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Abstract: Although electric vehicles (EVs) have been regarded as promising to reduce tailpipe
emissions and energy consumption, a mixed traffic flow of EVs and internal combustion engine
vehicles (ICEVs) makes the energy/emissions reduction objective more difficult because EVs and
ICEVs have various general characteristics. This paper proposes a low-emission-oriented speed
guidance model to address the energy/emission reduction issue under a mixed traffic flow at an
isolated signalized intersection to achieve the objective of reducing emissions and total energy
consumption while reducing vehicle delay and travel time. The total energy/emissions under different
market penetration rates of EVs with various traffic volumes are analyzed and compared. Numerical
examples demonstrate that the proposed speed guidance model has better performance than those
without considering the impact of queues. For a certain traffic volume, the energy/emission reduction
effects under speed guidance will increase with an increasing share of EVs. This paper also explores
the impact of the time interval for guidance renewal on vehicle emissions in practice.
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1. Introduction

Over the past decade, the transportation system has generated increased fuel usage and air
emissions [1,2]. Electric vehicles (EVs) have been regarded as a potential solution to significantly
reduce transport emissions, thus helping to reduce road traffic pollution, particularly in densely
populated urban areas [3]. A demand forecast model was used to measure the effectiveness of energy
consumption of EVs and results showed that with the use of electricity in the field of transport, a
significant reduction in fuel consumption and emissions is achieved [4]. Canals et al. [5] stated that for
most European countries, the increasing share of renewable energy sources in electricity generation
will promote EV market penetration, and thus the transfer to EVs will reduce emissions. A case study
of a taxi fleet was conducted to evaluate the effects of the replacement of ICEVs by EVs on carbon
dioxide (CO2) emission and energy consumption, and the results showed that the energy efficiency
of EVs is higher than that of ICEVs, especially considering the regeneration energy owing to road
gradient [6]. However, issues remain regarding how to promote smart driving for mixed traffic flows
of EVs and internal combustion engine vehicles (ICEVs), where the complicated influence factors and
interactive effects of environments and driver habits on the EVs’ energy consumption should be well
considered [7,8].
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Due to the potential energy savings and environmental benefits of EVs, many governments have
developed a series of policies to promote EV adoption. For example, California has adopted some
possible solutions to promote EV adoption, such as reducing taxes, fees and other upfront costs for EV
ownership. EVs’ market share in China has steadily grown in recent years thanks to the implementation
of a series of measures to encourage the purchase and usage of EVs. EVs could reach significant market
penetration in the future. Because of the different characteristics of EVs and ICEVs, mixed traffic flow
makes the energy/emission reduction objective more difficult, especially at a signalized intersection,
which has not received enough attention. Ou et al. [9] developed a two-lane car-following model for
ICEVs under vehicle-to-vehicle communication to explore their movement separately in a two-lane
traffic system. Tang et al. [10] proposed an EV-following model to examine the impacts of driving
range on each vehicle’s speed and headway.

The demand for sustainable driving has inspired the solutions for energy-efficient transportation
system. The stop-and-go pattern due to traffic jam or signalized intersections in urban areas result in
higher emissions and energy consumption than vehicles travelling under free-flow conditions [11].
Therefore, the velocity profile for a travelling ICEV could be optimized to realize less fuel consumption
and emissions for different patterns. With the continuous promotion of a cooperative vehicle
infrastructure system, a speed guidance strategy can provide reasonable speed recommendations
to drivers for going through an intersection smoothly, taking advantage of the vehicle’s spatial and
temporal trajectories and corresponding signal timing parameters. Many studies have developed
vehicle speed control or guidance strategies for ICEVs [12]. A traffic efficiency promotion algorithm
for eco-speed guidance can reduce the delay when vehicles pass through a signalized intersection. A
multi-vehicle guidance strategy was developed by Wu et al. [13] to minimize the number of stops and
to reduce travel time when passing through signalized intersections. Ge and Orosz [14] proposed a
novel connected cruise control strategy by using the acceleration signals perceived from vehicles ahead
to increase roadway mobility. He et al. [15] proposed a low emission-oriented algorithm to optimize
the dynamic speed once a queue occurs at signalized intersections. A trajectory-based model was
proposed by using historical data in order to estimate fuel consumption and emissions for individual
vehicles [16]. A car-following model considering speed guidance under different traffic conditions
was proposed to analyze the effects of driving behaviors on vehicle emissions and to investigate the
mechanism of speed guidance for both intelligent vehicles and traditional vehicles [17]. Sun et al. [18]
developed a dynamic speed guidance strategy to minimize emissions by dividing the road into several
small intervals for sliding control. It is believed that an eco-driving strategy can help realize more
energy savings in a connected vehicle environment. Moreover, the optimization of energy-efficiency
speed profile of an EV should consider its distinctive characteristics. Determining whether this method
is suitable for EVs has gradually aroused scholars’ attention; after all, there are many different vehicle
characteristics between EVs and ICEVs.

This study seeks to propose an effective eco-speed guidance strategy for a mixed traffic flow of
battery EVs and ICEVs at an isolated signalized intersection. The next section provides insights into
the causes of the problem, followed by an introduction to the eco-speed guidance strategy in Section 3.
Section 4 demonstrates the effectiveness of the model through a numerical analysis. Conclusions are
presented in the last section.

2. Problem Statement

In recent years, fossil fuel consumption and air pollution due to transportation have received
widespread public concern [19–21]. Idling vehicles, frequent acceleration, and travelling in a
stop-and-go pattern will emit more pollutant emissions [22]. EV adoption has a significant role
in reducing both energy consumption and tailpipe emissions. On the other hand, a speed guidance
strategy is considered another effective measure to reduce vehicle emissions. A mixed traffic flow of
EVs and ICEVs makes the energy/emission reduction objective more difficult because EVs and ICEVs
have various general characteristics.
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EVs can be simply characterized as either distributed motor-driven or centralized motor-driven
EVs. The powertrain structure of distributed motor-driven EVs is different from that of ICEVs. Vehicles
travelling in cities are usually slow and require frequent parking. EVs do not consume electricity
when they stop. During the braking process, the electric motor can be automatically converted into a
generator to achieve energy reuse [23,24]. Compared with an ICEV, EVs generally improve energy
efficiency, with better starting performance and much energy regeneration [25]. EVs not only have
different structures but also realize better overall dynamics. For example, the torque response of a
motor is much faster than that of an ICEV (usually 10 ~ 100 times) [26,27].

One of the key characteristics of EVs is the regenerative braking system, which effectively
converts kinetic energy into electric energy during non-urgent braking procedures. Compared to the
conventional technology of friction brake, the regenerative brake has absolutely different mechanism
and a large gap in dynamic characteristics. The braking performance of regenerative brake, with
relative longer transmission path, is significantly affected by both the traffic conditions and the
operating conditions of EVs. There exist many challenges to improve vehicle dynamic performance
and energy-saving performance [28].

EVs and ICEVs generally have various acceleration/deceleration behaviors, and consequently,
a mixed traffic flow makes the energy/emission reduction objective more difficult. The different
characteristics between these two types of vehicles must be considered when executing a speed
guidance strategy. EVs are frequently marketed based on their high acceleration, which is determined
by the difference in work performance between an electric motor and an internal combustion engine.
Knowles, M. et al. [29] investigated how various driving styles influence energy consumption and
regeneration through an experimental study. In addition, the specific aspects of driving style that affect
energy consumption and regeneration were highlighted. However, there still exists one challenge
in speed guidance [30]: how can both transport efficiency and energy efficiency be simultaneously
improved for a mixed traffic flow of EVs and ICEVs?

Different types of vehicles have different amax values because of their different vehicle characteristics.
According to M. Ehsani et al. [31], the maximum acceleration (amax, Unit: m/s2) values are 3.5 and 2.7
for EVs and ICEVs, respectively.

According to real-world energy consumption data collected in Beijing [32] and Nagoya [33],
the energy consumption rate of EVs separately increases with acceleration and instantaneous speed.
For ICEVs, a speed guidance strategy can provide reasonable speed recommendations to drivers
for going through an intersection. Many studies [34–39] have developed vehicle speed control or
guidance strategies for ICEVs. Tang et al. [40] proposed a speed guidance model to inspect the
influences of drivers’ bounded rationality on energy consumption and emissions. Similarly, the speed
profile of an EV can also be optimized by considering both the drivers’ bounded rationality and the
distinctive EV performance. Galvin [41] developed algorithms and displayed energy demand and
consumption versus acceleration and speed for eight different plug-in EVs. Wu et al. [42] proposed an
analytical model that provides an optimized time-dependent speed profile for EVs to minimize energy
consumption. Studies in Reference [43] provide a real-world scheme of an eco-approach and departure
system for EVs, which combines vehicle connectivity, vehicle automation and vehicle electrification.
All these papers focus on only one type of vehicle and ignore mixed flow of two types of vehicles.
These speed guidance strategies will lead to a suboptimal solution rather than an optimal solution.
The recent innovations in speed advisory for mixed traffic focus mainly on the connected vehicle
platoon [44,45], which may be a possible solution but is beyond of the extension of the current research.

Under a series of incentives, the proportion of EVs is steadily growing, but for a long time there
is bound to be a mixed flow of EVs and ICEVs. This research aims to address the energy/emission
reduction issue under mixed traffic flow conditions by optimizing the EVs’ and ICEVs’ speed patterns
with smoother deceleration and acceleration rates, particularly different speed advices are provided
to EVs and ICEVs by considering their different characteristics. This study attempts to propose a
low emission-oriented speed guidance model to address the energy/emission reduction issue under
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mixed traffic flow, which considers both vehicle queues and the different characteristics of EVs and
ICEVs to optimize vehicle speed and to achieve the objective of reducing emissions and total energy
consumption while reducing vehicle delay and travel time. In particular, different market penetration
rates of EVs with various traffic volumes are analyzed and compared in this study.

3. Eco-Speed Guidance Model

As previously described, a stop-and-go pattern due to traffic jam at a signalized intersection will
results in higher emissions, while idling events at signalized intersection are induced not only by the
Signal Phase and Timing (SPaT) information but also by the status of vehicle queues [46]. The existence
of intersection queues has great effects on the selection of optimal speed strategy, especially at high
traffic volume. This paper attempts to propose a low emission speed guidance model to reduce both
ICEV emissions and EV energy consumption. The real-time traffic conditions, SPaT information, as
well as intersection queue lengths, should be considered together in the proposed model.

The driving behaviour model used is the Wiedemann car following model, assuming that{
K(x, t), v(x, t), q(x, t)

}
represents the traffic density, travel speed and traffic flow, respectively, at

location x and time t, respectively. The model assumes that the relationship between density and
flow is:

q(x, t) = Q·K(x, t) (1)

Figure 1 shows a general transport fundamental diagram, where the traffic flow is a concave
function of the delay. Assume that the flow is q0 when a vehicle arrives at the intersection, if the
traffic signal light is green, the vehicle can pass through the intersection without any delay; once the
traffic light turns red, all the flowing vehicles must wait at the stop bar for the next green phase; and
vehicle queues are generated and propagate backward, within the static queue the traffic flow is at
the maximum road density of Kj,. When the traffic light turns green again, queuing vehicles starts to
dissipate the intersection at the saturation flow rate, qc. The speed of the vehicle dissipation speed is
computed as follows:

vr =
qc

K j −Kc
(2)
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Figure 1. Fundamental Diagram.

Figure 2 shows the movement trajectories of a group of vehicles approaching and passing through
a single intersection. The horizontal axis represents the operation time, the thick solid line represents
the red phase, and the fine line represents the green phase. The vertical coordinate represents the
distance of a vehicle to the intersection stop bar. Once entering the speed guidance segment, the vehicle
will receive speed advice, where the solid line represents the speed guidance without considering
the queue. The aim of the speed guidance strategy is to prevent vehicles from coming to a stop;
however, the strategy sometimes cannot completely prevent vehicle stops. The speed guidance strategy
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proposed in this paper is an eco-speed guidance strategy that considers the vehicle queue. The dotted
line represents a vehicle’s trajectory after accepting eco-speed guidance.

Sustainability 2019, 11, x FOR PEER REVIEW 5 of 13 

speed guidance strategy proposed in this paper is an eco-speed guidance strategy that considers the 

vehicle queue. The dotted line represents a vehicle’s trajectory after accepting eco-speed guidance.  

 

Figure 2. Vehicle Trajectories. 

Once a driver receives speed guidance information, he or she may adjust his/her 

acceleration/deceleration to the target speed. The process of the adjustment will be determined by 

three parameters reflecting the driver's bounded rationality, i.e., the response time, the threshold of 

acceptance, and the execution level [41]. The eco-speed guidance strategy can be formulated as 

follows: 

𝑑 =
𝑣𝑠
2 − 𝑣0

2

2𝑎
+ (𝑇 −

𝑣𝑠 − 𝑣0
𝑎

) ∙ 𝑣𝑠 (3) 

where d is the optimal distance to the stop bar at which the speed guidance is accepted and drivers 

adjust their driving behavior when there is no queue occurring at the stop line; v0 is the current speed; 

vs is the target speed; a is acceleration/deceleration and is set according to the suggested maximum 

values [31]; T is the travel time to approach the stop line or the tail of the queue. 

{

𝑇 = 𝑡𝑟 − 𝑡, 𝑎 > 0

𝑇 = 𝑡𝑔 − 𝑡 +
𝑑 − 𝑙

𝑣𝑟
, 𝑎 < 0

 (4) 

where t is the current time; 𝑙 is the queue length; tg and tr are the times at which the traffic light turns 

to green or turns to red, respectively; and the target speed vs is defined here as follows [41]: 

𝑣𝑠 = {
𝑣0 + 𝑎𝑇 − √𝑎(𝑎𝑇2 + 2𝑣0𝑇 − 2𝑑), 𝑎 > 0

𝑣0 + 𝑎𝑇 + √𝑎(𝑎𝑇2 + 2𝑣0𝑇 − 2𝑑), 𝑎 < 0
 (5) 

s.t. 

𝑣𝑚𝑖𝑛 < 𝑣𝑠 < 𝑣𝑚𝑎𝑥 , 0< 𝑎 < 𝑎𝑚𝑎𝑥 , 
|𝑣𝑠

2 − 𝑣0
2|

2𝑎
⁄ ≤ 𝑑 (6) 

4. Numerical Tests 

In this section, we choose an isolated signalized intersection in Dalian as a study site to examine 

the proposed eco-speed guidance model, as shown in Figure 3. This study focuses on exploring each 

vehicle’s energy consumption and emissions when the vehicle passes through a signalized 

intersection under different traffic volume scenarios. We analyze the effect of queues for the speed 

guidance strategy and investigate the impacts of different market penetration rates of EVs on the eco-

speed control strategy. This paper also explores the impact of the guidance time interval on vehicle 

emissions to obtain results with practical guidance. 

Figure 2. Vehicle Trajectories.

Once a driver receives speed guidance information, he or she may adjust his/her
acceleration/deceleration to the target speed. The process of the adjustment will be determined
by three parameters reflecting the driver’s bounded rationality, i.e., the response time, the threshold
of acceptance, and the execution level [41]. The eco-speed guidance strategy can be formulated as
follows:

d =
v2

s − v2
0

2a
+

(
T −

vs − v0

a

)
·vs (3)

where d is the optimal distance to the stop bar at which the speed guidance is accepted and drivers
adjust their driving behavior when there is no queue occurring at the stop line; v0 is the current speed;
vs is the target speed; a is acceleration/deceleration and is set according to the suggested maximum
values [31]; T is the travel time to approach the stop line or the tail of the queue.{

T = tr − t, a > 0
T = tg − t + d−l

vr
, a < 0

(4)

where t is the current time; l is the queue length; tg and tr are the times at which the traffic light turns
to green or turns to red, respectively; and the target speed vs is defined here as follows [41]:

vs =

 v0 + aT −
√

a(aT2 + 2v0T − 2d), a > 0
v0 + aT +

√
a(aT2 + 2v0T − 2d), a < 0

(5)

s.t.

vmin < vs < vmax, 0 < a < amax,

∣∣∣v2
s − v2

0

∣∣∣
2a

≤ d (6)

4. Numerical Tests

In this section, we choose an isolated signalized intersection in Dalian as a study site to examine
the proposed eco-speed guidance model, as shown in Figure 3. This study focuses on exploring each
vehicle’s energy consumption and emissions when the vehicle passes through a signalized intersection
under different traffic volume scenarios. We analyze the effect of queues for the speed guidance
strategy and investigate the impacts of different market penetration rates of EVs on the eco-speed
control strategy. This paper also explores the impact of the guidance time interval on vehicle emissions
to obtain results with practical guidance.
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In the following numerical tests, we select PM2.5, NOx, CO, CO2 for ICEVs and total energy
consumption (TEC) of both EVs and ICEVs as the analysis indices. Different driving behaviors have
different effects on each type of emission, i.e., the amount of NOx increases with increasing vehicle
velocity when the speed is less than 65 km/h. By contrast, a lower the speed results in a higher CO
emission rate, while the CO emission rate decreases with increasing vehicle speed. Similarly, an idle
ICEV will produce more CO2.

The EV energy consumption estimation model proposed by Wu et al. [3] is used in this paper and
listed as follows.

P(v, a) =
rR2

K2

(
ma + Kv2 + frlmg + mgsinθ

)2
+ v

(
kv2 + frlmg + mgsinθ

)
+ mav (7)

where

P is the power losses;
r is the resistance of the conductor in a motor;
K = KaΦd, where Ka is the armature constant and Φd is the magnetic flux;
R is the radius of the tire;
k = (ρ/2)CDAf; where ρ is air density, CD is coefficient of drag and Af is frontal area of the vehicle;
frl is rolling resistance constant;
g is gravity acceleration;
θ is the roadway grade.

This model analyses the effects of speed, acceleration and road gradient on the instantaneous
power of EVs and the electric consumption, together with the electric regeneration during braking.
The parameters in Wu et al. [3] are employed in this study. All other emissions are estimated by
Multi-scale mOtor Vehicle and equipment Emission System (MOVES) model [47], a new generation
regulatory emission model that was developed by U.S. Environmental Protection Agency [48]. In this
paper, quantitative analysis is made on different energy consumption and emission models of EVs and
traditional ICEVs.

4.1. Energy Efficiency of Considering Vehicle Queues

Preventing vehicles from coming to a complete stop before entering the intersection can reduce
energy consumption and emissions. However, without considering the queue impact, the strategy
cannot completely avoid vehicle stops. In the following scenarios, a market penetration rate (MPR) of
EVs is chosen as 50% in order to reduce the possible reciprocal effect due to imbalance MPR.
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Before examining the energy reduction effects, we define an index to quantify the impact, i.e.

δi =
Eio − EiQ

EiQ
(8)

where i is the type of vehicle’s emissions or energy consumption; EiQ is the vehicle’s total energy
consumption or emissions under the eco-speed guidance strategy; Ei0 is the vehicle’s total energy
consumption or emissions under the eco-speed guidance strategy without considering the queue; and
δi is the reduction rate.

The numerical results for through lane and left-turn lane are shown in Figures 4 and 5, separately.
The results are listed as follows:

(1) Considering the effects of vehicle queues can optimize vehicle trajectories to reduce emissions
and energy consumption for both EVs and ICEVs.

(2) When the traffic volume was relatively low (e.g., 600 pcu/h and 900 pcu/h), the effect of the queue
was relatively low. Because of the low volume, the traffic conditions were free flow, and vehicle
operation is basically unaffected by other vehicles. Additionally, the queue lengths are short.
When the traffic light turns green, the queue will dissipate quickly, and stopped vehicles will not
affect the following vehicles, especially EVs with high acceleration rates that can quickly reach
the desired speed.

(3) In the medium-volume (e.g., 1200 pcu/h and 1500 pcu/h) scenarios, optimized effects are more
obvious. The traffic flow is in the middle of the steady flow range, and there is a certain effect
between vehicles. When the queue lengths are longer, there will be some vehicles that still have
to wait while stopped after taking the strategy, and the eco-speed guidance strategy will provide
low-speed advice to make vehicles pass through the intersection without stops.

(4) In the high-volume (e.g., 1800 pcu/h and 2100 pcu/h) scenarios, the optimization effect is most
obvious. At this point, traffic stability is poor, vehicles will usually be affected by the vehicles
in front, and there is often a longer queue length at the signalized intersection. Most vehicles
must slow down or stop while waiting to pass through the intersection. The eco-speed guidance
strategy has a significant impact on reducing the lengths of stops, so it has an obvious optimization
effect on emissions and total energy consumption.

(5) The straight lane has better optimization effects than the left-turn lane because of the influence of
the signal, and the turn-left lane has a long red phase duration. After optimization, more vehicles
can pass through the intersection by deceleration rather than stopping.
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4.2. Sensitivity of Energy Efficiency to Various MPR of EVs

This section discusses the simulation results with various MPR situation of EVs (ranging from
10% to 90%), where ten simulations were conducted for each MPR situation in each volume scenario,
the average emission and TEC from each of the ten simulations are calculated and provide a sensitivity
analysis. It should be noted that only a straight lane is selected as the study site to examine the effect of
reduction rates under different MPRs of EVs in three volume scenarios.

The numerical results for three various traffic volume conditions are shown in Figures 6–8. The
results are listed as follows:

(1) This model has a good impact on vehicle energy consumption and emissions under three different
volume scenarios for both gasoline vehicles and EVs. This guidance strategy can lead to fewer
stops and optimize the vehicle’s trajectory.

(2) For the low-volume scenario, this model has a great influence on reducing NOx and CO2 and a
positive effect on other emissions and energy consumption of EVs; however, the model has only a
small impact on PM2.5 because in low-volume traffic conditions, most cars may pass through an
intersection with an acceleration or constant speed pattern. When the share of EVs reaches 50%
to 60%, the strategy can achieve a better guidance effect.

(3) For medium volume, more vehicles after guidance will adopt a deceleration pattern, and the
reduction effect of optimization on PM2.5 becomes significant. When the share of EVs reaches
80%, a better guidance effect will occur.

(4) For high volume, this model still has a good impact on PM2.5, but for others, especially the energy
consumption of EVs, the strategy has a limited influence because EV braking or deceleration will
recover some energy. With increasing MPR of EVs, the guidance effects increase.

(5) Compared to the scenario of lower traffic volume, the MPR of EVs have much more influence on
the emission reduction rate under the high traffic volume scenario. The reduction rates for all
three traffic volume scenarios are not monotone increasing, which prove the complexity in the
stability and broad applicability of speed guidance strategy and thus future studies are required.
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4.3. Sensitivity of Energy Efficiency to Time Interval

In the implementation of the speed guidance strategy, although second-by-second guidance can
make the vehicle pass through the intersection more smoothly, considering the rationality of the driver,
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the release of speed guidance information should consider timing. Reducing the frequency at which
drivers receive information can help to reduce the impact of speed guidance strategies on driving
safety, and this approach can also make the simulation study closer to actual conditions.

Tables 1–3 show the emissions and energy consumption results obtained with different guidance
time intervals. The results are listed as follows:

(1) As the guidance time interval increases, the emissions show a trend of decreasing first and then
increasing or growing rapidly after gradual growth.

(2) Under a low flow rate, as the guidance time interval increases, the emissions will change gently
first, followed by rapid growth. The best guidance intervals are 5~7 s because when the volume
is low, the number of vehicles ahead is short, the queues at the intersection are short, and the
expected speed under the fuzzy guidance strategy does not change frequently.

(3) At medium or high flow rates, as the guidance time interval increases, the emissions decrease
first and then increase. The best guidance time interval is usually no longer than 5 s because
when the volume is large, there are more vehicles ahead, the acceleration behaviour of a vehicle is
affected by the preceding vehicle, and the long queues at the intersection change at any time, so
the expected speed given by the fuzzy guidance strategy will change at any time. Compared with
the second-by-second guidance, the expected changes in speed for 3~5 s intervals are smaller.

Table 1. Emissions at Low Volume.

1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

Straight
lane

PM2.5 (g) 0.0932 0.0932 0.0930 0.0927 0.0928 0.0932 0.0935 0.0940
TEC (kJ) 87,573.43 87,513.8 87,524.49 87,405.64 87,047.14 87,181.47 87,393.67 89,662.52
CO2 (g) 5742.03 5836.76 6002.62 6138.63 6183.91 6310.22 6359.21 6515.61
NOx (g) 4.5769 4.52 4.5008 4.5148 4.5103 4.5016 4.5021 4.6069
CO (g) 51.5292 51.645 51.8331 52.0968 52.0561 52.3456 52.3949 52.8811

Left-turn
lane

PM2.5 (g) 0.0213 0.0212 0.0212 0.0209 0.0221 0.0224 0.0227 0.0233
TEC (kJ) 19,854.28 19,886.63 19,820.06 19,898.41 19,916.03 19,909.5 20,183.97 20,276.78
CO2 (g) 1316.90 1357.84 1402.85 1413.12 1439.92 1470.14 1508.95 1536.70
NOx (g) 0.9801 1.0207 1.0433 1.0612 1.0953 1.1002 1.1260 1.1648
CO (g) 11.8325 11.6880 11.9850 11.9704 12.0970 11.8853 12.7650 13.0979

Table 2. Emissions at Medium Volume.

1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

Straight
lane

PM2.5 (g) 0.2550 0.2724 0.2927 0.2960 0.2992 0.2839 0.2745 0.2618
TEC (kJ) 189,910.2 187,453 189,235 190,280.7 195,696 195,524.5 196,590.2 196,087.2
CO2 (g) 13,145.13 13,259.66 13,815.74 13,962.31 14,998.29 14,257.24 14,128.3 14,413.53
NOx (g) 10.4206 11.3725 11.806 11.8131 13.0749 12.3239 12.3612 12.3819
CO (g) 120.0596 131.4939 134.7215 136.4452 151.4867 147.2736 147.5452 147.9185

Left-turn
lane

PM2.5 (g) 0.0537 0.0550 0.0542 0.0551 0.0556 0.0554 0.0554 0.0553
TEC (kJ) 47,621.92 47,622.4 47,434.47 47,869.03 48,595.76 48,953.9 49,924.72 50,879.12
CO2 (g) 3321.81 3522.14 3448.37 3476.12 3521.16 3661.88 3659.79 3656.51
NOx (g) 3.2821 3.2879 3.2493 3.2125 3.2296 3.2928 3.2878 3.2825
CO (g) 29.6279 29.7277 29.5447 29.2070 29.4857 30.0055 30.3652 30.3283

Table 3. Emissions at High Volume.

1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

Straight
lane

PM2.5 (g) 0.4164 0.4321 0.3942 0.4001 0.3908 0.3825 0.3740 0.3686
TEC (kJ) 461,336.3 470,190.1 459,433 454,654.8 466,362.6 479,816.8 519,229.8 514,366
CO2 (g) 33,154.7 35,228.33 30,143.25 30,518.56 29,491.4 29,368.46 27,724.68 27,623.10
NOx (g) 21.3197 21.3017 21.3673 21.4214 21.4557 21.5044 21.6289 21.6352
CO (g) 241.7943 240.5921 235.9937 238.6056 239.0073 239.1202 240.59 241.3298
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Table 3. Cont.

1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

Left-turn
lane

PM2.5 (g) 0.1197 0.1201 0.1143 0.1196 0.1235 0.1092 0.1104 0.1138
TEC (kJ) 161,633.5 154,825 145,921.2 151,356.6 163,552.4 161,866.7 164,260.3 178,955.4
CO2 (g) 11,616.05 11,126.74 10,268.17 10,877.48 11,753.98 9879.8 10,066.91 10,704.94
NOx (g) 5.8289 5.6136 5.4122 5.6001 5.7587 5.3503 5.3991 5.5731
CO (g) 77.5974 74.4519 69.6518 73.2415 77.9502 77.5996 78.6660 77.3319

5. Conclusions

In this paper, we propose an eco-speed guidance model that considers queue effects to address
the energy/emission reduction issue, and this model considers the different characteristics of EVs and
ICEVs. The methodology is applied to simulate 54 different scenarios, combining three different traffic
volumes with nine different MPRs of EVs and two guidance strategies. Compared with previous
studies, this work contributes to considering mixed traffic flow of EVs and ICEVs under a speed
guidance strategy. Numerical examples demonstrate that the proposed eco-speed guidance model
has better performance than that without considering the impact of the queue under certain MPRs of
EVs, especially at high traffic volume. Compared to without using a guidance strategy, this model
has a good impact on energy/emission reduction under different scenarios. When the MPR of EVs
reaches 50%, a better guidance result will be obtained. When the total traffic volume is relatively high,
the energy/emissions reduction effects under eco-speed guidance increase with an increasing share of
EVs. It seems that setting 5 s as the guidance renewal time interval is more appropriate in the sample.
Therefore, it would be interesting for future research directions to expand the model under higher
traffic volumes and to further improve energy efficiency by providing different guidance strategies for
EVs and ICEVs separately.
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