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Abstract: Given the rapid development and wide application of wind energy, reliable and stable
wind speed forecasting is of great significance in keeping the stability and security of wind power
systems. However, accurate wind speed forecasting remains a great challenge due to its inherent
randomness and intermittency. Most previous researches merely devote to improving the forecasting
accuracy or stability while ignoring the equal significance of improving the two aspects in application.
Therefore, this paper proposes a novel hybrid forecasting system containing the modules of a
modified data preprocessing, multi-objective optimization, forecasting, and evaluation to achieve the
wind speed forecasting with high precision and stability. The modified data preprocessing method
can obtain a smoother input by decomposing and reconstructing the original wind speed series
in the module of data preprocessing. Further, echo state network optimized by a multi-objective
optimization algorithm is developed as a predictor in the forecasting module. Finally, eight datasets
with different features are used to validate the performance of the proposed system using the
evaluation module. The mean absolute percentage errors of the proposed system are 3.1490%, 3.0051%,
3.0618%, and 2.6180% in spring, summer, autumn, and winter, respectively. Moreover, the interval
prediction is complemented to quantitatively characterize the uncertainty as developing intervals,
and the mean average width is below 0.2 at the 95% confidence level. The results demonstrate the
proposed forecasting system outperforms other comparative models considered from the forecasting
accuracy and stability, which has great potential in the application of wind power systems.

Keywords: wind speed forecasting; echo state network; forecasting accuracy; stability and practicality;
hybrid forecasting system; interval prediction

1. Introduction

Advances in the development and utilization of renewable energies have greatly decreased
environmental pollution and brought about extensive socio-economic benefits. Among various
renewable energies, wind energy, as a kind of emission-free, cheap, inexhaustible, and accessible
energy, is of great significance in the world energy structure. From the Renewables 2018 Global Status
Report (GSR) [1], until the end of 2017, the global wind turbines’ installed capacity achieved about a
539 GW increase by nearly 11%, with more than 52 GW newly added in 2017, and the installed capacity
got its third largest growth year ever. For many countries, wind power has become the backbone of
strategies to phase out fossil and nuclear energy. In 2017, 43% of Denmark’s power came from wind,
setting a new world record. A growing number of countries have reached a double-digit share of
wind power, including Germany, Spain, Sweden, Portugal, Ireland, and Uruguay. Until the end of
2017, China was still the largest wind power market with a capacity of 190 GW installed and will
continue its undisputed global leader position of wind power. Figure 1 shows the distribution of global
leading countries in wind power installation capacities in 2017. Wind power has become one of the
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fastest increasing renewable energies around the world and greatly impacts the sustained economic
development [2,3].
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However, the power integration faces a considerable challenge because of the inherent highly
stochastic and intermittent nature of wind power, which unavoidably impairs not only the dispatch
and management of the electric system but also the stability of the power grid [4]. Therefore, wind
speed evaluation as well as wind speed forecasting (WSF) is an effective way to address the above
problems and to accomplish secure and reliable electricity dispatch and management. Accurate and
stable WSF helps the power system satisfy the electricity demands of economic and social development
on the basis of being resource-conserving and environment-friendly [5,6]. Considering the significance,
researchers have carried on a large amount of research about both the theory and practice of WSF.
Furthermore, to achieve better predictions, more and more approaches are developed for WSF that
could be generally grouped to four classes [7]: physical models, statistical models, artificial intelligence
models, as well as hybrid models.

Physical models, based on numerical weather prediction (NWP), generally employ meteorological
data and geographic feature information to forecast future wind speeds [8–10]. With the development
of numerical simulation, reanalysis data [11,12] and satellite data [13,14] have been used in wind
speed evaluation gradually. They usually require much more for the model parameters so that the
application of physical methods is inevitably restricted by the uncertain weather conditions and the
performance of NWP. In the situation of climate change, researches use climate models [15,16] to
predict the future wind speed. Giménez, P.O. [17] demonstrated that reanalysis data and satellite
data facilitate a reliable wind speed evaluation; they also considered the impacts of climate change on
wind speed. Considering the various data types and parameters, the physical methods can achieve
high forecasting accuracy. However, they bring on considerable computation time and computation
complexity. Furthermore, they are unsatisfactory for short-term wind speed forecasting (STWSF).

Statistical models are much more appropriate for STWSF, which make the utmost of the historical
data to model their inner relationship and then to build statistical models to predict the future
wind speeds [18]. These methods have better forecasting performance and faster processing speeds.
However, these models are based on the linear assumption so that they cannot describe exactly the
wind speed time series which is essentially non-linear.

Recently, with the rapid development and extension of artificial intelligence techniques, researches
have been aware of the artificial intelligence’s excellent ability to deal with the nonlinear feature of
wind speed data [19]. Artificial intelligence, for instance, the artificial neural network (ANN), the
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support vector machine (SVM), as well as the extreme learning machine (ELM), has been resoundingly
employed for wind speed forecasting. An artificial intelligence technique is equipped to handle
complex relationships and to make decisions under uncertainty based on its excellent self-learning
and self-adaptation ability [20]. However, the common ANN like back propagation neural network
(BPNN) that demands intricate training processing [21] may be easily trapped into local optimum [19]
and needs a long training time. Other artificial intelligence techniques like SVM are of a compute
burden associated with the sample size [22–27]. Therefore, it is hard to achieve wonderful wind speed
forecasting performances using these methods. Echo state network (ESN), which has shown successful
applications to time series forecasting like load forecasting, stock forecasting, energy consumption
forecasting, and so on, can deal with the difficulties mentioned above but is still rarely applied in wind
speed time series forecasting [28–32]. According to the literature [33–37], ESN replaces the hidden
layer with a reservoir composed of many interconnected neurons so that it can (a) Reduce computation
complexity and improving training efficiency; (b) achieve a higher forecasting accuracy; (c) capture
complex dynamics in nonlinear time series; and (d) help avoid over-fitting problem. Therefore, ESN is
competent for wind speed forecasting and can show an outstanding ability in practical applications.

Obviously, the application of ESN will make great progress in wind power forecasting, but the
inherent stochastic and intermittent nature of wind power works against getting satisfactory forecasting
results. Thus, to overcome the existing problems and to achieve a high accuracy of wind speed forecasting,
researchers try to combine multifarious algorithms based on their individual advantages called hybrid
methods. Commonly, a hybrid model exerts a certain mechanism to preprocess the original signals
and then predicts through an optimized predictor. Zhang et al. [38] proposed a hybrid system which
compounds hybrid backtracking search algorithm (HBSA), optimized variational mode decomposition
(OVMD), as well as ELM. Results obtained from the research indicate the more satisfying performance
in wind speed forecasting of hybrid models. Likewise, Du et al. [39] applied complementary ensemble
empirical mode decomposition (CEEMD) and Elman neural network constituting a new hybrid model,
which achieved more accurate results in wind speed forecasting. Researches demonstrate that hybrid
models are capable of improving the precision effectively in wind speed forecasting.

Based on the literature research, the defect of the aforementioned methods can be summarized as
(1) physical models, including reanalysis data, satellite data, and climate models, are unsatisfactory for
STWSF and the computation time and computation complexity are considerable as well; (2) statistical
models cannot describe exactly the essentially non-linear and fluctuation features of wind speed, but
they are effective in predicting under small change of climate and other influencing factors, though the
prediction performance is not ideal in the case of a large variety of random factors or poor-quality data; (3)
artificial intelligence methods can capture the essentially nonlinearity and improve the accuracy of STWSF,
but they also have some disadvantages, such as easy to be trapped into local optimum, over-fitting, and so
on; and (4) hybrid models combine data preprocessing, optimization, and artificial intelligence methods
to overcome the drawbacks and achieve better forecasting performance. Researches indicates that hybrid
models can capture the feature of wind speed and combine the advantage of different methods, having
great significance in improving the accuracy of STWSF [39].

Researchers have made a lot of improvement in wind speed forecasting models, but most
researches focus on point forecasting and ignore the uncertainty in the forecasting process, which
will pose risks to the operation and management of the power system. To analyze the uncertainty,
Li et al. [6] conducted an interval prediction using a hybrid model to gain both high coverage and small
width. Naik et al. [40] proposed a hybrid model based on the low rank Multi-kernel ridge regression
and obtained a good performance in the wind speed interval prediction. Shrivastava et al. [41]
employed a hybrid framework based on SVM to capture the forecasting uncertainty and results show
it can generate high quality prediction intervals. The inherent uncertainty can disturb the decision
making and bring risk to wind farm operating, so it is essential to quantify the uncertainty via wind
power interval forecasting. Furthermore, point forecasting generates only one forecasting value at each
which can simply and directly reflect the future wind power situation [3], while interval forecasting
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produces the upper and lower bounds of the forecasted wind speed at a certain confidence level.
To mitigate risks and to improve the management level of the wind power system, point forecasting
combining with interval forecasting can make a great contribution.

Considering the superiority of hybrid models, we developed a novel hybrid forecasting system
composed of the modules of data preprocessing, forecasting, optimization, and evaluation. Due to
inherent volatility and irregularity of the raw wind speed, the data preprocessing module plays a
vital part in the system. Furthermore, most previous data preprocessing methods were too primitive
to fully mine the characteristics of the wind speed data. Wherefore in this paper, an improved data
preprocessing algorithm—Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN)—is adopted, which can improve the preprocessing effect by adding adaptive white noise
among every decomposition. For further improvement, most previous researches employ optimization
algorithms to improve the forecasting accuracy. Genetic algorithm (GA) is an effective heuristic
algorithm which has shown advantages in wind speed forecasting through the self-improvement
mechanism. Wang et al. [27] applied the ensemble empirical mode decomposition (EEMD) and ANN
optimized by GA constituting a new hybrid model, which can predict wind speed more accurate
than before. However, there is no universal parameter for GA; and it needs to be continually seeking.
Furthermore, sometimes a small change of parameters can make a huge difference to the algorithm
results and performance. Therefore, GA can be unstable and be susceptible to changes. A. Khosravi [42]
compared adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization
algorithm (PSO) and GA, and the results showed the ANFIS-PSO outperformed the ANFIS-GA, which
means the performance of GA is not excellent enough. Additionally, the previous single-objective
optimization algorithms, which only focus on improving forecasting accuracy, is not sufficient. So this
paper introduces a Multi-Objective Grey Wolf Optimization (MOGWO) algorithm into the optimization
module, which focuses on improving the forecasting accuracy as well as enhancing the forecasting
stability. Obviously, with the perfection of the model, the model complexity and computing time are
increased; therefore, to overcome the aforementioned drawbacks on the basis of guaranteeing the
forecasting effect, the forecasting module applies ESN which is simple and fast but of great forecasting
capabilities. Finally, the evaluation module evaluates the proposed system based on the experiments of
four datasets with different seasons and four datasets with different sites and time intervals. The newly
developed hybrid system CEEMDAN-MOGWO-ESN is supposed to balance the superiorities and
drawbacks existing in different algorithms and to achieve excellent forecasting results both at wind
speed point forecasting and interval forecasting.

The innovation points and contributions of the conducted research are summarized below:

1. Develop a novel hybrid forecasting system for wind speed forecasting. The empirical results
indicate the system can integrate advantages of the data preprocessing, optimization, as well as
forecasting methods and achieve better forecasting performance in wind speed forecasting.

2. The developed novel forecasting system has strong applicability. This paper employs three
experiments to demonstrate that the proposed system can be used for wind speed forecasting
with different seasons, different sites, and different time intervals.

3. The proposed hybrid system not only performs well for point forecasting but also implements
for interval forecasting. The novel system can quantify the uncertainty as forecasting intervals,
and the results indicate the developed system performs well in wind speed interval forecasting.

4. The proposed hybrid system can improve the wind speed forecasting accuracy and stability
simultaneously while most previous research can only focus on one side. The experiment results
demonstrate that the multi-objective optimization algorithm can not only improve the forecasting
accuracy and stability simultaneously but also outperform other optimization algorithms.

5. This paper conducts a comprehensive evaluation of the proposed forecasting system. Ten evaluation
metrics, forecasting effectiveness, grey relational analysis, as well as hypothesis testing are combined
to demonstrate the advancement of the proposed hybrid forecasting system.
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The structure of the paper is organized as follows: Section 2 presents the relevant theories
employed in the proposed model in detail, including the theory of CEEMDAN, MOGWO, and ESN
and the evaluation methods. The proposed hybrid system is set forth in Section 3. Section 4 introduces
the experiment set and the forecasting results analysis. Several discussions are conducted in Section 5.
Finally, Section 6 concludes the whole paper.

2. Methodology

The components of the proposed hybrid system containing the fundamental theories of the
decomposition technique CEEMDAN, the forecasting method ESN, the multi-objective optimization
algorithm MOGWO, as well as the evaluation methods are presented in this section.

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

To decrease high computational cost and to eliminate the residual noise of EEMD while alleviating
the mode mixing problem of EMD, Torres et al. [43] proposed CEEMDAN by adding the finite time of
the adaptive white noise in each decomposition. The distinct advantages of CEEMDAN are as follows:
(1) Introduce the noise coefficient vector to control the added noise level for each decomposition; (2)
the reconstruction as well as the decomposition is complete and without a noise component; and (3) it
is more efficient in the EMD family.

The CEEMDAN computation can be achieved as follows:
Step 1. Adding one white Gaussian noise signal with standard normal distribution, the obtained

series can be shown as
si(n) = s(n) + ε0vi(n) i = 1, · · · I (1)

where i indicates the trial number, s(n) represents the original series, and vi(n) indicates the added
white noise series.

Step 2. Getting the first intrinsic mode function (IMF) by the EMD method:

IMF1(n) =
(
∑I

i=1 IMFi
1(n)

)
/I (2)

Step 3. The first residue can be calculated as (k = 1):

r1(n) = s(n)− IMF1(n) (3)

Step 4. The k-th residue can be calculated as

rk(n) = s(n)− IMFk(n) k = 2, · · ·K (4)

Step 5. Decompose the residue with added noise to get the (k + 1)-th IMF:

IMFk+1(n) =
(
∑I

i=1 E1(rk(n)) + εkEk(vi(n))
)

/I (5)

Step 6. Repeat Steps 4 and 5, until you find out all the IMFs.
In the end, the final residue is

R(n) = s(n)−∑K
k=1 IMFk (6)

Thus, the original signal is decomposed into

s(n) = ∑K
k=1 IMFk + R(n) (7)
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2.2. Echo State Network

ESN proposed by Jaeger [44] is a new type of recurrent neural network, which is consisted of
an input layer, a DR (dynamical reservoir) designed by an interconnected recurrent grid of recurrent
neurons, and an output layer. The schematic of ESN is shown in Figure 2D. Different from traditional
neural networks, the link weights of the input layer to DR and inside the DR are firstly selected then
stay fixed, so merely the DR to output layer link weights need be trained. The ESN output can be
expressed as

X(n + 1) = F(WinU(n + 1) + WX(n) + WbackY(N)) (8)

where U(n + 1) and X(n + 1) represent the input vector and hidden layer state at (n + 1); F indicates
the hidden layer’s activation function; Win, W, and Wback are respectively the input-DR, DR-DR,
and output-DR weighting matrix; and the output Y at time (n + 1) can be obtained by

Y(n + 1) = G
(

Wout

[
UT(n + 1), XT(n + 1)

]T
)

(9)

where Wout is the output weight matrix, Wout = (X−1Y)T, and G represents the output layer
activation function.

The output weight Wout is the only parameter that needs to be obtained from the training; the
Wout can be calculated through the linear regression algorithm:

Wout = (X−1Y)
T

(10)

Compared with other methods, ESN shows the following features: (1) The training process of ESN
is much faster and simple and (2) ESN shows more advantages in the processing of one-dimension
time series.

2.3. Multi-Objective Grey Wolf Optimization

The MOGWO proposed by Mirjalili et al. [45] is an advanced optimization algorithm based on the
grey wolf optimization (GWO). The GWO simulates the social hunting behavior of grey wolves: the
optimal solutions are generated by alpha (α) wolf, the second solutions are generated by beta (β) wolf,
and the third solutions are generated by delta (δ) wolf. Furthermore, α, β, and δ wolves dominate the
exploration for the global optimum, and omega (ω) wolves, which generate the remainder solutions,
just follow them.

The wolves encircle the prey and update its location at the beginning. Equations (11) and (12)
simulate the encircling process of the grey wolves [46]:

→
G =

∣∣∣∣→B · →Xp(t)−
→
X(t)

∣∣∣∣ (11)

→
X(t + 1) =

→
Xp(t)−

→
K ·
→
G (12)

where t represents the current iteration,
→
Xp and

→
X denote the location of the prey and grey wolves

respectively, and
→
B and

→
K denote the coefficient vectors and can be calculated as

→
K = 2

→
k ·
→
h 1 −

→
k (13)

→
B = 2 ·

→
h2 (14)

where
→
h 1 and

→
h 2 are random vectors within [0,1] and

→
k decreases from 2 to 0 as the iterations.
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To improve the solution quality, the grey wolves update their positions based on the leading
of the first three wolves (α, β, and δ). The mechanism of hunting and updating the positions can be
simulated as follows:

→
Gα =

∣∣∣∣→B1 ·
→
Xα −

→
X
∣∣∣∣ (15)

→
Gβ =

∣∣∣∣→B2 ·
→
Xβ −

→
X
∣∣∣∣ (16)

→
Gδ =

∣∣∣∣→B3 ·
→
Xδ −

→
X
∣∣∣∣ (17)

→
X1 =

→
Xα −

→
K1 ·

→
Gα (18)

→
X2 =

→
Xβ −

→
K2 ·

→
Gβ (19)

→
X3 =

→
Xδ −

→
K3 ·

→
Gδ (20)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(21)

The MOGWO is developed from the GWO by integrating the two important components: the archive
and leader selection strategy [47]. The archive is applied to store the non-dominated solutions generated
in each cycle of GWO. The archive management mechanism exploited in MOGWO controls the entering
and exiting of the solutions and helps keep the balance of the solutions in the archive. The leader selection
strategy plays a vital part in choosing the α, β, and δ wolves from the archive by the roulette-wheel method.
Additionally, more detailed information about MOGWO can be found in Reference [45].

To improve the forecasting accuracy and to enhance the forecasting stability simultaneously,
two objective functions are designed based on the MOGWO. The objective functions are shown
in Algorithm 1. For improving the forecasting accuracy, the objective function fitness1 is designed
according to the mean absolute error. Meanwhile, to improve the stability, fitness2 is designed via
the forecasting error’s variance. Because accuracy and stability are both important in wind speed
forecasting, the weights of the two objectives are set to be the same.

2.4. The Forecasting Performance Evaluation

To evaluate the forecasting performance of the proposed hybrid system in wind speed point
forecasting completely, this research designed a complete and scientific evaluation module containing
nine appropriate evaluation metrics as well as another two evaluation methods. Moreover, to evaluate
the interval forecasting performance of the proposed system, five assessment indices are introduced.

2.4.1. The Typical Evaluation Metrics

Various evaluation indicators have been employed to assess the forecasting error by the researchers
without a universally accepted standard in comparing different models’ forecasting results. Therefore,
ten typical evaluation metrics are applied to estimate the forecasting performance, as shown in Table 1.
More specifically, the average error of n forecast result (AE) and root mean-square error (RMSE)
reflect the forecasting error in a different way. The mean absolute percentage error (MAPE) can reflect
the difference between the forecasting and the actual values. The median absolute percentage error
(MdAPE) is a measure of statistical dispersion. The fractional bias of n forecast result (FB) shows the
number of “under” or ”over” forecasting. The index agreement of the forecast result (IA) can compare
the performance of different methods since it is dimensionless. The Theil U statistical 1 of forecast
result (U1) measures the forecast accuracy, and the Theil U statistical 2 of forecast result (U2) measures
the forecast quality. Pearson’s correlation coefficient, r, is used to measure the correlation relationship
between the forecasting and actual values. Except r and IA, smaller values of the other error criteria
reflect better forecasting performances.
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Table 1. Evaluation Metrics.

Metric Definition Equation

MAPE Mean absolute percentage error MAPE =1⁄n×∑n
i=1|(ai − fi)/ai| × 100%

AE Average error of n forecast result AE =1⁄n×∑n
i=1(ai − fi)

RMSE Root mean-square error RMSE =
√

1/n×∑n
i=1(ai − fi)

2

MdAPE Median absolute percentage error MdAPE = median(| fi − ai/ai| × 100%)

FB Fractional bias of n forecast result FB = 2
(

a− f
)

/
(

a + f
)

IA Index agreement of the forecast result IA = 1−∑n
i=1( fi − ai)

2/∑n
i=1(| fi − a|+ |ai + a|)2

U1 Theil U statistical 1 of forecast result U1 =
√

1/n×∑n
i=1(ai − fi)

2/
√

1/n×∑n
i=1 f 2 +

√
1/n×∑n

i=1 ai
2

U2 Theil U statistical 2 of forecast result U2 =
√

1/n×∑n
i=1(( fi+1 − ai+1)/ fi)

2/
√

1/n×∑n
i=1(( fi+1 − ai)/ fi)

2

r Pearson’s correlation coefficient r = (∑ ai fi −∑ ai∑ fi/n)/
√(

∑ fi
2 − (∑ fi)

2/n
)(

∑ ai
2 − (∑ ai)

2/n
)



Sustainability 2019, 11, 526 9 of 34

Here, ai and fi respectively signifies the actual value and the forecasting value at time i, a and f
indicate the mean value of the actual value and the forecasting value, respectively, and n represents
the size of the sample in this research.

2.4.2. The Other Two Evaluation Methods

For further verifying the meliority of the proposed hybrid system in wind speed forecasting, this
paper employs the grey relational analysis (GRA) and forecasting effectiveness (FE) [48] to extend
the evaluation module. The main thought of GRA is to determine whether the degree of similarity
between the forecasting sequence’s curve and the original series’ curve is high. A higher level of
the curve’s similarity corresponds to the higher correlation between the corresponding sequences,
and vice versa. Wang [49] describes the details of GRA. Moreover, the basic idea of FE is to assess the
models’ performance by the square sum of the forecasting errors and the mean squared deviation of
the forecasting accuracy. A greater FE value indicates the corresponding model performs better and
the detailed description is shown by Xiao [50].

2.4.3. The Assessment Indices for Interval Forecasting

For short-term wind speed interval forecasting, it is imperative to construct appropriate
assessment indices to assess the quality of the prediction intervals. This paper introduces the following
five assessment indices based on the literatures. Coverage probability (CP) can indicates the prediction
intervals’ accuracy, and when CP is confirmed, a smaller average width (AW) corresponds to better
performance, accumulated width deviation (AWD) shows the similar effect as AW from another aspect,
coverage width criterion (CWC) is used to evaluate the whole quality of the interval forecasting,
and score is also an overall evaluation index, where the smaller score indicates better prediction
intervals. The detailed expression and calculation are shown in References [51–53].

3. The Proposed Hybrid Forecasting System

Hybrid models generally combine two or more algorithms, which is possible to improve the
forecasting performance by gathering the excellence of each method [54]. In the proposed forecasting
system, it contains the original series’ decomposition and recombination, optimization and forecasting,
and forecasting result’s evaluation. Figure 2 displays the proposed hybrid system’s framework,
and from Figure 2 the proposed system can be summarized as follows:

Step 1: As shown in Figure 2A, the CEEMDAN decomposes the Raw series into several IMFs,
removes the high frequency noise, and recombines the remainders as the Final series.

Step 2: As shown in Figure 2B, the Final series is divided into the training set and testing set, the
input-output structure is set as inputting five data and outputting one data.

Step 3: As shown in Figure 2C,D, the MOGWO optimizes the parameters of ESN, employs the
training set to train ESN, and updates the parameters of ESN.

Step 4: Employ the testing set to forecast, and the forecasting performance are evaluated by the
evaluation metrics shown in Figure 2E.

According to the four steps, the CEEMDAN-MOGWO-ESN hybrid system is constructed; the
details are shown in Algorithm 1. Wind speed forecasting can be segmented according to time
horizon [55]: short term forecasting is focused on a few seconds to six hours ahead, medium term
is from six hours to a day ahead, and long term is exceeding a one day prediction. In this research,
wind speed data of 10 min and 30 min time intervals are selected to conduct short term forecasting.
The forecasting horizon of 10 min and 30 min time intervals are 10 min ahead and 30 min ahead for one
step forecasting. Based on these, this paper conducts short term wind speed forecasting of 10 min and
30 min time intervals; four experiments using eight datasets are conducted as the illustrative examples
to test the performance of the developed system.
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Figure 2. The flowchart of the proposed system: (A) the data preprocessing module; (B) the input-output
structure of the developed system; (C) the optimization flowchart of MOGWO; (D) the structure of
forecasting method: Echo state network; (E) the forecasting results.

The pseudo-code of the CEEMDAN-MOGWO-ESN algorithm:
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Algorithm 1. CEEMDAN-MOGWO-ESN

Objective functions:

min

{
f itness1 = MSE = 1

n ∑n
i=1(ai − fi)

f itness2 = std(ai − fi) i = 1, 2, . . . , n

Input: x(0)train = (x(0)(1), x(0)(2), . . . , x(0)(l))—the training data

x(0)test = (x(0)(l + 1), x(0)(l + 2), . . . , x(0)(l + j))—the testing data

Output: ŷ(0)test = (ŷ(0)(l + 1), ŷ(0)(l + 2), . . . , ŷ(0)(l + j))—the forecasting values
Parameters:

α (Xα)—alpha wolf, represents the optimal solution
β (Xβ)—beta wolf, represents the second solution

δ (Xδ)—delta wolf, represents the third solution
K/B—The coefficient vectors
t—the current iteration
Max_it—the maximum iterations
archive—the optimal solutions’ reservoir
[Li, Ui]—the boundaries of interval

1 /* Use CEEMDAN method to reduce noise in the original data. */
2 /* Initialize the parameters of MOGWO. */
3 /* Initialize the grey wolf population Xi (i = 1, 2 . . . n). */
4 /* Find the nondominant solutions and initialize the archive with them. */
5 /* Select Xα from archive. */
6 /* Exclude Xα from the archive temporarily to avoid selecting the same leader. */
7 /* Select Xβ from archive. */
8 /* Exclude Xβ from the archive temporarily to avoid selecting the same leader. */
9 /* Select Xδ from archive. */
10 /* Add back α and β to the archive. */
11 T = 1
12 WHILE t < Max_it
13 FOR each search agent
14 /* Update the position of the current search agent. */

15
→
Gα =

∣∣∣∣→B1 ·
→
Xα −

→
X
∣∣∣∣, →Gβ =

∣∣∣∣→B2 ·
→
Xβ −

→
X
∣∣∣∣, →Gδ =

∣∣∣∣→B3 ·
→
Xδ −

→
X
∣∣∣∣

16
→
X1 =

→
Xα −

→
K1 ·

→
Gα,

→
X2 =

→
Xβ −

→
K2 ·

→
Gβ,

→
X3 =

→
Xδ −

→
K3 ·

→
Gδ

17
→
X(t + 1) =

→
X1+

→
X2+

→
X3

3
18 END FOR
19 /* Update α, K and B. */
20 /* Calculate the objective values of all search agents. */
21 /* Find the non-dominated solutions. */
22 /* Update the archive with respect to the obtained non-dominated solutions */
23 IF the archive is full
24 /* Run the grid mechanism to omit one of the current archive members */
25 /* Add the new solution to the archive */
26 END IF
27 IF any of the new added solutions to the archive is located outside the hypercubes
28 /* Update the grids to cover the new solutions. */
29 END IF
30 /* Select Xα from archive. */
31 /* Exclude Xα from the archive temporarily to avoid selecting the same leader. */
32 /* Select Xβ from archive. */
33 /* Exclude Xβ from the archive temporarily to avoid selecting the same leader. */
34 /* Select Xδ from archive. */
35 /* Add back α and β to the archive. */
36 t = t + 1
37 END WHILE
38 RETURN archive
38 /* Select the optimal solution X* from archive via Roulette-wheel strategy. */
39 /* Set parameters of ESN based on X*. */
40 /* Employ x(0)train to train ESN and update the parameters of ESN. */
41 /* Input x(0)test to ESN. */
42 /* Output the forecasting value ŷ(0)test. */
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4. Simulation and Analysis

For corroborating the proposed hybrid system’s superiority of wind speed forecasting, three
experiments are conducts as an empirical research employing wind speed data gathered from Penglai
wind farms. Specifically, Experiment I applies four datasets in different seasons with 10 min intervals
to check the serviceability of the proposed system in different seasons; Experiment II employs four
datasets with 10 min intervals and 30 min intervals at different sites to confirm the availability of the
developed system in the different intervals; and Experiment III adopts GRA and FE to evaluate the
hybrid system’ further performance. The details of the information are shown as follows.

4.1. Data Description

Eight data sets from Penglai in China which has plenty wind energy are considered as cases
to inspect the proposed hybrid system’s validity in practical applications. Specifically, the datasets
A, B, C, and D with 10 min intervals are all gathered at the same data site (Penglai site 1) but from
spring, summer, autumn, and winter, respectively. The datasets E with 10 min intervals as well as
datasets F with 30 min intervals are from Penglai site 2, and the datasets G with 10 min intervals and
datasets H with 30 min intervals are from Penglai site 3. More specifically, there are altogether 2880
data points in each experiment, in which the training set is composed of the first 2304 observations
covered over 16 days and the rest of the 576 data points covered 4 days make up the testing set. For the
experiments, Experiment I employs 10 min wind speed data respectively gathered at Penglai site 1 in
spring, summer, autumn and winter, i.e., data sets A, B, C, and D. In Experiment II, 10 min and 30 min
wind speed data (i.e., datasets E and datasets F) as well as 10 min and 30 min data (i.e., data sets G
and datasets H) are separately gathered at Penglai site 2 and Penglai site 3. Experiments III and IV are
based on Experiment I and Experiment II. The detailed information of the datasets is listed in Table 2.

According to the descriptive statistical characteristic of the experimental data including the
average, maximum, median, minimum, and standard deviation, it is clear that the eight wind
speed datasets have different features and the experimental data are representative. Indeed, this
paper is conducted to test the developed improved forecasting system via numerical simulation and
experiments. Thus, this paper employs historical wind speed data to conduct off-line predictions.

4.2. Experiment I: Comparison of Different Seasons

In this experiment, the four seasons’ wind speed data with 10 min from Penglai site 1 are employed
to verify the developed system’s effectiveness in wind speed forecasting. By conducting the experiment
with different seasons’ data, it can be proved that the seasonal change cannot affect the forecasting
ability of the developed system. Moreover, this experiment utilizes four comparative studies to
demonstrate the validity of the hybrid system’s each component and the progressiveness of the newly
proposed hybrid system. Specifically, the first comparison proves the superiority of the employed
ESN method in the proposed system by selecting and comparing ESN, GRNN, and WNN; at the
second comparison, the advancement of the data preprocessing module is confirmed by comparing the
proposed system with EMD-MOGWO-ESN and VMD-MOGWO-ESN; the third comparison is aimed
at comparing the proposed system with CEEMDAN-MOPSO-ESN and CEEMDAN-MOWCA-ESN to
attest the availability of the optimization method MOGWO; and the last comparison compares the
developed hybrid models with the above comparative models as well as Autoregressive Integrated
Moving Average (ARIMA) and the persistence model to attest the effectiveness of the developed wind
speed forecasting model. The experiment results of the Penglai site 1’s wind speed data at four seasons
are listed at Table 3, and the bolded values are the best value of each evaluation metric. The experiment
performance can also be more distinctly exhibited by Figure 3; it shows the performance of the proposed
forecasting system more intuitively and clearer. Considering Table 3 and Figure 3, the developed
CEEMDAN-MOGWO-ESN system gains almost every evaluation metric’s best value, which means
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the proposed novel forecasting system outperforms the other benchmark methods in wind speed
forecasting. The detailed results and analysis are summarized as follows:

Table 2. The statistic values of all datasets. (Source: Penglai Wind Farm).

Dataset Season and Interval
Statistic Values (m/s)

Ave. Max. Median Min. Std.

Dataset A

All Samples Spring 7.6302 19.4000 7.5000 0.8000 3.2133
Training Set 6.8878 14.7000 7.0000 0.8000 2.6857
Testing Set 10.5998 19.4000 10.5000 3.2000 3.4300

Dataset B

All Samples Summer 4.7082 20.5000 4.0000 0.5000 3.0102
Training Set 4.4009 20.5000 3.4000 0.5000 3.2498
Testing Set 5.9375 9.7000 5.9000 3.2000 1.0849

Dataset C

All Samples Autumn 5.6823 13.2000 5.5000 0.9000 2.2510
Training Set 5.7115 13.2000 5.5000 0.9000 2.3488
Testing Set 5.5653 11.7000 5.4000 2.3000 1.8044

Dataset D

All Samples Winter 9.4241 18.1000 9.2000 2.3000 2.8516
Training Set 9.7592 18.1000 9.7000 2.3000 2.9562
Testing Set 8.0837 12.8000 8.1500 2.5000 1.8609

Dataset E

All Samples 10 min 9.5891 18.7000 9.3000 2.0000 3.2041
Training Set 9.9344 18.7000 9.9000 2.0000 3.3645
Testing Set 8.2078 13.3000 8.3000 2.7000 1.9176

Dataset F

All Samples 30 min 8.2682 19.5000 8.0000 1.3000 3.3120
Training Set 8.4106 18.2000 8.1000 1.3000 3.2873
Testing Set 7.6983 19.5000 7.2000 1.5000 3.3518

Dataset G

All Samples 10 min 7.3951 18.2000 6.6000 1.0000 3.2506
Training Set 7.7470 18.2000 7.1000 1.0000 3.3104
Testing Set 5.9877 12.4000 5.3000 1.2000 2.5563

Dataset H

All Samples 30 min 7.5068 18.3000 7.2000 0.9000 3.1448
Training Set 7.7140 18.3000 7.5000 0.9000 3.2272
Testing Set 6.6783 14.7000 6.5000 0.9000 2.6350
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Table 3. Results of Experiment I.

Dataset Model AE MAPE RMSE MdAPE FB r IA U1 U2 TIME (s)

Spring

Dataset A

Persistence Model −0.0069 7.0651 0.9094 0.0531 0.0007 0.9650 0.9822 0.0410 0.7096 0.0105
ARIMA −0.0295 6.9594 0.8940 0.0547 0.0028 0.9657 0.9824 0.0403 0.7072 211.2213
GRNN −0.5289 9.4339 1.4625 0.0749 0.0514 0.9287 0.9420 0.0680 0.8123 1.2176
WNN −0.6424 9.5246 1.7733 0.0735 0.0627 0.8887 0.9099 0.0831 0.8211 2.7442
ESN −0.1029 7.1156 0.9258 0.0548 0.0098 0.9636 0.9810 0.0419 0.7158 0.9458

EMD-MOGWO-ESN −0.0193 4.0520 0.5122 0.0331 0.0018 0.9889 0.9944 0.0231 0.5817 189.2712
VMD-MOGWO-ESN −0.0108 5.5978 0.6921 0.0413 0.0010 0.9801 0.9892 0.0312 0.8985 238.5490

CEEMDAN-MOGWO-ESN −0.0294 3.1490 0.4182 0.0242 0.0028 0.9927 0.9962 0.0189 0.4680 449.3265
CEEMDAN-MOPSO-ESN −0.1164 6.2568 0.8000 0.0467 0.0111 0.9733 0.9857 0.0363 0.6756 480.3966
CEEMDAN-MOWCA-ESN 0.0049 3.2530 0.4356 0.0247 −0.0005 0.9920 0.9960 0.0196 0.4799 308.7396

Summer

Dataset B

Persistence Model −0.0004 6.3072 0.4874 0.0497 0.0001 0.8987 0.9473 0.0403 0.7153 0.0130
ARIMA −0.0011 7.6967 0.5939 0.0605 0.0002 0.8504 0.9209 0.0491 0.7759 253.2662
GRNN −0.1677 7.4153 0.5648 0.0626 0.0286 0.8686 0.9227 0.0474 0.7941 1.2075
WNN −0.1202 6.5569 0.5125 0.0512 0.0204 0.8884 0.9366 0.0428 0.7500 2.7869
ESN −0.0979 6.4067 0.4953 0.0523 0.0166 0.8957 0.9430 0.0413 0.7358 0.9696

EMD-MOGWO-ESN −0.0267 3.8015 0.2827 0.0330 0.0045 0.9658 0.9824 0.0234 0.6034 193.5132
VMD-MOGWO-ESN −0.0169 4.8781 0.3576 0.0395 0.0028 0.9471 0.9682 0.0296 0.8462 196.6962

CEEMDAN-MOGWO-ESN −0.0185 3.0051 0.2321 0.0238 0.0031 0.9770 0.9879 0.0192 0.4789 312.1663
CEEMDAN-MOPSO-ESN −0.0332 6.0292 0.4465 0.0511 0.0056 0.9144 0.9554 0.0370 0.6961 456.7801
CEEMDAN-MOWCA-ESN −0.0287 3.1738 0.2425 0.0262 0.0048 0.9750 0.9870 0.0201 0.5069 337.8480
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Table 3. Cont.

Dataset Model AE MAPE RMSE MdAPE FB r IA U1 U2 TIME (s)

Autumn

Dataset C

Persistence Model 0.0021 6.5623 0.4371 0.0515 −0.0004 0.9707 0.9851 0.0372 0.7878 0.0168
ARIMA 0.0293 7.5086 0.4937 0.0592 −0.0052 0.9622 0.9806 0.0420 0.8218 217.7421
GRNN −0.0163 6.8788 0.4602 0.0528 0.0029 0.9670 0.9829 0.0393 0.8027 1.2009
WNN 0.1651 7.9610 0.4840 0.0556 −0.0291 0.9700 0.9800 0.0408 0.8017 2.8116
ESN 0.0004 6.5827 0.4344 0.0509 −0.0001 0.9707 0.9850 0.0370 0.7826 1.0093

EMD-MOGWO-ESN 0.0058 3.8554 0.2464 0.0303 −0.0010 0.9907 0.9953 0.0210 0.6131 180.8671
VMD-MOGWO-ESN −0.0033 5.5412 0.3605 0.0406 0.0006 0.9809 0.9893 0.0308 0.8689 188.5874

CEEMDAN-MOGWO-ESN 0.0031 3.0618 0.2026 0.0230 −0.0005 0.9937 0.9968 0.0172 0.4978 435.9351
CEEMDAN-MOPSO-ESN 0.0055 5.8461 0.3848 0.0451 −0.0010 0.9771 0.9882 0.0328 0.6989 542.4545
CEEMDAN-MOWCA-ESN 0.0072 4.3007 0.2855 0.0305 −0.0013 0.9874 0.9936 0.0243 0.6066 305.6523

Winter

Dataset D

Persistence Model 0.0129 5.3605 0.6108 0.0419 −0.0016 0.9437 0.9711 0.0368 0.7583 0.0113
ARIMA 0.0238 7.2111 0.8077 0.0559 −0.0029 0.9025 0.9492 0.0486 0.8668 219.5740
GRNN 0.0391 5.8629 0.6283 0.0438 −0.0048 0.9387 0.9673 0.0379 0.8194 1.8741
WNN 0.1930 6.2114 0.6311 0.0460 −0.0236 0.9439 0.9677 0.0377 0.8097 3.0436
ESN 0.0403 5.3931 0.5937 0.0396 −0.0050 0.9456 0.9714 0.0358 0.7768 0.9342

EMD-MOGWO-ESN 0.0199 3.4907 0.3715 0.0288 −0.0025 0.9790 0.9893 0.0224 0.6482 192.9672
VMD-MOGWO-ESN 0.0124 4.3556 0.4658 0.0327 −0.0015 0.9678 0.9820 0.0281 0.8091 199.8609

CEEMDAN-MOGWO-ESN 0.0098 2.6180 0.3053 0.0206 −0.0012 0.9858 0.9928 0.0184 0.5426 434.4075
CEEMDAN-MOPSO-ESN 0.0374 4.7831 0.5222 0.0363 −0.0046 0.9584 0.9786 0.0314 0.7165 558.1496
CEEMDAN-MOWCA-ESN 0.0034 2.7343 0.3170 0.0206 −0.0004 0.9847 0.9922 0.0191 0.5528 318.4237

Note: The bolded values are the best values.
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(1) Comparing ESN with other artificial intelligence methods (GRNN and WNN), it can be found
that ESN has a better forecasting ability than GRNN and WNN. Moreover, the runtime of ESN reduces
significantly compared with GRNN and WNN. Therefore, the used ESN can not only improve the
forecasting accuracy but also reduce the developed system’s runtime, which means the forecast method
used in the developed forecasting system is preeminent.

(2) From comparing the developed forecasting system with other hybrid methods (EMD-MOGWO-
ESN and VMD-MOGWO-ESN), it is obvious that the proposed CEEMDAN-MOGWO-ESN can improve



Sustainability 2019, 11, 526 17 of 34

forecasting accuracy significantly. In this comparison, only the data preprocessing methods are different,
so the effort of the developed system’s data preprocessing method is proved. It means that the data
preprocessing method CEEMDAN used in the proposed system can conduct effective data preprocessing
and contribute to improving the forecasting accuracy.

(3) By comparing the developed system with contract models (CEEMDAN-MOPSO-ESN and
CEEMDAN-MOWCA-ESN), the advancement of the multi-object optimization algorithm used in the
proposed system is confirmed. Only the optimization algorithm is different in the contract models;
therefore the discrepancy in the forecasting ability of these models results from the optimization
algorithm changes. The developed system outperforms the contract models in forecasting, so the
MOGWO outperforms the contract optimization algorithm (MOPSO and MOWCA). It reveals that the
multi-object optimization algorithm MOGWO can enhance the forecasting effectiveness.

(4) The comparisons between the developed system and other comparative methods have clearly
confirmed the advancement of the proposed hybrid system in wind speed forecasting. Each component
has a certain enhancement for the forecasting ability respectively and can be added up to promote the
forecasting performance as a hybrid system. Furthermore, by comparing with ARIMA, the persistence
model, and other models, the developed forecasting system’s superiority is revealed absolutely.

(5) When comparing the developed system with other methods, the developed system prevails
over the comparative methods in each case, which means that the proposed hybrid system performs
better in wind speed forecasting no matter which season. For the developed system, its MAPE values
are 3.1490%, 3.0051%, 3.0618%, and 2.6180% at spring, summer, autumn, and winter, respectively.
Therefore, the developed hybrid system is a reliable forecasting method, and its forecasting ability is
not affected by seasonal factors.

Remark: For all seasons’ datasets in Penglai site 1, the developed hybrid system obtains nearly all
the best values of all the evaluation indexes comparing with the other comparative models. Therefore,
the developed system has a reliable forecasting ability owing to the excellent hybrid strategy; moreover,
it can forecast wind speed effectively and be not affected by seasonal factors.

4.3. Experiment II: Comparison of a Different Time Interval

For further validating the outstanding forecasting ability of the proposed system in this paper
and demonstrating the validity of the proposed forecasting system when forecasting wind speeds
of different time intervals or diverse data features, it employs 10 min and 30 min data form Penglai
site 2 and Penglai site 3 for the experiment. In Experiment II, there are two comparative studies
organized. The first comparative study employs two sets of 10 min and 30 min wind speed series’
comparisons to affirm the developed system’s validity in forecasting the wind speed of different time
intervals. While the other comparative study conducts two sets of comparison between the wind
speed data with the same intervals, it collected from different sites to prove the developed system
can perform well no matter which site the data is gathered from. Each comparison is expressed by
testing the developed system and benchmark models such as ARIMA, GRNN, EMD-MOGWO-ESN,
CEEMDAN-MOPSO-ESN, and others. The performance of this experiment is distinctly shown in
Figure 4, and the results of Experiment II are presented in Tables 4 and 5. According to Tables 4 and 5,
and Figure 4, the excellent forecasting performance of the developed system can be demonstrated.
The detailed results and analysis are summarized as follows:

(1) In the first comparative study, comparing the wind speed forecasting performance of the
proposed system with other comparative methods at 10 min and 30 min reveals the developed system’s
wonderful forecasting performance in different time interval. Such as, the 10 min data’s MAPE of the
proposed system at Penglai site 3 is 2.6276%, the ESN is 5.1874%, the GRNN is 6.6787%, the ARIMA
is 5.8801%, the VMD-MOGWO-ESN is 4.1352% and the CEEMDAN-GWO-ESN is 2.6891% which
performances the best in the comparative models. The comparative study’s consequences indicate that
the proposed system can forecast well at different time intervals.
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(2) The second comparative study conducted with wind speed of the same time interval but
different characteristics reveals the developed system’s excellent forecasting performance. For a 10 min
wind speed forecasting, the developed system performs the best at dataset E and dataset G and the
other compared models also obtain good forecasting results. But for a wind speed with a 30 min
interval, the excellent forecasting ability of the developed system has emerged. The MAPE of the
developed forecasting system is 4.9663% and 5.9178% at dataset F and dataset H, the developed
system not only gains the best MAPE value but also achieves the least discrepancy of the forecasting
performances. As to the compared models, for example, the MAPE values of EMD-MOGWO-ESN,
CEEMDAN-MOWCA-ESN, GRNN, and ARIMA are 6.1778%, 5.8910%, 11.8085%, and 12.4851% and
are 8.2231%, 6.2213%, 16.8312%, and 14.837% at dataset F and dataset H, respectively.

(3) When comparing the forecasting performance of the proposed system and other methods at
different sites and time intervals, it can be found that the developed system can forecast well beyond
the limitations of time and space. For example, the developed system’s MAPE values are 2.6227%
of dataset E, 4.9663% of dataset F, 2.6276% of dataset G, and 5.9178% of dataset H, and the hybrid
strategy increases the forecasting accuracy by 2.7875%, 5.7176%, 2.5596%, and 7.8702%, respectively.
This indicates that the developed hybrid system can improve wind speed forecasting effects effectively
and obtain high forecasting ability.

Remark: The comparison results of the cases from different time intervals and different wind sites
certify the contribution of the proposed hybrid strategy and advancement of the proposed forecasting
system. Furthermore, based on the various evaluation metrics, it is proved that the developed system
can perform well without the influence of the time intervals and sites.
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Table 4. Forecasting performance at Penglai site 2.

Dataset Model AE MAPE RMSE MdAPE FB r IA U1 U2 TIME (s)

10 min

Dataset E

Persistence Model 0.0125 5.3793 0.6434 0.0427 −0.0015 0.9411 0.9697 0.0382 0.7518 0.0096
ARIMA 0.0375 7.2781 0.8497 0.0540 −0.0046 0.8979 0.9465 0.0503 0.8580 224.4170
GRNN 0.0360 5.9703 0.6648 0.0439 −0.0044 0.9352 0.9654 0.0394 0.8101 1.1879
WNN 0.3095 7.3064 0.7158 0.0541 −0.0370 0.9397 0.9589 0.0418 0.8368 2.8472
ESN 0.0289 5.4102 0.6242 0.0405 −0.0035 0.9432 0.9704 0.0370 0.7665 0.8773

EMD-MOGWO-ESN 0.0170 3.3775 0.3937 0.0270 −0.0021 0.9777 0.9886 0.0234 0.6803 175.0164
VMD-MOGWO-ESN 0.0058 3.8882 0.4579 0.0274 −0.0007 0.9703 0.9839 0.0272 0.8890 180.0621

CEEMDAN-MOGWO-ESN 0.0035 2.6227 0.3113 0.0190 −0.0004 0.9861 0.9929 0.0185 0.5264 433.6128
CEEMDAN-MOPSO-ESN 0.0512 4.8447 0.5500 0.0360 −0.0062 0.9565 0.9775 0.0326 0.7108 446.8051
CEEMDAN-MOWCA-ESN 0.0094 2.8024 0.3273 0.0216 −0.0011 0.9847 0.9922 0.0194 0.5518 505.6086

30 min

Dataset F

Persistence Model 0.0004 10.3314 0.9544 0.0736 0.0000 0.9599 0.9796 0.0569 0.7678 0.0216
ARIMA −0.0166 12.4851 1.1319 0.0892 0.0022 0.9427 0.9705 0.0677 0.8307 217.0166
GRNN 0.0163 11.8085 1.0037 0.0834 −0.0021 0.9551 0.9756 0.0601 0.7950 1.9596
WNN 0.2123 12.9329 1.0253 0.0846 −0.0273 0.9584 0.9733 0.0610 0.8060 2.8900
ESN 0.0389 10.6839 0.9373 0.0728 −0.0051 0.9608 0.9792 0.0560 0.7506 0.8695

EMD-MOGWO-ESN −0.0093 6.1778 0.5711 0.0478 0.0012 0.9856 0.9926 0.0341 0.6243 173.2602
VMD-MOGWO-ESN 0.0022 9.6131 0.7905 0.0621 −0.0003 0.9730 0.9851 0.0474 0.8869 175.1273

CEEMDAN-MOGWO-ESN 0.0121 4.9663 0.4550 0.0347 −0.0016 0.9910 0.9953 0.0272 0.5196 403.4519
CEEMDAN-MOPSO-ESN 0.0396 9.0774 0.7930 0.0638 −0.0051 0.9721 0.9854 0.0473 0.6756 569.2328
CEEMDAN-MOWCA-ESN 0.0187 5.8910 0.5293 0.0427 −0.0024 0.9877 0.9936 0.0316 0.5498 572.0835

Note: The bolded values are the best values.
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Table 5. Forecasting performance at Penglai site 3.

Dataset Model AE MAPE RMSE MdAPE FB r IA U1 U2 TIME (s)

10 min

Dataset G

Persistence Model 0.0019 4.9369 0.4111 0.0417 −0.0003 0.9868 0.9933 0.0313 0.6985 0.0129
ARIMA 0.0113 5.8801 0.4790 0.0470 −0.00 19 0.9819 0.9908 0.0365 0.7496 224.4170
GRNN 0.0150 6.6787 0.4973 0.0521 −0.0025 0.9807 0.9898 0.0380 0.7847 1.1958
WNN −0.0369 6.0838 0.4501 0.0418 0.0061 0.9854 0.9915 0.0346 0.8083 2.7610
ESN 0.0250 5.1874 0.4140 0.0414 −0.0041 0.9866 0.9931 0.0315 0.7079 0.9250

EMD-MOGWO-ESN 0.0076 2.9281 0.2378 0.0245 −0.0013 0.9956 0.9978 0.0181 0.5539 184.8949
VMD-MOGWO-ESN −0.0019 4.1352 0.3215 0.0341 0.0003 0.9920 0.9958 0.0245 0.8627 203.6287

CEEMDAN-MOGWO-ESN 0.0067 2.6276 0.2001 0.0203 −0.0011 0.9969 0.9984 0.0153 0.5064 437.2306
CEEMDAN-MOPSO-ESN 0.0084 5.0573 0.3870 0.0396 −0.0014 0.9882 0.9940 0.0295 0.6870 695.8269
CEEMDAN-MOWCA-ESN 0.0115 3.6828 0.2898 0.0296 −0.0019 0.9934 0.9967 0.0221 0.5832 482.3285

30 min

Dataset H

Persistence Model −0.0053 12.9621 1.0334 0.0940 0.0008 0.9239 0.9608 0.0719 0.7000 0.0125
ARIMA 0.0250 14.8370 1.1431 0.1005 −0.0037 0.9048 0.9505 0.0796 0.7215 217.0166
GRNN 0.0466 16.8312 1.1171 0.1067 −0.0069 0.9068 0.9495 0.0780 0.8412 2.1636
WNN −0.0775 17.8125 1.1096 0.1063 0.0117 0.9084 0.9502 0.0781 0.9446 2.8652
ESN 0.0368 13.7880 1.0290 0.0937 −0.0055 0.9219 0.9590 0.0717 0.6993 1.1308

EMD-MOGWO-ESN 0.0268 8.2231 0.6164 0.0645 −0.0040 0.9727 0.9861 0.0429 0.5817 174.0264
VMD-MOGWO-ESN −0.0037 10.7047 0.7456 0.0749 0.0005 0.9614 0.9777 0.0522 0.8418 170.0751

CEEMDAN-MOGWO-ESN 0.0089 5.9178 0.4612 0.0457 −0.0013 0.9847 0.9922 0.0321 0.4449 451.9599
CEEMDAN-MOPSO-ESN 0.0938 11.9054 0.8586 0.0837 −0.0139 0.9469 0.9724 0.0595 0.6612 512.7695
CEEMDAN-MOWCA-ESN 0.0151 6.2213 0.4812 0.0462 −0.0023 0.9834 0.9915 0.0335 0.4770 480.7268

Note: The bolded values are the best values.
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4.4. Experiment III: Further Evaluating the Proposed System

Though the evaluation metrics listed in Table 1 has been applied to attest the developed system’s
forecasting performance, the evaluation still needs to be further conducted. Thus, FE and GRA are
added to demonstrate the super-excellence of the developed hybrid system in wind speed forecasting
to a greater degree. FE indicates the forecasting accuracy while GRA represents the forecasting
performance by reflecting the correlation between the forecasting values and the actual values. Here all
datasets are applied to realize the FE and GRA test, further verifying the results of Experiment I and
Experiment II. The experiment results are listed at Table 6, where the bigger value of the result indicates
the better forecasting performance and the best results appear in bold. From Table 6, both FE values
and GRA values of the proposed system are the greatest among all the models in the experiment,
which means the developed forecasting system prevails over the comparative methods in all cases.

Remark: The FE and GRA further validate that the proposed system is a reliable and valid tool
to forecast wind speed compared with other methods. Moreover, the forecasting accuracy and the
relevance between forecasting values and actual values of the developed system are also demonstrated.
In summary, the developed system can perform well in wind speed forecasting.

4.5. Experiment IV: Wind Speed Interval Forecasting

In this experiment, we use dataset D and E as examples to verify the interval forecasting
performance of the developed system. To confirm the distribution of the construct prediction intervals,
this paper employs four methods fitting the error distribution. As the results shown in Table 7 and
Figure 5a, the Logistic distribution is the best fitted one and the Gaussian distribution is close to
the Logistic distribution. Thus, we construct the prediction intervals via the Logistic distribution
and evaluate the intervals by the assessment indices such as CP, AW, AWD, CWC, and score at 95%,
90%, 85%, 80%, and 70% confidence levels, respectively. On the account of the similar fitting results
between the Logistic distribution and Gaussian distribution, we contract the two distributions at the
same situation. The results are shown in Table 8 and Figure 5b; from the results, we can find that the
developed system performs better in wind speed interval forecasting when fitting the distribution by
Logistic rather than the Gaussian distribution. Figure 5 intuitively shows that the developed system
possesses an excellent wind speed interval forecasting ability.
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Table 6. Forecasting results evaluated by the forecasting effectiveness (FE) and grey relational degree (GRD).

Models Dataset A Dataset B Dataset C Dataset D

FE-1 FE-2 GRD FE-1 FE-2 GRD FE-1 FE-2 GRD FE-1 FE-2 GRD

Persistence Model 0.9295 0.8691 0.8871 0.9368 0.8859 0.7751 0.9345 0.8774 0.7919 0.9465 0.9021 0.8653
ARIMA 0.9306 0.8702 0.8875 0.9227 0.8602 0.7456 0.9251 0.8616 0.7689 0.9280 0.8688 0.8336
GRNN 0.9057 0.8304 0.8495 0.9258 0.8721 0.7470 0.9314 0.8712 0.7823 0.9414 0.8910 0.8589
WNN 0.9049 0.8230 0.8404 0.9258 0.8721 0.7470 0.9202 0.8478 0.7856 0.9378 0.8830 0.8644
ESN 0.9295 0.8688 0.8857 0.9360 0.8871 0.7712 0.9345 0.8781 0.7897 0.9457 0.8991 0.8670

EMD-MOGWO-ESN 0.9596 0.9274 0.9290 0.9620 0.9349 0.8413 0.9614 0.9288 0.8579 0.9651 0.9395 0.9034
VMD-MOGWO-ESN 0.9442 0.8904 0.9101 0.9514 0.9153 0.8155 0.9447 0.8943 0.8203 0.9565 0.9172 0.8882

CEEMDAN-MOGWO-ESN 0.9686 0.9409 0.9434 0.9699 0.9451 0.8697 0.9694 0.9423 0.8838 0.9738 0.9508 0.9252
CEEMDAN-MOPSO-ESN 0.9376 0.8835 0.8997 0.9397 0.8947 0.7780 0.9416 0.8890 0.8056 0.9522 0.9148 0.8771
CEEMDAN-MOWCA-ESN 0.9676 0.9385 0.9419 0.9682 0.9435 0.8639 0.9570 0.9188 0.8468 0.9727 0.9484 0.9230

Dataset E Dataset F Dataset G Dataset H

FE-1 FE-2 GRD FE-1 FE-2 GRD FE-1 FE-2 GRD FE-1 FE-2 GRD

Persistence Model 0.9461 0.8982 0.8553 0.8969 0.8065 0.7934 0.9507 0.9110 0.8255 0.8727 0.7632 0.8560
ARIMA 0.9272 0.8650 0.8197 0.8754 0.7660 0.7647 0.9412 0.8946 0.8016 0.8550 0.7340 0.8420
GRNN 0.9403 0.8863 0.8475 0.8823 0.7679 0.7805 0.9324 0.8758 0.7917 0.8441 0.6930 0.8403
WNN 0.9268 0.8635 0.8562 0.8716 0.7416 0.7889 0.9378 0.8727 0.8115 0.8478 0.6956 0.8398
ESN 0.9460 0.8979 0.8573 0.8935 0.7921 0.7923 0.9479 0.9050 0.8217 0.8649 0.7400 0.8547

EMD-MOGWO-ESN 0.9662 0.9383 0.8994 0.9382 0.8876 0.8533 0.9703 0.9483 0.8818 0.9180 0.8432 0.8999
VMD-MOGWO-ESN 0.9611 0.9247 0.8880 0.9049 0.8049 0.8133 0.9587 0.9253 0.8506 0.8934 0.7810 0.8832

CEEMDAN-MOGWO-ESN 0.9738 0.9501 0.9195 0.9504 0.9033 0.8835 0.9737 0.9528 0.8945 0.9410 0.8848 0.9231
CEEMDAN-MOPSO-ESN 0.9515 0.9092 0.8676 0.9099 0.8284 0.8140 0.9490 0.9087 0.8236 0.8824 0.7722 0.8712
CEEMDAN-MOWCA-ESN 0.9719 0.9475 0.9144 0.9412 0.8872 0.8678 0.9630 0.9352 0.8600 0.9380 0.8799 0.9209

Note: The bolded values are the best values.
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Table 7. The parameters of the fitted distribution.

Dataset D Gaussian Generalized Extreme Value Extreme Value Logistic

Log likelihood −930.9960 −942.6690 −1170.9600 −934.9160
mean 0.0012 0.0035 −0.0329 −0.0016

variance 0.1318 0.1368 0.2332 0.1380
µ 0.0012 −0.1362 0.1845 −0.0016

standard error of µ 0.0076 0.0081 0.0083 0.0074
σ 0.3630 0.3584 0.3765 0.2048

standard error of σ 0.0054 0.0055 0.0055 0.0036
k - −0.2272 - -

standard error of k - 0.0091 - -

Dataset E Gaussian Generalized Extreme Value Extreme Value Logistic

Log likelihood −349.9050 −410.3980 −683.6500 −298.6460
mean 0.0031 0.0101 −0.0366 0.0010

variance 0.0794 0.0912 0.1638 0.0774
µ 0.0031 −0.1078 0.1455 0.0010

standard error of µ 0.0059 0.0063 0.0070 0.0055
σ 0.2819 0.2864 0.3155 0.1533

standard error of σ 0.0042 0.0041 0.0043 0.0027
k - −0.1963 - -

standard error of k - 0.0052 - -

Note: mu is the location parameter, sigma is the scale parameter, and k is the shape parameter.

Table 8. The interval prediction results.

Dataset D Dataset E

Logsitc AW CP AWD CWC SCORE AW CP AWD CWC SCORE

95% 0.2476 0.9930 0.0005 0.2476 0.2599 0.1042 0.9877 0.0016 0.1042 0.1176
90% 0.2076 0.9894 0.0014 0.2076 0.4391 0.0875 0.9789 0.0035 0.0875 0.1984
85% 0.1771 0.9859 0.0026 0.1771 0.5665 0.0766 0.9525 0.0064 0.0766 0.2641
80% 0.1549 0.9736 0.0044 0.1549 0.6660 0.0766 0.9225 0.0113 0.0682 0.3217
70% 0.1223 0.9419 0.0109 0.1223 0.8107 0.0551 0.8715 0.0262 0.0551 0.4118

Gaussian AW CP AWD CWC SCORE AW CP AWD CWC SCORE

95% 0.1382 0.9613 0.0070 0.1382 0.1819 0.1868 1.0000 0.0000 0.1868 0.1980
90% 0.1160 0.9349 0.0132 0.1160 0.3020 0.1566 1.0000 0.0000 0.1566 0.3320
85% 0.1015 0.9243 0.0200 0.1015 0.3972 0.1336 0.9947 0.0002 0.1336 0.4261
80% 0.1015 0.9049 0.0276 0.0903 0.4750 0.1169 0.9912 0.0008 0.1169 0.4995
70% 0.0731 0.8539 0.0479 0.0731 0.5956 0.0922 0.9842 0.0028 0.0922 0.5977
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5. Discussion

5.1. Discussion I: Statistical Hypothesis Testing

Though the evaluation metrics such as MAPE, AE, and RMSE can be the standard to compare
the forecasting accuracy of models, statistical significance testing also need to be used to judge the
models’ forecasting ability [2]. Diebold-Mariano (DM) testing proposed by Diebold and Mariano in
1995 is widely used to test the significance of the forecasting ability between different methods. Based
on the experiment results, this part employs DM testing to test the significance of the proposed system
compared with the comparative methods to prove the superiority of the developed system in wind
speed forecasting. Table 9 shows the hypothesis testing results at certain significance levels, and the
results values of the experiment models are all bigger than the critical value at the 1% level or 10%
level. When the results are bigger than X0.01/2 = 2.58, it indicates the null hypothesis should be rejected
at the 1% significant level, and when the results are bigger than X0.1/2 = 1.64, it indicates the null
hypothesis should be rejected at the 10% significant level. The results are all bigger than 1.64 and
mostly bigger than 2.58 which means the proposed system outperforms all the comparative models at
the 10% significant level, and except for CEEMDAN-MOWCA-ESN, the proposed system outperforms
the comparative models at the 1% significant level. Therefore, combining the evaluation results of the
experiments, we can conclude that the developed hybrid system has a better forecasting ability than
the former models and can perform well in wind speed forecasting.

Table 9. Diebold-Mariano (DM) testing results.

A B C D

Persistence Model 13.3187 * 12.9513 * 12.6671 * 8.1898 *
ARIMA 13.0006 * 13.4601 * 12.5768 * 9.2973 *
GRNN 10.5674 * 13.7422 * 10.5380 * 10.0814 *
WNN 7.4073 * 13.7422 * 14.2305 * 10.6963 *
ESN 13.3169 * 13.2641 * 11.9711 * 9.1079 *

EMD-MOGWO-ESN 7.2237 * 6.3326 * 7.1805 * 7.9541 *
VMD-MOGWO-ESN 10.0639 * 10.2589 * 9.9589 * 7.3974 *

CEEMDAN-MOPSO-ESN 11.3384 * 13.2077 * 11.3404 * 9.9578 *
CEEMDAN-MOWCA-ESN 1.6639 ** 2.2310 ** 9.2580 * 2.2757 *
CEEMDAN-MOGWO-ESN - - - -

E F G H

Persistence Model 8.5112 * 13.0287 * 10.3597 * 8.2681 *
ARIMA 9.1672 * 13.2538 * 10.6310 * 8.4434 *
GRNN 9.5440 * 13.5054 * 10.5109 * 9.2060 *
WNN 11.6328 * 12.7312 * 9.8560 * 9.5584 *
ESN 8.8501 * 13.2789 * 10.4335 * 8.1068 *

EMD-MOGWO-ESN 6.9389 * 7.2450 * 3.9875 * 9.3627 *
VMD-MOGWO-ESN 6.7317 * 9.9688 * 7.6672 * 10.3465 *

CEEMDAN-MOPSO-ESN 9.1159 * 12.1795 * 10.3353 * 8.5915 *
CEEMDAN-MOWCA-ESN 3.1295 * 6.5649 * 8.4737 * 2.6876 *
CEEMDAN-MOGWO-ESN - - - -

* is at the 1% significance level; ** is at the 10% significance level.

5.2. Discussion II: Forecasting Stability

An effective model can not only forecast accurately but also improve the forecasting precision
stably. The forecasting accuracy has been confirmed, so this discussion is applied to demonstrate the
stability of the proposed hybrid system. In general, researchers use performance variance to judge
the model’s stability [56]; this paper employs the forecasting error’s variance to measure the stability
of the developed system, and the results are placed at Table 10. As the smaller variance indicates a
stronger stability, and the proposed system has the smallest variance values in all cases, we can draw a
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conclusion that the developed system owns the strongest stability compared with other methods in
this research.

5.3. Discussion III: Sensitivity Analysis of Optimization Algorithm

There are three important parameters of the optimization algorithm MOGWO: the grey wolf
number, the iteration number, and the archive size, which can significantly influence the effectiveness
of the proposed hybrid system. An appropriate parameter will promote forecasting accuracy as well
as forecasting efficiency, and vice versa. To explore the influence of the parameter changing to wind
speed forecasting performance, we conduct this discussion by changing one of the three parameters
separately and keeping the other parameters unchanged. The parameters’ settings and experiment
results of the discussion are shown in Table 11. From Table 11, we can find the following:

(1) The grey wolf number obviously affects the forecasting accuracy; for example, the MAPE
value shows regular change with the increasing of the grey wolf number. First, the MAPE value
decreases, and when the grey wolf number is set to 200 the MAPE attains a minimum; after that, the
MAPE value becomes bigger again. Furthermore, with the increasing of the grey wolf number, the
run time increases. Therefore, the change of the grey wolf number affects the forecasting results of the
proposed system.

(2) With the changing of iteration number, the forecasting accuracy has a slight variation but the
run time changes a lot. The MAPE value also decreases first and then increases, and the least MAPE
is corresponding to the iteration at 50, which is the best iteration number. Therefore, the forecasting
system will slightly change with the changing of the iteration number.

(3) The forecasting accuracy of the proposed system changes better first, with the increasing of
the archive size, and then grows down. It clearly revealed the archive size’s effect on the performance
of the proposed system.

Remark: The forecasting performance can be visibly influenced by the changing of the MOGWO’s
parameters. The appropriate parameters will lead to excellent forecasting performance while poor
parameters cannot help to find the best initial parameters of ESN so it decreases the forecasting ability.
Furthermore, the parameter settings change with the practical case conditions; the discussion proves
that the grey wolf number is set as 200, the iterations are set as 50, and the archive size sets as 100 in
this research.

5.4. Discussion IV: Further Application for Multistep Forecasting Performance

The proposed system’s superiority has been completely attested in the one-step wind speed
forecasting. However, the developed system only performing well in the one-step forecasting is
not enough to monitor and ensure the wind power system’s safety. To satisfy this requirement,
multistep forecasting is conducted on the basis of dataset A and dataset C. In this experiment,
we conduct a comparison between the proposed system and several traditional single methods
such as the persistence model, ARIMA, neural networks, as well as several hybrid models such as
EMD-MOGWO-ESN and CEEMDAN-MOWCA-ESN; the results are shown at Table 12. According to
the experiment results, the developed system performs best not only in the first step but also in the
second and third step, and its superiority is confirmed. Obviously, the MAPE value of the developed
system is far less than the single methods and also smaller than the comparative hybrid models at each
step. That means the developed system outperforms other models at multistep wind speed forecasting
so it can be applied in wind energy systems.
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Table 10. Forecasting stability results.

A B C D E F G H

Persistence Model 0.8260 0.2381 0.1908 0.3723 0.4135 0.9099 0.1687 1.0664
ARIMA 0.7974 0.3550 0.2424 0.6507 0.7197 1.2798 0.2289 1.3046
GRNN 1.8567 0.2918 0.2112 0.3927 0.4401 1.0054 0.2475 1.2462
WNN 2.7276 0.2918 0.2069 0.3605 0.4163 1.0053 0.2034 1.2252
ESN 0.8359 0.2341 0.1869 0.3526 0.3875 0.8743 0.1708 1.0588

EMD-MOGWO-ESN 0.2619 0.0792 0.0607 0.1374 0.1545 0.3265 0.0566 0.3787
VMD-MOGWO-ESN 0.4781 0.1274 0.1298 0.2165 0.2094 0.6238 0.1032 0.5551

CEEMDAN-MOGWO-ESN 0.1737 0.0536 0.0410 0.0931 0.0968 0.2070 0.0399 0.2124
CEEMDAN-MOPSO-ESN 0.6254 0.1983 0.1479 0.2710 0.2997 0.6247 0.1498 0.7273
CEEMDAN-MOWCA-ESN 0.1895 0.0582 0.0814 0.1003 0.1070 0.2797 0.0838 0.2310

Note: The bolded values are the best values.

Table 11. The sensitivity analysis results.

Number AE MAPE RMSE MDAPE FB R IA U1 U2 TIME

Grey Wolves Number

50 0.0107 2.6734 0.2027 0.0204 −0.0018 0.9968 0.9984 0.0154 0.5179 183.2840
100 0.0056 2.6759 0.2146 0.0232 −0.0009 0.9964 0.9982 0.0164 0.5016 252.7143
150 0.0150 2.6529 0.2118 0.0209 −0.0025 0.9965 0.9982 0.0161 0.4930 376.3458
200 0.0067 2.6276 0.2001 0.0203 −0.0011 0.9969 0.9984 0.0153 0.5064 437.2306
250 0.0096 2.6943 0.2087 0.0231 −0.0016 0.9966 0.9983 0.0159 0.5010 535.9080

Iterations

30 0.0088 2.7023 0.2069 0.0216 −0.0015 0.9967 0.9983 0.0158 0.5159 325.0705
40 0.0068 2.6998 0.2061 0.0217 −0.0011 0.9967 0.9983 0.0157 0.5228 371.3325
50 0.0067 2.6276 0.2001 0.0203 −0.0011 0.9969 0.9984 0.0153 0.5064 437.2306
60 0.0093 2.6327 0.2030 0.0215 −0.0015 0.9968 0.9984 0.0155 0.4996 531.0117
70 0.0074 2.6346 0.2055 0.0208 −0.0012 0.9967 0.9983 0.0157 0.4997 596.1518

Archive size

50 0.0120 2.6776 0.2130 0.0224 −0.0020 0.9965 0.9982 0.0162 0.5099 455.5368
70 0.0138 2.6558 0.2031 0.0214 −0.0023 0.9968 0.9984 0.0155 0.5036 420.2421

100 0.0067 2.6276 0.2001 0.0203 −0.0011 0.9969 0.9984 0.0153 0.5064 437.2306
150 0.0081 2.6562 0.2038 0.0200 −0.0013 0.9968 0.9984 0.0155 0.5209 418.6188
180 0.0083 2.7998 0.2120 0.0226 −0.0014 0.9965 0.9982 0.0162 0.5426 422.0142

Note: The bolded values are the results of the best parameters.
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Table 12. Multistep foresting results of the developed system.

Dataset A
1-Step 2-Step 3-Step

AE MAPE RMSE AE MAPE RMSE AE MAPE RMSE

Persistence Model −0.0069 7.0651 0.9094 −0.0175 9.8131 1.2315 −0.0263 11.7269 1.4890
ARIMA −0.0295 6.9594 0.8940 −0.0335 7.0746 0.9095 −0.0292 7.0706 0.9130
GRNN −0.5289 9.4339 1.4625 −0.6208 12.0956 1.7010 −0.7242 14.0128 1.9332
WNN −0.6424 9.5246 1.7733 −0.8249 13.0047 2.1967 −0.9058 15.1044 2.4616
ESN −0.1029 7.1156 0.9258 −0.2130 9.9813 1.2675 −0.3024 11.9022 1.5398

EMD-MOGWO-ESN −0.0193 4.0520 0.5122 −0.0522 6.3962 0.8779 −0.0922 9.7565 1.3107
CEEMDAN-MOGWO-ESN −0.0294 3.1490 0.4182 −0.1027 6.0469 0.7778 −0.1918 9.5652 1.2177
CEEMDAN-MOPSO-ESN −0.1164 6.2568 0.8000 −0.2299 9.0515 1.1618 −0.3644 11.6857 1.4987
CEEMDAN-MOWCA-ESN 0.0049 3.2530 0.4356 0.0061 6.3385 0.8377 0.0065 10.1770 1.3556

Dataset C
1-Step 2-Step 3-Step

AE MAPE RMSE AE MAPE RMSE AE MAPE RMSE

Persistence Model 0.0021 6.5623 0.4371 0.0039 8.3148 0.5721 0.0058 10.2173 0.6808
ARIMA 0.0293 7.5086 0.4937 0.0268 7.1851 0.4722 0.0250 7.2464 0.4741
GRNN −0.0163 6.8788 0.4602 −0.0349 8.7138 0.5976 −0.0498 10.1368 0.6879
WNN 0.1651 7.9610 0.4840 0.3099 11.9612 0.7114 0.4686 16.2716 0.9189
ESN 0.0004 6.5827 0.4344 0.0009 8.3005 0.5700 0.0023 10.2097 0.6833

EMD-MOGWO-ESN 0.0058 3.8554 0.2464 0.0151 5.9908 0.3989 0.0282 8.6473 0.5727
CEEMDAN-MOGWO-ESN 0.0031 3.0618 0.2026 0.0058 5.8720 0.3860 0.0097 8.8344 0.5804
CEEMDAN-MOPSO-ESN 0.0055 5.8461 0.3848 0.0159 8.4750 0.5606 0.0263 10.8027 0.7095
CEEMDAN-MOWCA-ESN 0.0072 4.3007 0.2855 0.0160 7.3656 0.4815 0.0282 10.6772 0.6897

Note: The bolded values are the best values.
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6. Conclusions

Recently, significant attention and persistent exploitation have been developed for wind energies
as it is clean and renewable. However, the randomness and fluctuation of wind speeds make it hard to
maintain the security and stability of wind power systems. Accurate and stable wind speed forecasting
is of vital significance. Thus, this paper develops a novel hybrid forecasting system which can obtain
high forecasting accuracy and stability as well as enhancing the development of wind energy. Firstly,
we reduce the noise of the original wind speed via the data preprocessing method; the processed
data are inputted into the ESN for forecasting, specifically, the parameters of ESN are optimized by
a multi-objective algorithm to enhance the forecasting performance of the developed hybrid system.
Then, four datasets of different seasons and four datasets with different features and time intervals
gathered from a wind farm in Penglai China are applied to prove the effectiveness of the developed
hybrid system. The developed forecasting system achieves the highest forecasting accuracy and
stability in all cases. Moreover, compared with traditional statistical methods, single neural networks,
as well as other hybrid methods, the proposed system can obtain the best forecasting performance.
Finally, an interval forecasting is conducted to address the uncertainty problems existing in wind speed
forecasting. Furthermore, several discussions from different aspects are supplemented to verify the
advancement of the proposed hybrid system, showing the proposed system’s excellent performance
and further application. Synthesizing the experiments and discussion results, the proposed hybrid
system is an effective and helpful novel method in wind speed forecasting. The system is designed
based on the off-line prediction via historical wind speed data, that is the limitation of the research.
Accordingly, employing the developed forecasting system conduct online prediction using real-time
data should be made in future research.
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Abbreviations

WSF Wind speed forecasting
AW Average width
CP Coverage probability
ANN Artificial neural network
ESN Echo state network
SVM Support vector machine
ARIMA Autoregressive integrated moving average
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
IMF Intrinsic mode function
HBSA Hybrid backtracking search algorithm
CEEMD Complementary ensemble empirical mode decomposition
GA Genetic algorithm
GRA Grey relation analysis
DM test Diebold–Mariano test
ANFIS Adaptive neuro-fuzzy inference system
NWP Numerical weather prediction
AWD Accumulated width deviation
CWC Coverage width criterion
BPNN Back propagation neural network
GRNN General regression neural network
WNN Wavelet neural network
EEMD Ensemble empirical mode decomposition
OVMD Optimized variational mode decomposition
VMD Particle swarm optimization
MOGWO Multi-objective grey wolf optimization
MOPSO Multi-objective Particle swarm optimization
STWSF Short-term wind speed forecasting
FE Forecasting effectiveness
MOWCA Multi-objective water cycle algorithm
PSO Particle swarm optimization
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