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Abstract: This study analyzed and compared landslide susceptibility models using decision tree (DT),
random forest (RF), and rotation forest (RoF) algorithms at Woomyeon Mountain, South Korea. Out of
a total of 145 landslide locations, 102 locations (70%) were used for model training, and the remaining
43 locations (30%) were used for validation. Fourteen landslide conditioning factors were identified,
and the contributions of each factor were evaluated using the RRelief-F algorithm with a 10-fold
cross-validation approach. Three factors, timber diameter, age, and density had no contribution to
landslide occurrence. Landslide susceptibility maps (LSMs) were produced using DT, RF, and RoF
models with the 11 remaining landslide conditioning factors: altitude, slope, aspect, profile curvature,
plan curvature, topographic position index, elevation-relief ratio, slope length and slope steepness,
topographic wetness index, stream power index, and timber type. The performances of the LSMs
were assessed and compared based on sensitivity, specificity, precision, accuracy, kappa index, and
receiver operating characteristic curves. The results showed that the ensemble learning methods
outperformed the single classifier (DT) and that the RoF model had the highest prediction capability
compared to the DT and RF models. The results of this study may be helpful in managing areas
vulnerable to landslides and establishing mitigation strategies.
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1. Introduction

Landslide susceptibility is the likelihood of a landslide occurring in a certain area given the local
terrain attributes [1]. It is usually assumed that landslides will occur in the future if the conditions are
the same as those that produced them in the past [2]. A landslide susceptibility map (LSM) portraying
the spatial distribution of landslide susceptibility can be a useful tool for decision-makers in developing
effective hazard mitigation and land-use planning. Therefore, the most important prerequisite is to
produce LSMs containing reliable and accurate information [3].

In recent decades, a number of different techniques have been developed and applied to produce
LSMs, including heuristic, deterministic (engineering approach), and probabilistic (non-deterministic
or data-driven) methods [4,5], among which probabilistic methods are generally the most widely
used [5–8]. Probabilistic methods, also as known as statistical methods, are based on statistical
correlations between historical records of landslide occurrences and a set of influencing parameters.
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Among the probabilistic methods, machine learning methods have become popular in recent
years. Machine learning is a branch of artificial intelligence that can effectively overcome the limitations
of data-dependent bivariate and multivariate statistical methods [9]. Machine learning offers several
advantages; for example, there is no need for prior elimination of outliers, data transformation, or
statistical assumptions, and interactions between landslides and landslide conditioning factors are
automatically identified. The biggest advantage is that the prediction accuracy typically exceeds that
of conventional methods [10–12].

Due to their robustness, machine learning methods, such as artificial neural network [13,14], fuzzy
logic [15,16], neuro-fuzzy [17], support vector machine [18,19], random forest (RF) [3,20], and naïve
Bayes tree [21] methods, have been popularly applied in landslide susceptibility analyses. Since the
early 1990s, ensemble classifiers (learning models) have received substantial attention in machine
learning due to their ability to improve prediction accuracy and deal with complex high-dimensional
data [22]. Ensemble classifiers can be established through the combination of two or more classifiers or
ensemble frameworks such as staking, Bagging, AdaBoost, random subspace, MultiBoost, RF, and
rotation forest (RoF) [23].

Among these, RoF is a relatively new ensemble technique introduced in 2006. Rodriguez et al. [24]
compared model performance between ensemble methods such as Bagging, AdaBoost, RF, and RoF
using 33 data sets from the UCI Machine Learning Repository. Their experimental results showed that
RoF outperformed the other ensemble methods in accuracy and diversity. Since then, RoF has been
applied in various fields, including disease diagnosis [25], customer churn prediction [26], bankruptcy
prediction [27], pattern recognition [28], and land-use and land-cover classification [29,30]. In the above
studies, the RoF model showed outstanding performance and strong generalization for successful
classification. Nevertheless, few, if any, studies have applied RoF in landslide susceptibility mapping
and no research has compared the results between the decision tree (DT), RF, and RoF methods.

Therefore, this study aimed to use tree-based classifiers, such as DT, RF, and RoF, to build landslide
models and produce LSMs based on these landslide models. In addition, the performances of three
LSMs were evaluated and compared based on receiver operating characteristic (ROC) curves and
statistical indices. Throughout this process, the ultimate aim of this study was to assess the accuracy of
the RoF model compared to other methods and determine whether the RoF model could contribute to
creating accurate LSMs.

2. Study Area

The study area was Woomyeon Mountain, located in the Seocho district of Seoul, South Korea.
It covers an area of ~6.68 km2, between longitudes 126◦59′02′′ E and 127◦01′41′′ E, and latitudes
37◦27′00′′ N and 37◦28′55′′ N (Figure 1). The altitude ranges from 20 m to 310 m above sea level, and
the slope angle near the top of the mountain is approximately 30–35◦. The entire area surrounding
Woomyeon Mountain is a zone of distributed temperate deciduous forests. The dominant species are
oak trees, including Mongolian, Oriental, sawtooth, and other oaks.

Geologically, biotite-banded gneiss is distributed in the bedrock, and the terrain overlying the
gneiss is often vulnerable to landslides due to severe weathering and the presence of faults (Figure A1).
In addition, granite gneiss with relatively poor compositional differentiation is excavated en masse, and
part of an embedded dike is present. The gneiss outcrop is poor due to severe weathering throughout,
and its foliation structure is irregular due to multiple flexures [31,32].

The soil profile can be divided into three main layers: the colluvium layer, transition zone layer,
and clay layer. The colluvium layer is generally composed of loose material, i.e., gravel and silty sand,
which extends to a maximum depth of 3.0 m from the surface. The transition zone, located beneath the
colluvium layer (i.e., between the colluvium and bedrock) and having a thickness of 0.2 m to 0.5 m, is
mainly composed of a clay layer. It is anticipated that landslides could be generated in this layer. The
clay layer overlies a subsoil of stiff weathered bedrock [31,33].
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In this study, 12 orthorectified aerial photographs were obtained from before (early summer of 
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Figure 1. Location of the study area and landslide dataset.

At the end of July 2011, torrential rains amounting to 40% of the annual precipitation in the area
occurred in central South Korea over four days (26–29 July), with >50 mm of hourly precipitation
recorded. In the study area, the 230–267 mm of rainfall that occurred ~15 h prior to July 27, and the
subsequent heavy rainfall (86–113 mm/h) that lasted for approximately 1 h, led to landslides and debris
flows. This resulted in serious damages to human life and property, with 68 casualties (18 dead and
50 injured), 30 buried homes, and 116 inundated homes [31].

3. Methodology

This study was performed using the following main steps: (1) construction of the spatial database
including landslides and landslide conditioning factors; (2) preparation of the training and validation
datasets for landslide susceptibility modeling; (3) feature selection using the Relief-F algorithm;
(4) landslide susceptibility mapping using DT, RF, and RoF models; and (5) validation and performance
comparison among LSMs. Production of a dataset with a 5-m spatial resolution and mapping of the
results were implemented using ArcGIS ver. 10.2 (ESRI, Inc., Redlands, CA, USA). In addition, the
Relief-F algorithm and the DT, RF, and RoF models were implemented using R ver. 3.5.2 (Foundation
for Statistical Computing, Vienna, Austria).

3.1. Construction of the Spatial Database

3.1.1. Landslide Inventory Map

The creation of databases for areas prone to landslides is key in impacting the accuracy of landslide
susceptibility analyses. In this study, aerial photographs obtained from the National Geographic
Information Institute were used to create a landslide inventory map. These orthorectified images have
a spatial resolution of 0.5 cm, and were produced by taking images every two years over the entirety of
South Korea, dividing the country into two regions.

In this study, 12 orthorectified aerial photographs were obtained from before (early summer of
2011) and after (summer of 2012) the occurrence of the landslides. After the occurrence, locations were
confirmed by visual comparison, and a landslide inventory map was created by comparing the images
with field surveys and national reports. The map includes a total of 145 landslide occurrence locations.
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3.1.2. Landslide Conditioning Factors

In general, although landslides are caused by interactions between various factors, there is no
consensus on which factors affect the occurrence of landslides. Here, the landslide conditioning
factors used in previous studies were examined, with 14 factors ultimately selected by considering the
availability of data for the study area. These factors were constructed using thematic maps produced
by various national institutions (Figure 2). Available pedology (scale 1:25,000) and geology (1:50,000)
maps were not used because they were only small–scale thematic maps.

Sustainability 2019, 11, x FOR PEER REVIEW 20 of 20 

3.1.2. Landslide Conditioning Factors 

In general, although landslides are caused by interactions between various factors, there is no 
consensus on which factors affect the occurrence of landslides. Here, the landslide conditioning 
factors used in previous studies were examined, with 14 factors ultimately selected by considering 
the availability of data for the study area. These factors were constructed using thematic maps 
produced by various national institutions (Figure 2). Available pedology (scale 1:25,000) and geology 
(1:50,000) maps were not used because they were only small–scale thematic maps. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 2. Cont.



Sustainability 2019, 11, 5659 5 of 20

Sustainability 2019, 11, x FOR PEER REVIEW 20 of 20 

 
(g) (h) 

 
(i) (j) 

 
(k) (l) 

 
(m) (n) 

Figure 2. Landslide conditioning factors used in this study: (a) altitude, (b) slope, (c) aspect, (d) profile 
curvature, (e) plan curvature, (f) topographic position index, (g) elevation-relief ratio, (h) slope length 

Figure 2. Landslide conditioning factors used in this study: (a) altitude, (b) slope, (c) aspect, (d) profile
curvature, (e) plan curvature, (f) topographic position index, (g) elevation-relief ratio, (h) slope length
and slope steepness, (i) topographic wetness index, (j) stream power index, (k) timber type, (l) timber
diameter, (m) timber age, and (n) timber density.
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A digital elevation model (DEM) with a spatial resolution of 5 m was constructed using topographic
maps (1:5000) collected from the Korean National Geographic Information Institute. Based on the DEM,
seven factors: altitude, slope, aspect, profile curvature, plan curvature, topographic position index
(TPI), and elevation-relief ratio (ERR), were produced. Because the study area contains mountainous
terrain, these geomorphic factors are extremely important in considering landslide occurrence, since
the geomorphology of a slope affects its instability, contributing to the occurrence of slope failures.
Altitude, slope, and aspect are basic geomorphic factors, and have been used in previous landslide
studies. Curvature enables the determination of the likelihood of deposition; here, the curvature in the
maximum slope direction (profile curvature) and the curvature in the direction perpendicular to the
maximum slope direction (plan curvature) were used. The TPI represents the erosion/accumulation
capacity of a terrain by calculating the difference between the elevation value of a certain cell and the
average elevation value of adjacent cells. The TPI is zero on plain slope surfaces, negative in valleys
and canyon bottoms, and positive in ridgetops and hilltops [34]. The ERR, which was proposed by Pike
and Wilson (1971) [35], is closely related to morphometric erosional evolution. It is calculated using
Equation (1), and reflects the stage of geomorphic development, as well as lithological differences:

ERR =
z − zmin

zmax − zmin
(1)

where z, zmin, and zmax represent the average, minimum, and maximum altitude, respectively.
Hydrological conditions also affect the occurrence of landslides. Thus, three hydrogeological

factors, slope length and steepness (LS), topographic wetness index (TWI), and stream power index
(SPI), were calculated using the DEM. LS, one of the six factors of the revised universal soil loss
equation (RUSLE) that describes soil erosion, represents the combined effects of slope length and
steepness, and affects soil particle transport. Thus, an increase in this index indicates a higher
possibility of landslide occurrence. The TWI is related to the saturation of soil moisture in local areas of
topographic convergence. As saturation increases, soil and rock strengths decrease. The SPI measures
the erosion power of a stream, with an increase indicating easier erosion and a higher probability of
slope failure [3,36,37]. These factors are calculated as follows:

LS =
( As

22.13

)0.6( sinβ
0.0896

)1.3

(2)

TWI = ln
(
α

tanβ

)
(3)

SPI = As × tanβ (4)

where As is the specific catchment area, β is the local slope gradient, and α is the local upslope area.
In this study, timber type, diameter, age, and density were extracted from the 5000-scale forest-type

map produced by the Korea Forest Research Institute, and used as landslide conditioning factors. The
timber types classified the forest areas into coniferous, deciduous, and mixed forests according to
tree species, with 12 detailed species identified in the study area. Tree diameter was classified into
four grades by measuring tree height at ~1.2 m from the ground. Timber age classified trees into nine
grades in 10-year increments. Timber density represents the area within a certain forest area occupied
by the tree crown, and thus represents tree growth.

3.2. Preparation of Training and Validation Datasets

Training and validation datasets were created using landslide areas, non-landslide areas, and
landslide conditioning factors corresponding to these areas to create an LSM using machine learning.

The areas in the landslide inventory map created through the previous process were randomly
divided into two groups comprising 70% (102 areas) and 30% (43 areas) of the total. To analyze
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landslide susceptibility using machine learning, certain information regarding non-landslide areas is
also required, which was extracted using combined systematic and random sampling. In particular,
non-landslide areas were extracted at 20-px (100-m) intervals, and extracted areas were randomly
selected to have the same numbers as the landslide areas.

The frequency ratio (FR) was used to extract the values of the landslide conditioning factors
corresponding to the extracted landslide and non-landslide areas. The FR analyzes the correlation
between a landslide area and a landslide conditioning factor, with an increase in its value indicating a
larger impact on landslide occurrence. In this study, FR values for the landslide conditioning factors
were calculated and normalized, and then new classes were assigned (Table 1).

Table 1. Normalized classes for landslide conditioning factors assigned using the frequency ratio.

Factor Class Number of Pixels
in Domain

Number of
Landslide Pixels

Frequency
Ratio

Normalized
Class

Altitude 20.00–65.56 49,073 8 0.427 1
65.56–95.17 68,099 18 0.692 2

95.17–125.92 54,415 20 0.962 3
125.92–158.95 40,131 23 1.5 6
158.95–195.40 26,637 12 1.179 4
195.40–236.40 17,935 16 2.336 7

>236.40 10,757 5 1.217 5

Slope 0.0 –7.10 12,845 1 0.204 1
7.10–13.38 44,632 6 0.352 2

13.38–18.29 68,462 26 0.994 4
18.29–22.94 64,308 26 1.059 5
22.94–27.85 46,338 28 1.582 7
27.85–34.13 24,538 14 1.494 6

>34.13 5924 1 0.442 3

Aspect Flat 2124 0 0 1
North 33,682 12 0.933 5

Northeast 32,212 7 0.569 2
East 36,219 8 0.578 3

Southeast 34,795 17 1.279 7
South 37,218 16 1.126 6

Southwest 35,630 19 1.396 8
West 25,446 14 1.44 9

Northwest 29,721 9 0.793 4

Profile Concave 131,376 62 1.236 3
curvature Flat 3774 1 0.694 1

Convex 131,897 39 0.774 2

Plan curvature Concave 124,461 57 1.199 3
Flat 6489 1 0.403 1

Convex 136,097 44 0.846 2

Terrain position −8.87—1.82 7749 6 2.027 7
index −1.82—0.78 35,071 18 1.344 6

−0.78—0.14 65,552 31 1.238 5
−0.14–0.50 80,859 31 1.004 4
0.50–1.30 47,450 10 0.552 2
1.30–2.50 24,331 6 0.646 3

>2.50 6035 0 0 1
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Table 1. Cont.

Factor Class Number of Pixels
in Domain

Number of
Landslide Pixels

Frequency
Ratio

Normalized
Class

Elevation-relief 0.01–0.33 9143 0 0 1
ratio 0.33–0.42 26,087 1 0.1 2

0.42–0.48 52,853 25 1.238 5
0.48–0.52 72,581 30 1.082 4
0.52–0.58 60,144 33 1.437 7

Elevation-relief 0.58–0.67 32,250 6 0.487 3
ratio >0.67 13,989 7 1.31 6

Slope length and 0.00–4.83 63,353 10 0.413 2
slope steepness 4.83–12.55 106,388 37 0.911 3

12.55–21.24 69,171 36 1.363 4
21.24–34.75 22,367 15 1.756 5
34.75–56.96 4185 3 1.877 6
56.96–96.64 1376 1 1.903 7

>93.64 207 0 0 1

Topographic −7.57—4.79 24,064 3 0.326 1
wetness index −4.79—1.25 4072 1 0.643 3

−1.25–2.01 49,146 14 0.746 4
2.01–3.35 92,435 42 1.19 6
3.35–4.79 70,461 33 1.226 7
4.79–7.28 21,767 8 0.962 5

>7.28 5102 1 0.513 2

Stream power −13.82—11.17 1402 1 1.867 7
index −11.17—8.61 7285 0 0 1

−8.61—4.47 21,359 3 0.368 2
−4.47—0.15 46,837 7 0.391 3
−0.15–1.27 91,085 41 1.178 5
1.27–3.12 87,844 45 1.341 6

>3.12 11,235 5 1.165 4

Timber type Pine 858 0 0 3
Nut pine 9578 2 0.547 5

Larch 5577 2 0.939 7
Pitch pine 1724 0 0 2

Sawtooth oak 46,898 14 0.782 6
Mongolian oak 4739 0 0 1

Oriental oak 2244 1 1.167 10
Other oak 104,176 41 1.03 8
Popular 5643 5 2.32 12

False acasia 63,896 28 1.147 9
Other broadleaf 15,027 8 1.394 11

Mixed forest 6687 1 0.392 4

Timber diameter 6–18cm 8677 2 0.603 1
18–30cm 258,370 100 1.013 2

Timber age 21–30ages 6203 1 0.422 2
31–40ages 251,913 100 1.039 3
41–50ages 8931 1 0.293 1

Timber density 51–70% 11,930 3 0.658 1
>70% 255,117 99 1.016 2

Finally, the values newly assigned to each landslide conditioning factor were applied to the 204
landslide and 86 non-landslide point data to construct training and validation datasets. The training
dataset was used to create models that used DTs, RFs, and RoFs for future analysis, while the validation
dataset was used to verify the created models.
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3.3. Relief-F Feature Selection Method

Each landslide conditioning factor contributes differently to landslide occurrence, and thus the
choice of factors affects the prediction accuracy of the model. Here, before training the model, the
relevance of the landslide conditioning factors used in this study was evaluated using the Regressional
Relief-F (RRelief-F) algorithm, a feature selection method.

The core of the original Relief algorithm [38] evaluates the quality of an attribute based on how
well it distinguishes nearby instances. Therefore, a good attribute has the same value for instances
of the same class, and distinguishes between instances of different classes [39,40]. To achieve this,
the Relief algorithm calculates weights for all attributes through iterative estimation of two nearest
neighbors (the nearest hit and miss) when randomly selected instances are provided [40].

The Relief algorithm has been extended through many studies, such as the Relief-F algorithm [39].
Here, the RRelief-F algorithm introduced by Robnik-Sikonja and Kononenko [40], which is a Relief-F
algorithm suitable for regression problems where the predicted value (class) is continuous, was used.

3.4. Landslide Susceptibility Modeling

3.4.1. Decision Trees

A DT is a basic tree-based approach for developing a model that classifies or predicts the values
of dependent variables by learning various decision rules inferred from all available data. DT analysis
methods include various algorithms, such as the chi-square automatic interaction detector decision
tree (CHAID) [41], classification and regression tree (CART) [42], ID3 [43], C4.5 [44], and C5.0 [44]
algorithms. In this study, the CART algorithm was used. Because the other ensemble methods used in
this study construct individual DTs using a slightly modified CART algorithm, the CART algorithm is
suitable for comparing the results.

As its name suggests, CART creates classification and regression trees based on a binary partitioning
algorithm to predict categorical dependent variables (classification) and continuous dependent variables
(regression). The learning process used by CART repeatedly and recursively divides all independent
variables into subsets using an appropriate splitting criterion. A key point is that it maximizes
homogeneity within the subsets and heterogeneity between the subsets.

Among various splitting criteria, CART generally uses the Gini index, which is calculated as
follows [21,42]:

Gini (p1, p2, · · · , pn) =
∑
i, j

p j(1− pi) = 1−
∑

j

p j
2 (5)

where pi and p j are the probabilities of landslide occurrences in classes i and j, respectively. The Gini
index ranges between 0 and 0.5.

3.4.2. Random Forest

An ensemble model improves classification accuracy by learning several models and combining
the results predicted by each. RF, introduced by Breiman [45], is a tree-based ensemble learning
algorithm that uses a concept known as bagging, wherein multiple DTs are formed using bootstrapped
samples of the original dataset, which are then aggregated.

In the RF model, approximately 66% (“in-bag”) of the bootstrapped samples are used for the
training of each DT, and the remaining 33% (“out-of-bag”) are used for evaluating the accuracy of
the final ensemble model [3]. Here, for accuracy evaluation, the out-of-bag (OOB) error, which is an
unbiased estimate of the generalization error, was used. This value is calculated as the proportion of
misclassifications (%) over all OOB elements [20]. Therefore, the accuracy of the RF model improves
when the OOB error is minimized.

Final decisions of class membership and model construction (output) are determined by the
majority vote among all trees [46]. In addition, two types of error rates, the mean decrease in accuracy
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and mean decrease in node impurity (mean decrease in Gini), are calculated and used to prioritize
the factors used [47]. These values indicate the contribution of each factor used when the RF model
is constructed.

3.4.3. Rotation Forest

RoF is an advanced ensemble learning algorithm introduced by Rodriguez et al. [24] that creates
accurate and diverse classifiers based on feature transformation. The RoF framework combines bagging
techniques with random subspaces and principal component analysis (PCA) to construct an ensemble
classifier [48]. Here, the process used was the same as that of the RF model, if one excludes PCA.

The main procedure for constructing an RoF model is as follows: (1) Attribute sets are randomly
divided into K subsets, where K is a user-defined parameter. (2) Sample subsets are acquired through
bootstrap sampling, and feature transformation (PCA) is applied to each sample subset. (3) The
rotation matrix is realigned according to the sequence of the original attribute sets. (4) Base classifiers
are trained based on the rotated data. (5) The results of various base classifiers are integrated and the
predicted final class label is the final output [49].

In this process, the confidence for each class is calculated with the average combination method
across all classifiers. The final class label is assigned to the class with the highest confidence value [29],
and the success of the RoF model depends on the rotation matrix and base classifiers created by the
transformation methods [30]. More details can be found in Rodriguez et al. [24].

3.5. Model Performance Assessment

The probabilities predicted by the DT, RF, and RoF models were classified into two classes,
landslide presence and absence, using different cut-off values. The expected probabilities were
compared to observed landslide locations to create a contingency table, which provides information on
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values depending
on whether the landside occurrence was well classified. Statistical indices were calculated using the
aforementioned four values as follows.

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Precision =
TP

TP + FP
(8)

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Sensitivity represents the proportion of the landslide pixels correctly classified, while specificity
represents the proportion of correctly classified non-landslide pixels. Precision, a positive predictive
value, represents the ratio of actual landslide pixels to those classified as landslides by the model.
Accuracy represents the ratio of the correctly classified landslide and non-landslide pixels [21,50].
Here, a model was better if the precision and accuracy were higher. A value of one represents a perfect
model [48].

In addition, the kappa coefficient, calculated based on the difference between the observed and
predicted landslides, evaluates the reliability of each model. It is calculated as follows [51]:

k =
Pobs − Pexp

1− Pexp
(10)

Pobs =
TP + TN

SA
(11)



Sustainability 2019, 11, 5659 11 of 20

Pexp =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

SA2 (12)

where SA is the total number of pixels in the study area. The kappa coefficient ranges from 0 to 1.
When it is 0.8 or larger, the model performance is considered to be nearly perfect [52].

The ROC curve is a plot of sensitivity (on the y-axis) against (1−specificity) (x-axis).
Morphologically, the performance of the model is better if the left edge of the ROC curve is closer
to the top left corner. To express this quantitatively, the area under the ROC curve is calculated as
follows [21]:

AUROC =
(
∑

TP +
∑

TN)

(Y + N)
(13)

where Y is the total number of landslides and N is the total number of non-landslides. The area under
the ROC curve (AUROC) ranges from 0.5 to 1.0. The model’s classification accuracy is considered to be
very high if the AUROC is > 0.9, whereas the model is considered to have cognitive discrimination
ability if the AUROC is between 0.7 and 0.9 [50].

4. Results

4.1. Landslide Conditioning Factor Analysis

Table 2 shows the results of applying the RRelief-F algorithm to the 14 landslide conditioning factors
used in this study using the “FSelector” package. These values represent the weights (importance) of
the conditioning factors for predicting landslide occurrence. Thus, larger weights imply highly relevant
factors corresponding to high predictive abilities for landslide occurrence. Conditioning factors with
zero or negative values mean that their underlying processes do not contribute to landslide occurrence.
Because these conditioning factors may affect the accuracy of the model, they were removed before
further analysis.

Table 2. Relative importance of conditioning factors in this study using the RRelief-F algorithm.

No Conditioning Factor Importance

1 Elevation-relief ratio 0.182
2 Aspect 0.158
3 Altitude 0.157
4 Slope 0.148
5 Timber type 0.107
6 Topographic wetness index 0.102
7 Slope length 0.101
8 Topographic position index 0.100
9 Stream power index 0.078
10 Plan curvature 0.058
11 Profile curvature 0.009
12 Timber diameter 0.000
13 Timber age 0.000
14 Timber density 0.000

Among the conditioning factors used, 11 had values greater than zero. In particular, TPI had the
largest value (0.182) and profile curvature had the smallest (0.009). However, the weights of timber
diameter, age, and density were 0.000, indicating that they had null predictive ability. Therefore, these
factors were excluded during further analyses of landslide susceptibility.

4.2. Landslide Susceptibility Mapping

Landslide models were constructed by training the DT, RF, and RoF models using training datasets.
These models were performed employing 10-fold cross-validation to decrease the variability. During
the training process, the values of parameters for each model were optimized to improve the predictive
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performances of the landslide models. The landslide models constructed by DT, RF, and RoF were
applied to calculate landslide susceptibility indices (LSIs) throughout the whole study area. Thereafter,
LSMs were constructed and reclassified into five susceptibility classes using the natural breaks method.

4.2.1. Decision Trees

In the DT model, four priori parameters: minsplit, minbucket, maxdepth, and cp, were optimized
using the “mlr” package, and then the “rpart” package was used to construct the landslide model.
Here, minsplit is the minimum number of observations in the parent node, minbucket is the minimum
number of observations in a terminal node, maxdepth is the maximum depth of a tree, and cp is the
complexity parameter. The optimized values for minsplit, minbucket, maxdepth, and cp were 6, 6, 17, and
0.001, respectively.

The LSI values ranged from 0.00 to 1.00. These values were reclassified into very low susceptibility
(0.00–0.10), low susceptibility (0.10–0.33), moderate susceptibility (0.33–0.57), high susceptibility
(0.57–0.63), and very high susceptibility (0.63–1.00) to produce the LSM (Figure 3a). The area
percentages of each class were 26.48%, 9.82%, 18.78%, 7.18%, and 37.74%, respectively. The area
percentage of the very high susceptibility class was higher in the DT LSM compared to the LSMs
produced by RF and RoF (Figure 4).
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4.2.2. Random Forest

In the RF model, selection of the hyper-parameters and construction of the landslide model were
implemented using the “caret” and “randomForest” packages, respectively. The parameters were ntree
and mtry, representing the number of trees in the forest and the number of variables tested at each
node, respectively. The optimized values for ntree and mtry were 1 and 4000, respectively.

The LSM was produced by classifying areas into five susceptibility classes: very low (0.01–0.23),
low (0.23–0.42), moderate (0.42–0.61), high (0.61–0.80), and very high (0.80–1.00) (Figure 3b). The area
percentages of each class were 19.90%, 22.19%, 19.92%, 19.35%, and 18.63%, respectively (Figure 4).

4.2.3. Rotation Forest

Two priori parameters were also optimized for the RoF model, the number of variable subsets (K)
and the number of base classifiers (L), using the “caret” package. The landslide model with K = 1 and
L = 26 was constructed using the “rotationForest” package.

The LSI also ranged from 0.00 to 1.00. These values were reclassified as very low susceptibility
(0.01–0.22), low susceptibility (0.22–0.40), moderate susceptibility (0.40–0.60), high susceptibility
(0.60–0.78), and very high susceptibility (0.78–0.93) (Figure 3c). The distribution of LSI values for each
susceptibility class was similar to the LSM produced by RF. However, the very low (25.41%) and very
high (23.13%) susceptibility classes were higher than in the LSM produced by RF, while the other
classes were slightly lower (Figure 4).

4.3. Model Validation and Comparison

4.3.1. Statistical Indices

Table 3 shows the performances of the three landslide models examined using the statistical
indices. Overall, the RF model was superior to the DT and RoF models as it produced the highest
values for sensitivity (1.000), specificity (0.962), precision (0.961), and accuracy (0.980). The RoF model
exhibited an overall performance similar to that of the RF model, but the factor values were slightly
smaller. The DT model performed the worst, with an accuracy that was 0.108 lower than that of the RF
model. This occurred because the performances for the classification of landslide and non-landslide
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pixels were reduced by 0.120 and 0.097, respectively. The kappa statistics of the three landslide models
ranged from 0.745 to 0.843, indicating general agreement.

Table 3. Performance assessment of the three models with the calibration and validation datasets using
statistical indices.

Calibration Dataset Validation Dataset

DT RF RoF DT RF RoF

Sensitivity 0.880 1.000 0.957 0.707 0.833 0.882
Specificity 0.865 0.962 0.891 0.689 0.740 0.750
Precision 0.863 0.961 0.828 0.674 0.698 0.698
Accuracy 0.873 0.980 0.922 0.698 0.779 0.802

Kappa 0.745 0.961 0.843 0.395 0.558 0.605

The performances of the three models were also evaluated using the validation dataset. Although
the landslide RF model performed best in previous results, the RoF model offered the highest predictive
performance here. Its accuracy was 0.802, which was 0.023 higher than that of the RF model (0.779),
indicating that the RoF model better classified landslide pixels than the RF model based on the
sensitivity values. The DT model again performed the worst. The kappa statistics of the RF and RoF
models were 0.558 and 0.605, respectively, indicating moderate and substantial agreement. The kappa
statistic of the DT model, however, was 0.395, indicating only fair agreement between the model and
the validation data.

4.3.2. Receiver Operating Characteristic Curve

The ROC curve was analyzed for success and prediction rates. The success rate, analyzed using
the training dataset, represents how well the landslide model fits the data. The models produced
similar AUROC values for the success rate, but the RF model had the highest value (Figure 5a, Table 4).Sustainability 2019, 11, x FOR PEER REVIEW 20 of 20 
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Table 4. Parameters of the receiver operating characteristic curve with the calibration dataset.

AUROC Std. Error Asymptotic Sig.
Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

DT 0.960 0.011 0.000 0.938 0.982
RF 1.000 0.000 0.000 0.999 1.000

RoF 0.990 0.004 0.000 0.982 0.998

As for the AUROC values obtained for the prediction rate when analyzing using the validation
dataset, the RoF model produced the highest value (0.868), followed by RF (0.853) and DT (0.772)
(Figure 5b, Table 5). This indicates that the RoF model is the best predictor of landslides among the three
models. The results of the ROC curve were the same as the results obtained using the statistical indices.

Table 5. Parameters of the receiver operating characteristic curve with the validation dataset.

AUROC Std. Error Asymptotic Sig.
Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

DT 0.772 0.051 0.000 0.672 0.872
RF 0.853 0.043 0.000 0.770 0.937

RoF 0.868 0.039 0.000 0.792 0.944

5. Discussion

In this study, the LSMs produced by the DT, RF, and RoF models were evaluated by statistical
indices and AUROC. Among the models, the DT model is the easiest and most straightforward to
interpret. In addition, the DT model has many advantages: (1) it is a type of statistical analysis with no
statistical distribution assumption, (2) it can handle data from various measurement scales, (3) variable
transformation is not required, and (4) it facilitates the construction of the rules for prediction of
complex relationships [50,53].

Despite these advantages, the DT model is too simple to effectively describe many real-world
situations [54]. This can be recognized from the results in this study, where the LSM produced by the
DT model had the lowest performance based on analyses using statistical indices and AUROC. In
addition, the difference between the success rate and prediction rate curves for the LSM produced by
the DT model was 0.188, which was the highest value, followed by the LSM produced by the RF model
(0.147) and the LSM produced by the RoF model (0.122).

By contrast, the ensemble learning models, RF and RoF, outperformed the DT model because
they both enhanced the goodness-of-fit and prediction ability. This is reasonable because the classifiers
based on ensemble learning can reduce both bias and variance and avoid over-fitting problems against
base classifiers to improve their predictive capability [55]. These results are consistent with those of
previous studies [3,22,49], indicating that ensemble learning contributes to improving the performance
of single (weak) classifiers.

Among the ensemble learning models, the RoF model had a better performance than the RF
model, but the difference was not large. The key to its robust performance lies in the main idea of
the RoF model, which is to encourage diversity and individual accuracy simultaneously within an
ensemble classifier. Specifically, diversity is promoted by using PCA to perform feature extraction for
each base classifier and accuracy is sought by keeping all principal components and also using the
entire dataset to train each base classifier.

In addition, when predicting landslide events, the RoF has several advantages. For example, it
does not require assumptions on the landslide conditioning factor distributions, it has low bias, and it
can efficiently deal with unbalanced data and over-fitting. However, the RF model is better than the
RoF model in terms of computational efficiency. Kavzoglu and Colkesen [56] revealed that the RoF
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model costs much more time (23.03 s) compared to the RF model (4.01 s) for the training dataset. This is
due to the complexity of the RoF model in employing two parameters and PCA in the modeling stage.

As mentioned earlier, the AUROC values of the success rate curves were very high, almost
reaching a value of 1, but the AUROC values of the prediction rate curves were decreased by about
20%. This result shows that the landslide models using the DT, RF, and RoF models were trained
excessively well by the training data. Because of this, the landslide models had high accuracy for
training data, but increased error for real data. This problem, called overfitting, is a crucial problem in
machine learning and data mining.

Avoiding or solving the overfitting problem is not easy because there can be many causes. In
the case of this study, first, the non-landslide area was selected to be the same as the landslide area
even though the actual non-landslide area was very large compared to the landslide area. Second, the
training and validation datasets were determined by the 70:30 sampling ratio without performing an
accuracy assessment of the sampling ratio. Third, despite the RRelief-F feature selection process, the
landslide conditioning factors used still included noise.

In future studies, the following should be performed to enhance the accuracy of LSMs: (1) effective
analysis of the ratio of non-landslide area, (2) evaluation of the sampling ratio for the training and
validation datasets, (3) consideration of differences between various feature selection methods, and
(4) comparison of model performance by additional ensemble methods.

6. Conclusions

This study used three machine learning models, DT, RF, and RoF, to analyze landslide susceptibility
at Woomyeon Mountain, South Korea. Fourteen landslide conditioning factors were produced using
thematic maps generated by government organizations. These factors were evaluated for their
contributions to the models using the RRelief-F algorithm. Finally, 11 landslide conditioning factors
were selected, excluding timber diameter, timber age, and timber density. Landslide susceptibility
analyses and mapping were performed with these 11 landslide conditioning factors using DT, RF,
and RoF models. The LSMs produced by DT, RF, and RoF were evaluated using statistical indices
and AUROC. Overall, the three LSMs showed reasonable goodness-of-fit and good performances
with the training and validation datasets. In particular, the ensemble learning models, RF and RoF,
outperformed the DT model, and the RoF model had a higher performance than the RF model. These
results demonstrate that ensemble learning methods have a powerful ability to improve prediction
accuracy compared to the single classifier approach. In addition, the RoF model proved to be effective
for landslide susceptibility assessment in the study area. The LSMs produced in this study may be
useful for decision makers, planners, and engineers in landslide-prone areas.

Author Contributions: S.P. wrote the paper and analyzed the data; S.-Y.H. suggested the idea for the study; J.K.
managed the paperwork.

Acknowledgments: This research was financially supported by the BK21 plus Project of the Graduate School of
Earth Environmental Hazard System. In addition, this work was supported by a National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF–2017R1A2B2009033).

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2019, 11, 5659 17 of 20

Appendix A

Sustainability 2019, 11, x FOR PEER REVIEW 20 of 20 

Appendix A 

 
Figure A1. Geological maps (scale, 1:50,000) of the study area obtained from the Korea Institute of 
Geoscience and Mineral Resources. 

References 

1. Brabb, E.E. Innovative Approaches to Landslide Hazard Mapping. In Proceedings of the 4th International 
Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984; USGS: Reston, VA, USA, 1985; 
pp. 307–324. 

2. Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P.; Galli, M.; Ardizzone, F. Landslide Hazard 
Evaluation: An Aid to a Sustainable Development. Geomorphology 1999, 31, 181–216. 

3. Sahin, E.K.; Colkesen, I.; Kavzoglu, T. A Comparative Assessment of Canonical Correlation Forest, Random 
Forest, Rotation Forest and Logistic Regression Methods for Landslide Susceptibility Mapping. Geocarto 
Int. 2018, 1–23, doi:10.1080/10106049.2018.1516248. 

4. Pham, B.T.; Shirzadi, A.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A Hybrid Machine Learning Ensemble 
Approach Based on a Radial Basis Function Neural Network and Rotation Forest for Landslide 
Susceptibility Modeling: A Case Study in the Himalayan Area, India. Int. J. Sediment. Res. 2018, 33, 157–170, 
doi:10.1016/j.ijsrc.2017.09.008. 

5. Yilmaz, I. Comparison of Landslide Susceptibility Mapping Methodologies for Koyulhisar, Turkey: 
Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine. 
Environ. Earth Sci. 2010, 61, 821–836, doi:10.1007/s12665-009-0394-9. 

6. Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-Based Comparative Study of Frequency Ratio, 
Analytical Hierarchy Process, Bivariate Statistics and Logistics Regression Methods for Landslide 
Susceptibility Mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287, doi:10.1016/j.catena.2011.01.014. 

7. Mohammady, M.; Pourghasemi, H.R.; Pradhan, B. Landslide Susceptibility Mapping at Golestan Province, 
Iran: A Comparison between Frequency Ratio, Dempster–Shafer, and Weights-Of-Evidence Models. J. 
Asian Earth Sci. 2012, 61, 221–236, doi:10.1016/j.jseaes.2012.10.005. 

8. Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic 
Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea. 
Environ. Earth Sci. 2013, 68, 1443–1464, doi:10.1007/s12665–012–1842-5. 

9. Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine 
learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). 
Environ. Modell. Softw. 2016, 84, 240–250, doi:10.1016/j.envsoft.2016.07.005. 

10. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-Based Groundwater Potential Mapping Using Boosted 
Regression Tree, Classification and Regression Tree, and Random Forest Machine Learning Models in Iran. 
Environ. Monit. Assess. 2016, 188, 44, doi:10.1007/s10661–015–5049–6. 

11. Pourghasemi, H.R.; Rahmati, O. Prediction of the Landslide Susceptibility: Which Algorithm, Which 
Precision. Catena 2018, 162, 177–192, doi:10.1016/j.catena.2017.11.022. 

Figure A1. Geological maps (scale, 1:50,000) of the study area obtained from the Korea Institute of
Geoscience and Mineral Resources.

References

1. Brabb, E.E. Innovative Approaches to Landslide Hazard Mapping. In Proceedings of the 4th International
Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984; USGS: Reston, VA, USA, 1985;
pp. 307–324.

2. Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P.; Galli, M.; Ardizzone, F. Landslide Hazard Evaluation:
An Aid to a Sustainable Development. Geomorphology 1999, 31, 181–216. [CrossRef]

3. Sahin, E.K.; Colkesen, I.; Kavzoglu, T. A Comparative Assessment of Canonical Correlation Forest, Random
Forest, Rotation Forest and Logistic Regression Methods for Landslide Susceptibility Mapping. Geocarto Int.
2018, 1–23. [CrossRef]

4. Pham, B.T.; Shirzadi, A.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A Hybrid Machine Learning Ensemble
Approach Based on a Radial Basis Function Neural Network and Rotation Forest for Landslide Susceptibility
Modeling: A Case Study in the Himalayan Area, India. Int. J. Sediment. Res. 2018, 33, 157–170. [CrossRef]

5. Yilmaz, I. Comparison of Landslide Susceptibility Mapping Methodologies for Koyulhisar, Turkey:
Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine.
Environ. Earth Sci. 2010, 61, 821–836. [CrossRef]

6. Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-Based Comparative Study of Frequency
Ratio, Analytical Hierarchy Process, Bivariate Statistics and Logistics Regression Methods for Landslide
Susceptibility Mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [CrossRef]

7. Mohammady, M.; Pourghasemi, H.R.; Pradhan, B. Landslide Susceptibility Mapping at Golestan Province,
Iran: A Comparison between Frequency Ratio, Dempster–Shafer, and Weights-Of-Evidence Models. J. Asian
Earth Sci. 2012, 61, 221–236. [CrossRef]

8. Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic
Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea.
Environ. Earth Sci. 2013, 68, 1443–1464. [CrossRef]

9. Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine
learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ.
Modell. Softw. 2016, 84, 240–250. [CrossRef]

http://dx.doi.org/10.1016/S0169-555X(99)00078-1
http://dx.doi.org/10.1080/10106049.2018.1516248
http://dx.doi.org/10.1016/j.ijsrc.2017.09.008
http://dx.doi.org/10.1007/s12665-009-0394-9
http://dx.doi.org/10.1016/j.catena.2011.01.014
http://dx.doi.org/10.1016/j.jseaes.2012.10.005
http://dx.doi.org/10.1007/s12665-012-1842-5
http://dx.doi.org/10.1016/j.envsoft.2016.07.005


Sustainability 2019, 11, 5659 18 of 20

10. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-Based Groundwater Potential Mapping Using Boosted
Regression Tree, Classification and Regression Tree, and Random Forest Machine Learning Models in Iran.
Environ. Monit. Assess. 2016, 188, 44. [CrossRef]

11. Pourghasemi, H.R.; Rahmati, O. Prediction of the Landslide Susceptibility: Which Algorithm, Which
Precision. Catena 2018, 162, 177–192. [CrossRef]

12. Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide Susceptibility Mapping at Hoa Binh
Province (Vietnam) Using an Adaptive Neuro–Fuzzy Inference System and GIS. Comput. Geosci. 2012, 45,
199–211. [CrossRef]

13. Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of Prediction Capability of the Artificial Neural
Networks for Mapping Landslide Susceptibility in the Turbolo River Catchment (Northern Calabria, Italy).
Catena 2014, 113, 236–250. [CrossRef]

14. Kawabata, D.; Bandibas, J. Landslide Susceptibility Mapping Using Geological Data, a DEM from ASTER
Images and an Artificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [CrossRef]

15. Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of Fuzzy Logic and Analytical Hierarchy Process
(AHP) to Landslide Susceptibility Mapping at Haraz Watershed, Iran. Nat. Hazards 2012, 63, 965–996.
[CrossRef]

16. Zhu, A.X.; Wang, R.; Qiao, J.; Qin, C.Z.; Chen, Y.; Liu, J.; Zhu, T. An Expert Knowledge-Based Approach to
Landslide Susceptibility Mapping Using GIS and Fuzzy Logic. Geomorphology 2014, 214, 128–138. [CrossRef]

17. Pradhan, B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine
and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS. Comput. Geosci. 2013, 51, 350–365.
[CrossRef]

18. Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide Susceptibility Assessment in Vietnam Using
Support Vector Machines, Decision Tree, and Naive Bayes Models. Math. Probl. Eng. 2012, 2012, 26.
[CrossRef]

19. Lee, S.; Hong, S.M.; Jung, H.S. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon
Province, Korea. Sustainability 2017, 9, 48. [CrossRef]

20. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide Susceptibility Mapping
Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear
Models and Comparison of Their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides
2016, 13, 839–856. [CrossRef]

21. Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance Evaluation of the GIS–Based Data Mining Techniques of
Best-First Decision Tree, Random Forest, and Naive Bayes Tree for Landslide Susceptibility Modeling. Sci.
Total Environ. 2018, 644, 1006–1018. [CrossRef]

22. Kadavi, P.; Lee, C.W.; Lee, S. Application of ensemble–based machine learning models to landslide
susceptibility mapping. Remote Sens. 2018, 10, 1252. [CrossRef]

23. Nguyen, Q.K.; Tien Bui, D.; Hoang, N.D.; Trinh, P.; Nguyen, V.H.; Yilmaz, I. A Novel Hybrid Approach Based
on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced
Shallow Landslides Using GIS. Sustainability 2017, 9, 813. [CrossRef]

24. Rodriguez, J.J.; Kuncheva, L.I.; Alonso, C.J. Rotation Forest: A New Classifier Ensemble Method. IEEE Trans.
Pattern Anal. 2006, 28, 1619–1630. [CrossRef] [PubMed]

25. Liu, K.H.; Huang, D.S. Cancer Classification Using Rotation Forest. Comput. Biol. Med. 2008, 38, 601–610.
[CrossRef]

26. De Bock, K.W.; Van Den Poel, D. An Empirical Evaluation of Rotation-Based Ensemble Classifiers for
Customer Churn Prediction. Expert Syst. Appl. 2011, 38, 12293–12301. [CrossRef]

27. Nanni, L.; Lumini, A. An Experimental Comparison of Ensemble of Classifiers for Bankruptcy Prediction
and Credit Scoring. Expert Syst. Appl. 2009, 36, 3028–3033. [CrossRef]

28. Choudhury, S.D.; Tjahjadi, T. Clothing and Carrying Condition Invariant Gait Recognition Based on Rotation
Forest. Pattern Recog. Lett. 2016, 80, 1–7. [CrossRef]

29. Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for Fully Polarized SAR Image
Classification Using Polarimetric and Spatial Features. ISPRS J. Photogramm. 2015, 105, 38–53. [CrossRef]

30. Xia, J.; Du, P.; He, X.; Chanussot, J. Hyperspectral Remote Sensing Image Classification Based on Rotation
Forest. Geosci. Remote. Sens. Lett. 2016, 11, 239–243. [CrossRef]

http://dx.doi.org/10.1007/s10661-015-5049-6
http://dx.doi.org/10.1016/j.catena.2017.11.022
http://dx.doi.org/10.1016/j.cageo.2011.10.031
http://dx.doi.org/10.1016/j.catena.2013.08.006
http://dx.doi.org/10.1016/j.geomorph.2009.06.006
http://dx.doi.org/10.1007/s11069-012-0217-2
http://dx.doi.org/10.1016/j.geomorph.2014.02.003
http://dx.doi.org/10.1016/j.cageo.2012.08.023
http://dx.doi.org/10.1155/2012/974638
http://dx.doi.org/10.3390/su9010048
http://dx.doi.org/10.1007/s10346-015-0614-1
http://dx.doi.org/10.1016/j.scitotenv.2018.06.389
http://dx.doi.org/10.3390/rs10081252
http://dx.doi.org/10.3390/su9050813
http://dx.doi.org/10.1109/TPAMI.2006.211
http://www.ncbi.nlm.nih.gov/pubmed/16986543
http://dx.doi.org/10.1016/j.compbiomed.2008.02.007
http://dx.doi.org/10.1016/j.eswa.2011.04.007
http://dx.doi.org/10.1016/j.eswa.2008.01.018
http://dx.doi.org/10.1016/j.patrec.2016.05.009
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.002
http://dx.doi.org/10.1109/LGRS.2013.2254108


Sustainability 2019, 11, 5659 19 of 20

31. Korean Geotechnical Society (KGS). The Study on Investigation of Cause and Development of Restoration Policy
about Landslide in Wumyon Area; Korean Geotechnical Society: Seoul, Korea, 2011. (In Korean)

32. Park, S.; Kim, J. Landslide Susceptibility Mapping Based on Random Forest and Boosted Regression Tree
Models, and a Comparison of Their Performance. Appl. Sci. 2019, 9, 942. [CrossRef]

33. Park, D.W.; Nikhil, N.V.; Lee, S.R. Landslide and Debris Flow Susceptibility Zonation using TRIGRS for the
2011 Seoul Landslide Event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833–2849. [CrossRef]

34. Weiss, A. Topographic Position and Landforms Analysis. In Proceedings of the Poster Presentation, ESRI
User Conference, San Diego, CA, USA, 9–13 July 2001; The Nature Conservoncy: Arlington County, VA,
USA, 2001; p. 200.

35. Pike, R.J.; Wilson, S.E. Elevation-Relief Ratio, Hypsometric Integraland Geomorphic Area—Altitude Analysis.
Geol. Soc. Am. Bull. 1971, 82, 1079–1084. [CrossRef]

36. Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un
Modele a Base Physique De Zone Dappel Variable de Lhydrologie Du Bassin Versant. Hydrol. Sci. J. 1979, 24,
43–69. [CrossRef]

37. Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological,
Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

38. Kira, K.; Rendell, L.A. Practical Approach to Feature Selection. In Proceedings of the 9th International
Conference on Machine Learning, Aberdeen, Scotland, UK, 1–3 July 1992; ICML: Aberdeen, Scotland, UK,
1992; pp. 249–256.

39. Kononenko, I. Estimating Attributes: Analysis and Extensions of RELIEF. In Proceedings of the European
Conference on Machine Learning, Berlin, Germany, 6–8 April 1994; Springer Science Business Media: Berlin,
Germany, 1994; pp. 171–182.

40. Robnik-Sikonja, M.; Kononenko, I. An Adaptation of Relief for Attribute Estimation in Regression. In
Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, USA, 8–12 July 1997;
IEEE: Nashville, TN, USA, 1997; Volume 5, pp. 296–304.

41. Kass, G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Appl. Stat. 1980,
29, 119–127. [CrossRef]

42. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall:
London, UK, 1984.

43. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
44. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: Burlington, NJ, USA, 1993.
45. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
46. Micheletti, N.; Foresti, L.; Robert, S.; Leuenberger, M.; Pedrazzini, A.; Jaboyedoff, M.; Kanevski, M. Machine

Learning Feature Selection Methods for Landslide Susceptibility Mapping. Math. Geosci. 2014, 46, 33–57.
[CrossRef]

47. Arabameri, A.; Pradhan, B.; Pourghasemi, H.; Rezaei, K.; Kerle, N. Spatial Modelling of Gully Erosion Using
GIS and R Programing: A Comparison among Three Data Mining Algorithms. Appl. Sci. 2018, 8, 1369.
[CrossRef]

48. Witten, I.H.; Frank, E.; Mark, A.H. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.;
Morgan Kaufmann Publishers: Burlington, NJ, USA, 2011.

49. Shirzadi, A.; Soliamani, K.; Habibnejhad, M.; Kavian, A.; Chapi, K.; Shahabi, H.; Ahmad, A. Novel GIS
Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors 2018, 18, 3777.
[CrossRef]

50. Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Pham, B.T. Assessment of Advanced
Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the
Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [CrossRef] [PubMed]

51. Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the Performance of
GIS-Based Machine Learning Models with Different Accuracy Measures for Determining Susceptibility to
Gully Erosion. Sci. Total Environ. 2019, 664, 1117–1132. [CrossRef] [PubMed]

52. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33,
159–174. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/app9050942
http://dx.doi.org/10.5194/nhess-13-2833-2013
http://dx.doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
http://dx.doi.org/10.1080/02626667909491834
http://dx.doi.org/10.1002/hyp.3360050103
http://dx.doi.org/10.2307/2986296
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11004-013-9511-0
http://dx.doi.org/10.3390/app8081369
http://dx.doi.org/10.3390/s18113777
http://dx.doi.org/10.1016/j.scitotenv.2019.01.221
http://www.ncbi.nlm.nih.gov/pubmed/30690368
http://dx.doi.org/10.1016/j.scitotenv.2019.02.093
http://www.ncbi.nlm.nih.gov/pubmed/30901785
http://dx.doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571


Sustainability 2019, 11, 5659 20 of 20

53. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial Prediction of Flood Susceptible Areas Using Rule Based
Decision Tree (DT) and a Novel Ensemble Bivariate and Multivariate Statistical Models in GIS. J. Hydrol.
2013, 504, 69–79. [CrossRef]

54. Elith, J.; Leathwick, J.R.; Hastie, T.A. Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77,
802–813. [CrossRef] [PubMed]

55. Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms; JohnWiley & Sons, Inc.: Hoboken, NJ,
USA, 2004; pp. 203–234.

56. Kavzoglu, T.; Colkesen, I. An Assessment of the Effectiveness of a Rotation Forest Ensemble for Land-Use
and Land-Cover Mapping. Int. J. Remote Sens. 2013, 34, 4224–4241. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2013.09.034
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
http://dx.doi.org/10.1080/01431161.2013.774099
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Methodology 
	Construction of the Spatial Database 
	Landslide Inventory Map 
	Landslide Conditioning Factors 

	Preparation of Training and Validation Datasets 
	Relief-F Feature Selection Method 
	Landslide Susceptibility Modeling 
	Decision Trees 
	Random Forest 
	Rotation Forest 

	Model Performance Assessment 

	Results 
	Landslide Conditioning Factor Analysis 
	Landslide Susceptibility Mapping 
	Decision Trees 
	Random Forest 
	Rotation Forest 

	Model Validation and Comparison 
	Statistical Indices 
	Receiver Operating Characteristic Curve 


	Discussion 
	Conclusions 
	
	References

