltage otherwise, a controller
should be introduced to regulate the DC-link voltage [13]. Meanwhile, our main objective in this paper
is to study the AC side dynamic performance of the inverter-based DG in the grid-connected mode.

3. Proposed Methodology

Depending on the grid demand, the DG inverter is controlled to inject specific amount of power.
An optimal PQ control scheme illustrated in Figure 3 is proposed adopting double loop controls to
improve the dynamic performance of the grid-connected microgrid. The proposed PI power controller
is firstly implemented to produce the reference current signal based on injected power. Secondly,
the current control loop considers several aspects such as providing injected three-phase balanced
currents, obtaining high power quality and overcoming the nonlinearities coming from the interaction
between inverter switching and external disturbances [21].
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and 2. Then the measured output voltage vo is converted to the dq components using the transformation
angle θ as given in Equation (1). Similarly, the dq components of the output current io can be obtained.
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ω = kPLL
P (voq − v∗oq) + kPLL

I

∫
(voq − v∗oq)dt (2)

θ =

∫
(ω−ωre f )dt + θ(0) (3)

where ω and ωref are the nominal and reference frequencies, voq and v*oq are the q components of
the inverter output and reference voltages vo and v*o, kP

PLL, kI
PLL are the PI controller parameters of

the PLL.
Secondly, the dq components of the output voltage and current are used to calculate the real and

reactive powers (Pcal and Qcal) as given in [3].

Pcal = vodiod + voqioq (4)

Qcal = vodioq − voqiod (5)
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where vod and voq are the dq components of the inverter output voltage vo, iod and ioq are the dq
components of the inverter output current io.
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Thirdly, by comparing the reference real and reactive powers (P* and Q*)and the calculated real
and reactive powers (Pcal and Qcal) respectively, the proposed PI power controller is deployed to
produce the dq components of the output reference currents (i*od and i*oq) as given in Equations (6)
and (7). The injected powers to the grid could track the reference power. Note that real and reactive
power can be controlled independently because of the decoupling of the reference current (6) and (7)
as shown in Figure 5.

i∗od = kpp(P∗ − Pcal) + kip

∫
(P∗ − Pcal)dt (6)

i∗oq = kpq(Q∗ −Qcal) + kiq

∫
(Q∗ −Qcal)dt (7)

where kpp, kip, kpq and kiq are the PI power controller parameters.
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The inverter is controlled to inject the coupling inductor current iL not the inverter output current
io as shown in Figures 1 and 2. Therefore, to obtain the coupling inductor reference current i

∑
L in the

dq frame, the dq components of the output reference currents i*o is added to the dq components of the
capacitor current ic as given in Equations (8) and (9) and shown in Figure 5.

iΣd = i∗od + icd = i∗od + (iLd − iod) (8)

iΣq = i∗oq + icq = i∗oq + (iLq − ioq) (9)

Then the fundamental reference currents i*Ld and i*Lq can be obtained using a low-pass filter [21].

i∗Ld =
ω2

c

s2 +
√

2sωc +ω2
c

iΣd (10)
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i∗Lq =
ω2

c

s2 +
√

2sωc +ω2
c

iΣq (11)

where ωc is the cut-off frequency of the low-pass filter.
Fourthly, the PI current controller shown in Figure 6 is used to obtain the dq components of the

reference voltage v*
l targeting zero steady state error and compensating both inductor non-idealities

and inverter switching nonlinearities [21].

v∗ld = vod −ωL f iLd + kd
P(i
∗

Ld − iLd) + kd
I

∫
(i∗Ld − iLd)dt (12)

v∗lq = voq +ωL f iLq + kq
P(i
∗

Lq − iLq) + kq
I

∫
(i∗Lq − iLq)dt (13)

where iLd, iLq are dq components of the coupling inductor current iL, i*Ld, i*Lq are dq components of the
reference controller current i*L, kP

d, kI
d, kP

q, kI
q are PI current controller parameters.
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Additionally, the relationship between the PCC output voltage vo and the inverter voltage vl are
given by Equations (14), (15), and (16) [32].

vla
vlb
vlc

 = R f


ila
ilb
ilc

+ L f
d
dt


ila
ilb
ilc

+


voa

vob
voc

 (14)

vld = vod + R f iod + L f
diod
dt
−ωL f ioq (15)

vlq = voq + R f ioq + L f
dioq

dt
+ωL f iod (16)

To reduce the inverter switching frequency ripple, a low-pass filter is used. Additionally, a damping
resistance is added to evade the possible resonance between this filter and the coupling inductance
shown in Figure 1 [21]. Their models are given as follows:

vla = iLaR f + L f
diLa

dt
+ vCa + iCaRd (17)

vba = −ioaRc − Lc
dioa

dt
+ vCa + iCaRd (18)
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dvCa
dt

=
1

C f
(iLa − ioa) (19)

where vLa, vLb, vLc are inverter output voltages.

4. Optimal Controller Design

Based on time domain simulation, the control problem is designed and formulated as an
optimization problem where PSO is employed to minimize the proposed objective function J aiming to
obtain the optimal controller and filter parameters [3].

J =
∫ t=tsim

t=0
(Pcal − P∗)2.t dt (20)

where t is added to ensure minimum settling time, tsim the simulation time, and Pcal and P* are the
calculated and reference real power of the inverter-based DG respectively.

The problem constraints are the controller and filter parameters K= [kpp kipkpqkiqkp
d ki

dkp
qki

qLfCf,
Rd] T bounded as follows:

Kmin
≤ K ≤ Kmax (21)

where kpp kipkpq and kiq are the PI controller parameters of the proposed power controller while kp
d ki

dkp
q

and ki
q are the PI controller parameters of the current controller. Lfa and Cf are the filter inductance

and capacitance respectively. Rd is the damping resistance.
In 1995, PSO is a population based stochastic optimization method developed by Eberhart and

Kennedy inspired by social behavior of bird flocking or fish schooling [33]. It is worth mentioning that
PSO is used as an efficient tool for optimization that gives a balance between local and global search
techniques. PSO advantages—like computational efficiency, simplicity, and robustness—will enhance
the microgrid transient performance [3]. Using PSO, the best solution (candidate) of the population
could be obtained by starting random particles selection and updating the generations inside this
population. Ensuring the optimal solution convergence, the particles are moving in the search space
trying to follow the optimum particles. In the minimization problem, at a given position, the highest
fitness corresponds to the lowest value of the objective function at that position. At iteration (n + 1),
the new position of each particle is obtained by Equation (22) as follows:

ki
n+1 = ki

n + vi
n+1 (22)

where ki
n+1 is the position of particle i at iteration n + 1; kin is the position of particle i at iteration n;

and vi
n+1 is the corresponding velocity vector.

At each time step, the velocity of each particle is modified depending on both current velocity
and current distance from the personal and global best positions as follows:

vi
n+1 = wvi

n + c1r1pbest − ki
n + c2r2(gbest − ki

n) (23)

where w is the inertia weight; vi
n is the velocity of particle i at iteration n; r1 and r2 are random numbers

between 0 and 1; pbest is the best position found by particle i; gbest is the best position in the swarm at
time n; and c1 and c2 are the “trust” parameters. Figure 7 shows the proposed PSO computational flow
chart. The PSO steps are summarized in [7].
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5. Simulation Results and Discussion

In this work, to verify the effectiveness of the PQ control in the grid-connected microgrid, two cases
have been simulated. Firstly, 5 kVA inverter-based DG is controlled to deliver a predefined real and
reactive powers to the grid. Secondly, two different rated inverter-based DG units (5 kVA and 10 kVA)
are sharing their injected controlled powers with the grid. Assuming an ideal source from the DG
side, the DC bus dynamics is neglected. With the realization of high switching frequencies (4–10 kHz),
the switching process of the inverter may also be neglected [14]. A simulation model for the proposed
microgrid cases is built in a MATLAB based on the control strategy. The proportional gain kp and
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integral gain ki of the power and current controllers have been optimally tuned using PSO. Using the
time domain simulation, the microgrid dynamic stability has been investigated and the proposed
controller effectiveness has been evaluated under the following different disturbances:

1. Step change in the injected real power.
2. Step change in the injected reactive power.
3. Simultaneous step change in both injected real and reactive powers.
4. Three-phase fault at the PCC.

The optimal parameters for both cases are given respectively in Tables 1 and 2.

Table 1. Optimal parameters for one DG case.

PI Power Controller Parameters

kpp(Amp/ Watt) kip(Amp/ Joule) kpq(Amp/ Watt) kiq(Amp/ Joule)
0.000737 5.03138 0.000737 5.03138

PI Current Controller Parameters

ki
d(Volt/Current. Sec) kp

q
(Volt/ Amp) ki

q(Volt/Current. Sec) kp
d

(Volt/ Amp)
649.54 8.87277 649.54 8.87277

Filter Parameters

Cf (µF) Lf (mH) Rd (Ω)
10.4 2.176 10.6539

Table 2. Optimal parameters for two DGs case.

PI Power Controller Parameters

kpp(Amp/ Watt) kip(Amp/ Joule) kpq(Amp/ Watt) kiq(Amp/ Joule)
DG1 0.0009 5.0 0.0009 5.0
DG2 0.0008542 5.97056 0. 0008542 5.97056

PI Current Controller Parameters

ki
d (Volt/Current.

Sec)
kp

q
(Volt/ Amp)

ki
q(Volt/Current.

Sec) kp
d

(Volt/ Amp)

DG1 606.375 10 606.375 10
DG2 632.285 5.1117 632.285 5.1117

Filter Parameters

Cf(µF) Lf(mH) Rd(Ω)
11.0 5 10.0

5.1. One Inverter-Based DG Case

The proposed controller has been tested when a 5 kVA inverter-based DG connected to the grid.
Firstly, the reference real power has been stepped down from 5 kW to 3 kW at t = 0.1 sec. Figure 8
shows the calculated and reference real and reactive powers for this disturbance. Both injected real
and reactive powers are mostly following the reference powers. While Figure 9 depicts the calculated
and reference real and reactive powers when the injected reactive power has been stepped down from
5 kVAR to 3 kVAR without any change in the injected real power. Both injected real and reactive powers
are almost tracking the reference powers. It could be observed from the results that the controller has
quick responses and track the references effectively. Additionally, the results show a reasonable steady
state response at the beginning and even after clearing disturbance. (show as Tables 1 and 2).
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Secondly, Figure 10 shows the microgrid dynamic response with step changes in real and reactive
powers. Both active and reactive powers have been simultaneously stepped down from 5 kW to 3 kW
and from 5 kVAR to 3 kVAR respectively at t = 0.1 sec. The results show how the proposed controller is
working perfectly making the calculated powers track the reference powers perfectly.
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power response at real and reactive powers step down changes.

Thirdly for further testing of the controller robustness, a three-phase fault disturbance has
been applied at the PCC at t = 0.1 sec. Fault has been cleared at t = 0.4 sec. Figure 11 shows the
dynamic responses of the three-phase output currents and their dq components where the system has
been recovered from the fault. The proposed controller shows a very good transient performance.
The calculated real and reactive powers are following the reference real and reactive powers in a good
way under this fault disturbance.

Finally, to confirm the superiority of the proposed controller, a comparison between the proposed
controller and the existing control scheme (power calculator presented in [21]) has been carried out.
As it was mentioned before, the reference currents were calculated using the reference powers and
measured output voltage in [21] while in the proposed method, an optimal power PI controller has
been implemented to obtain the reference currents where the calculated powers were compared with
the reference powers. Figures 12 and 13 show the dynamic response of the dq components of the
inverter currents, and real and reactive powers when the injected real power stepped down from
5 kW to 3 kW at t = 0.1 sec. It can be shown from the results that the proposed controller shows
better performance in terms of tracking the reference powers and steady state response. Figures 14
and 15 illustrate the dynamic response of the real and reactive powers for stepping up the injected
reactive power from 3 kVAR to 5 kVAR and stepping down the injected real power from 5 kW to
3 kW at t = 0.1 sec. The results illustrate how the calculated powers follow perfectly the reference
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powers without any delay in the proposed controller while in the existing control scheme [21], there is
a small delay when the calculated powers try to track the reference powers. Figures 16 and 17 depict
the dynamic response of the dq components of the inverter currents, real and reactive powers for
simultaneous step changes in both real and reactive powers from 3 kW to 5 kW and from 3 kVAR to
5 kVAR respectively at t = 0.1 sec. The system response due to a three-phase fault applied at the PCC is
depicted in Figure 18. The results illustrate the superiority of the proposed controller. The response
of the microgrid equipped with the proposed controller keep better and fast reference tracking in a
good way.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 27 
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at step down change in real power.



Sustainability 2019, 11, 5828 15 of 27

Sustainability 2019, 11, x FOR PEER REVIEW 14 of 27 

 
(b) 

Figure 12. (a) Active power response at step down change in real power. (b) Reactive power response 

at step down change in real power. 

 
(a) 

 
(b) 

Figure 13. (a) D-axis current responses at step down change in real power. (b) Q-axis current 

responses at step down change in real power. 

 
(a) 

Sustainability 2019, 11, x FOR PEER REVIEW 15 of 27 

 
(b) 

Figure 14. (a) Active power response at step up change in reactive power. (b) Reactive power response 

at step up change in reactive power. 

 
(a) 

 
(b) 

Figure 15. (a) Active power response at step down change in reactive power. (b) Reactive power 

response at step down change in reactive power. 

 
(a) 

Figure 14. (a) Active power response at step up change in reactive power. (b) Reactive power response
at step up change in reactive power.

Sustainability 2019, 11, x FOR PEER REVIEW 15 of 27 

 
(b) 

Figure 14. (a) Active power response at step up change in reactive power. (b) Reactive power response 

at step up change in reactive power. 

 
(a) 

 
(b) 

Figure 15. (a) Active power response at step down change in reactive power. (b) Reactive power 

response at step down change in reactive power. 

 
(a) 

Figure 15. (a) Active power response at step down change in reactive power. (b) Reactive power
response at step down change in reactive power.



Sustainability 2019, 11, 5828 16 of 27

Sustainability 2019, 11, x FOR PEER REVIEW 15 of 27 

 
(b) 

Figure 14. (a) Active power response at step up change in reactive power. (b) Reactive power response 

at step up change in reactive power. 

 
(a) 

 
(b) 

Figure 15. (a) Active power response at step down change in reactive power. (b) Reactive power 

response at step down change in reactive power. 

 
(a) 

Sustainability 2019, 11, x FOR PEER REVIEW 16 of 27 

 
(b) 

Figure 16. (a) Active power response with simultaneous step up change in real and reactive powers. 
(b) Reactive power response with simultaneous step up change in real and reactive powers. 

 
(a) 

 
(b) 

Figure 17. (a) D-axis current responses with simultaneous step change. (b) Q-axis current responses 
with simultaneous step change. 

 
(a) 

Figure 16. (a) Active power response with simultaneous step up change in real and reactive powers.
(b) Reactive power response with simultaneous step up change in real and reactive powers.

Sustainability 2019, 11, x FOR PEER REVIEW 16 of 27 

 
(b) 

Figure 16. (a) Active power response with simultaneous step up change in real and reactive powers. 

(b) Reactive power response with simultaneous step up change in real and reactive powers. 

 
(a) 

 
(b) 

Figure 17. (a) D-axis current responses with simultaneous step change. (b) Q-axis current responses 

with simultaneous step change. 

 
(a) 
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5.2. Two DGs Cases

In the second case, two different rated (5 KVA and 10 KVA) inverter-based DG units are controlled
to bring their real and reactive powers with the grid as shown in Figure 2. Both units are tied together
to share the injected powers to the grid. The proposed controller has been examined for different
disturbances. Figure 19 shows the dynamic response of the calculated and reference real powers with
different step changes for the two different DGs at different times. Firstly, the injected real powers of
DG1 and DG2 have been stepped up from 7.5 kW to 10 kW at t = 0.1 sec and from 2.5 kW to 5 kW at
t = 0.3 sec respectively. Figure 20 illustrates the dynamic response of the dq components of the inverter
output currents related to this disturbance. Both injected real and reactive powers are mostly following
the reference powers. It could be observed from the results that the controller has quick responses
and track the references effectively. Secondly, Figure 21 depicts the dynamic response of the real and
reactive powers with simultaneous step change in the injected real powers of DG1 and DG2. For DG1,
the real power has been stepped down from 10 kW to 6 kW at t=0.1 sec then it has been stepped up
from 6 kW to 10 kW at t = 0.4 sec. While for DG2, the real power has been stepped down from 5 kW to
2 kW at t = 0.3 sec then it has been stepped up from2 kW to 5 kW at t = 0.5 sec. With the proposed
controllers, it is obvious that the response overshoot is not significant. The response of the microgrid
equipped with the proposed controller keep better and fast reference tracking in a good way.

A severe disturbance has been applied to check the controller capability for such disturbance.
At t = 0.1 sec, the microgrid lost DG1 and restore it again at t = 0.4 sec. Meanwhile, the real power of
DG2 has been stepped down from 5 kW to 3 kW between t = 0.3 sec and t = 0.5 sec. Figure 22 shows
the real and reactive power responses of DG1 and DG2 at this disturbance. While, Figure 23 shows the
responses of the dq components of the inductor current of DG1 and DG2 at this disturbance. It can
be concluded from this disturbance that the proposed controller keeps the microgrid operation in a
better shape. Additionally, the proposed controller has a fast response tracking the reference and in a
good way.
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Figure 23. (a) D-axis current responses when the microgrid lost DG1 for 0.3 sec (b) Q-axis current
responses when the microgrid lost DG1 for 0.3 sec.

6. Real-Time Implementation

The considered inverter-based DG with its proposed controller has been implemented on real-time
digital simulator (RTDS) as shown in Figure 24 [34–36]. For verifying the theoretical simulation,
the proposed microgrid is implemented and simulated in RTDS. RTDS works in real-time to provide
solutions to power system equations quickly enough to accurately represent conditions in the real
world [26]. RTDS offers superior accuracy over analogue systems. It allows for comprehensive product
and/or configuration tests. RTDS provides a variety of transient study possibilities. With detailed
models of power system components, a model resembles closely the real system setup in the RTDS.
As RTDS works in continuous sustained real-time, the simulation is performed fast. With standard
library blocks, using their physical representation, components such as grid, LC filter, inverter bridge
and coupling inductor are modeled. The RTDS model of the grid-connected microgrid includes the
models of the inverter, LC filter, the coupling impedance and the grid is given in Figure 24. The firing
pulse generator and triangle wave generator blocks used for generating the firing pulses of the inverter
gates are also included in Figure 24.

Additionally, the RTDS models of the power and current controllers are illustrated in Figure 25.
The optimal controller parameters are engaged with the implemented RTDS model. Firstly,
with stepping up the injected real and reactive powers from 3 kW to 5 kW and from 3 kVAR to
5 kVAR respectively, the dynamic response of the dq currents components, real and reactive powers are
shown in Figures 26–29. Secondly, Figures 30 and 31 show the dynamic response of the real and reactive
powers when a single-phase fault occurs at PCC. Finally, real and reactive powers have been stepped
for the proposed system and for the work done previously in [21]. A comparison between the new and
old controllers has been presented to prove the superiority of the proposed one. Figures 32 and 33
depict the dynamic response of the real and reactive powers for the previous and proposed controllers.
As shown in the RTDS results, during the step changes, the controller has a reasonable capability to
track the reference signal without significant overshoots. The proposed controller effectiveness under
these disturbances is confirmed in RTDS. The given results illustrate the superiority of the proposed
controller. The response of the microgrid equipped with the proposed controller keep better reference
tracking in a good way. The results show the controller effectiveness under different disturbances.
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7. Conclusion

In this paper, an optimal PQ control technique for inverter-based DG in the grid-connected
microgrid has been presented. A power controller has been optimally designed to control a predefined
injected real and reactive powers to the utility. Moreover, the current controller parameters and
filter components have been optimized. To improve the microgrid dynamic response, the optimized
controller parameters have been adjusted. For microgrid stability enhancement, with the proposed
objective function, PSO has been employed for searching the optimal settings of the optimized controller
and filter parameters. Two different cases in terms of the microgrid configuration have been considered
to inject and share a predefined set real and reactive powers respectively. In both cases, the microgrid
performance has been investigated for severe disturbances to clarify how the proposed optimal control
improved the microgrid dynamic stability. The proposed controller response has been compared
with that given in the literature. The time domain simulations confirm the proposed approach
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