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Abstract: This paper proposes a genetic algorithm (GA) to find the pseudo-optimum of integrated
process planning and scheduling (IPPS) problems. IPPS is a combinatorial optimization problem
of the NP-complete class that aims to solve both process planning and scheduling simultaneously.
The complexity of IPPS is very high because it reflects various flexibilities and constraints under
flexible manufacturing environments. To cope with it, existing metaheuristics for IPPS have excluded
some flexibilities and constraints from consideration or have built a complex structured algorithm.
Particularly, GAs have been forced to construct multiple chromosomes to account for various
flexibilities, which complicates algorithm procedures and degrades performance. The proposed
new integrated chromosome representation makes it possible to incorporate various flexibilities into
a single string. This enables the adaptation of a simple and typical GA procedure and previously
developed genetic operators. Experiments on a set of benchmark problems showed that the proposed
GA improved makespan by an average of 17% against the recently developed metaheuristics for IPPS
in much shorter computation times.

Keywords: integrated process planning and scheduling; genetic algorithm; flexible manufacturing
system; chromosome representation

1. Introduction

A flexible manufacturing system (FMS) is aimed at automated manufacturing by connecting
general-purpose facilities such as numerical control machines and machining centers via computer
networks and automated logistics systems [1]. The improved flexibility and efficiency of an FMS can
allow it to respond rapidly to changes in customer requirements and uncertainties of the manufacturing
environments. Process planning is the process of selecting an appropriate process route, machine, tool,
and fixtures and jigs for manufacturing a product (part or job). At that time, the part information
and specifications, such as shape, materials, and tolerances, must be considered to ensure feasibility
and to increase manufacturing efficiency. However, scheduling is the process of determining the
temporal schedule of operations to be implemented on each machine so that the entire operation can
be performed efficiently with specified manufacturing resources. Process planning and scheduling
are the most vital parts of production planning, and their importance is increasing in FMSes due to
enhanced flexibility [2].

Process and schedule plans are interrelated. This implies that an optimal schedule does not induce
feasible process plans of parts and vice versa. Therefore, their independent planning is inefficient and
is also likely to cause feasibility problems. Integrated process planning and scheduling (IPPS) problems
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are aimed at determining the optimal schedule and a relevant feasible process plan simultaneously.
IPPS can consider various alternatives for the process route, operating machine, and required tool.
Moreover, it considers constraints such as tool magazine capacity and limitations in the number of
available tools. Consequently, the complexity of IPPS is higher than that of flexible job shop scheduling,
which belongs to the category NP-complete [3]. Due to the high complexity, traditional approaches for
IPPS have preferred solving the two subproblems separately, sequentially, and recursively, rather than
solving the subproblems simultaneously. However, recent improvements in computer performance
and the availability of numerous metaheuristic approaches have provided useful tools to overcome
these limitations. Therefore, there is a growing interest in IPPS for comprehensive planning.

Efficient and feasible planning and execution are essential for manufacturing companies to
maximize profits with limited resources. Manufacturing is subject to uncertainties such as equipment
failures, order cancellations, design changes, and rush orders [4]. When the uncertainties are pervasive,
independent partial optimization in the subproblems can result in long production lead times, increased
production costs, delivery delays, infeasible process plans, overloaded operations, and machine
failures [5,6]. IPPS, however, can eliminate schedule conflicts, reduce process flow times and work-in-
process inventory, and increase utilization and responsiveness to irregular fluctuations. Thus, IPPS can
increase the efficiency of manufacturing operations and enhance the competitiveness and sustainability
of an enterprise.

IPPS handles various types of flexibilities, such as process, sequence, machine, tool, and tool
access direction (TAD) flexibilities [7,8]. Flexibility implies that one of the alternatives can be selected to
manufacture a part or implement an operation. Detailed definitions are provided in Section 2. A typical
IPPS considers only the process, sequence, and machine flexibility. A few studies have additionally
addressed tool and TAD flexibility. However, if a machining center (MC) with an automatic tool
changer (ATC) rather than a numerical control machine is a main machine, consideration of the
tool flexibility is critical. In addition, most available studies reflect only precedence relation between
operations as a constraint. If MCs are utilized, the magazine capacity of the ATC should also be
considered [9]. Moreover, as the ATC holds several tools toward the end of the planning period and
the number of a particular tool is limited, tool capacity constraint should also be regarded. To our
knowledge, Kim et al. [3] has been the only study addressing such tool-related constraints.

Genetic algorithms (GAs) have shown excellent performance for combinatorial problems such as
IPPS for a long time. Several GA approaches have also been attempted for IPPS. However, the recent
metaheuristics for IPPS have been dominated by ant colony optimization (ACO) and particle swarm
optimization (PSO) [8]. To address various flexibilities and properly decode a process plan and
schedule, the chromosome of GA must contain information on the operations, process route, sequence
of operations, machine, and tool to be processed. It is challenging to combine those attributes into
a chromosome because of the difference in their properties. This results in multiple independent
chromosomes and, consequently, complex evolution procedures of a GA. Eventually, the solution
quality over computation time is lowered.

In this study, we propose a standard GA for solving IPPS, considering tool flexibility and
tool-related constraints (hereafter called IPPST). The proposed GA uses a conventional GA procedure
and popular genetic operators to increase the convenience of application and to improve the solution
quality over the computation time. If the solution quality is remarkable, it is apparent that a
straightforward structured algorithm is preferred. To achieve this, we introduced a new integrated
chromosome representation, in which a chromosome consists of a permutation of operations, each of
which contains fundamental information for scheduling, such as job and operation identifications,
the machine and tool identifications to be performed, the related processing time, and the activation
indicator. While scheduling, the process route is automatically determined by the sequence order of
the relevant operations. By integrating all the information required for scheduling into a chromosome,
the evolutionary process is also simplified. Moreover, an identical length of chromosome for all
individual renders traditional genetic operators applicable in their present form.
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The principal contributions of this paper are summarized as follows. First, this study targets more
realistic IPPS. The IPPST we considered is close to realistic manufacturing environments by including
the capacity of machines and tools as constraints, which has not been covered by conventional IPPS.
Second, this paper proposes a rather efficient metaheuristic of a typical simple GA framework for IPPST
optimization. A new and complex approach does not always result in the best results. Even though
the approach is typical, more efficiency is better. Simple structured algorithms could be generally easy
to implement and robust to environmental differences. Third, this study compares and verifies the
performance of various types of metaheuristics with multiple sized IPPST problems. Existing studies
have been limited to evaluating specific sample problems and conventional IPPS problems without
capacity constraints. In this study, we included performance comparisons of recently developed
metaheuristics for IPPST problems composed of 76 to 310 operations.

The paper is organized as follows: Section 2 defines the IPPST and lists the relevant assumptions
regarding the manufacturing environment. Section 3 explains the proposed integrated chromosome
representation. Section 4 describes genetic operators, fitness function, and the procedure of the GA
proposed in this study. In Section 5, the benchmark problems of Kim et al. [3] are introduced, and the
experimental results of the proposed GA are compared to those of recently proposed metaheuristics
for IPPS. Sections 6 and 7 provide a discussion of the results of this study and a conclusion and future
research directions, respectively.

Notations:
S: set of operations that are not assigned
A: set of operations that are already assigned
V: set of operations that are available for assignment
i: job id
j: operation id
oi,j: jth operation of ith job
om,t

i,j : jth operation of ith job with assigned machine m and tool t
←
ol,J : predecessors of oi,j
→
ol,J : successors of oi,j
mi,j: assigned machine id for oi,j
ti,j: assigned tool id for oi,j
pti,j: processing time of oi,j
acti,j: activation attribute of oi,j
S\

{
oi,j

}
: delete

{
oi,j

}
from S

S←
{

oi,j
}

: insert
{

oi,j
}

into S
oi,j ← S : pop left-most operation oi,j from S
λi,j: earliest starting time of oi,j
τi,j: earliest completion time of oi,j
δm: earliest starting time of machine m
θ: decision parameter used in hybrid scheduling
pCX : probability of crossover
pTS: probability of superior selection in tournament selection
pLCM: probability of location change mutation
pMTCM: probability of machine–tool change mutation
pMTL: probability of machine–tool change in each gene

2. Definition and Representation of IPPS

This study considers process, sequence, machine, and tool flexibility [3,7]. Process flexibility
implies that alternative process routes can manufacture a feature of a part: A process route is a
sequence of operations with precedence relations. Sequence flexibility is the capability to perform the
proper process notwithstanding variations in the sequence order of the operations. Machine flexibility
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refers to the capability where alternative machines can manufacture a feature. Tool flexibility is the
capability to process an operation on a machine with alternative tools. Although we do not consider
it due to an MC assumption, TAD flexibility refers to the capability to handle an operation with
alternative TADs. It applies mainly when the axis of the tool on the machine is fixed and the setup
time for the tool change is critical. These flexibilities contribute toward improved mean flow time and
machine utilization through efficient process planning and scheduling and also result in an efficient
use of bottleneck resources [10].

The IPPST can be redefined by modifying Guo et al.’s [11] IPPS definition as follows: “Given
a set of n jobs (or parts), each of which has a number of operations, the parts are processed on m
machines with alternative manufacturing plans (machines and tools). The objective of the problem
is to select suitable manufacturing resources and sequence of the operations so as to determine a
schedule wherein the precedence constraints between the operations and resource constraints (tool
capacity and tool magazine capacity of each machine) are satisfied and the makespan is minimized.”
The most convenient method to describe IPPS involves the use of network representation [12], as shown
in Figure 1a. In the graph, each node denotes an operation, and each arrowed line represents the
precedence relationship between operations. Operations oi,0 and oi,∞ are the starting and ending nodes,
respectively, of the ith job: These are dummy operations (gray nodes) that are not actually performed.
As shown in Figure 1b, each operation consumes a different processing time depending on the machine
alternative (machine flexibility) and the tool alternative (tool flexibility). For example, in Figure 1,
o2,6 can be machined for a specified processing time using one of tools 2, 5, and 7 on one of machines
1 and 3: Machine 1 and tool 5 are selected yielding a processing time of 13 units. Process flexibility
can be represented by an OR relationship in Figure 1a. A node with multiple outgoing edges can be
an AND node or an OR node, where a node not marked “OR” denotes an AND node. On the AND
node, all the operations belonging to the outgoing routes must be performed, whereas on the OR node,
the operation belonging to only one selected route is executed. In Figure 1a, all the gray nodes imply
dummy operations according to selection of process routes.
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Figure 1. Network representation of an example of IPPST: (a) Network representation example for two
jobs; (b) Machine and tool flexibilities of an operation.

We assume the following manufacturing conditions throughout this study:

• All jobs and their network representations are known;
• At the beginning of scheduling, all machines are empty. Thus, any starting operation can be

processed from the start time if the assigned machine is available;
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• Raw materials are always available;
• Preemption and separation of an operation are not allowed;
• Tools installed in an ATC do not change during the planning period;
• Processing time includes setup time and transportation time;
• Each tool is limited in quantity and is not replenished;
• The number of tool slots in each ATC is fixed, and the number of tool slots consumed depends on

the type of tool.

The objective of the IPPS is to minimize the makespan, i.e., the maximum completion time of
all jobs.

3. Proposed Chromosome Representation

3.1. Conventional Chromosome Representation

The most important factor that determines the overall procedure and performance of a GA
is chromosome representation. As IPPS can be regarded as a job shop scheduling problem (JSP)
combined with process, machine, and tool flexibilities, it is common to extend GA representations
used in JSP. Cheng et al. [13] classified the types of representation for JSP into direct and indirect
according to whether they can directly decode the phenotype from the genotype. Abdelmaguid [14]
provided a more rigorous definition, distinguishing the representation types as model-based and
algorithm-based depending on the information possessed by the chromosome. The model-based
representation constructs chromosomes with decision variables. It can generate a solution directly from
the chromosome, and then repairs the infeasibility caused by genetic operations by using a separate
repairing algorithm. According to the types of information, it can be further classified into disjunctive
graph-based, operation-based, permutation of operations-based, random key-based, preference
list-based, and completion time-based. The algorithm-based representation stores the priority rule or
order, rather than the decision variables, in the chromosome. It is mainly applied to a constructive-type
algorithm such as Giffler and Thompson [15]. There are three types of algorithm-based representation:
Priority rule-based, machine-based, and job-based. For a detailed description of the other types,
refer to Cheng et al. [13].

To construct a solution, i.e., a schedule of operations including process plans, IPPS requires
information on the sequence of operations, selected process routes, and the machine and tool
to be processed in each operation. Therefore, an effective chromosome representation for IPPS
must include such information completely. A conventional GA for IPPS prefers an operation-based
representation due to its direct interpretation. It consists of several distinct chromosomes, such as
sequence of operations, machine identifications (ids), and tool ids, as shown in Figure 2a [8,16–18].
Nevertheless, during scheduling, the information from all the chromosomes must be combined and
interpreted simultaneously, because the information is interrelated. Moreover, each chromosome
evolves independently. It complicates the GA procedure and consumes additional computation time.
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Figure 2. Comparison of operation-based chromosome representations: (a) Typical operation-based
representation; (b) Typical permutation of operations-based representation for only active operations;
(c) Typical permutation of operations-based representation with additional process route string;
(d) Proposed integrated chromosome representation with activation indicator.

Permutation of operations-based representation forms a permutation vector of operations that has
all the information required for scheduling. This type is convenient to address: However, it is known to
have low exploitation capability. Typical chromosome structures of the permutation of operations-based
representation for IPPST (or IPPS) are depicted in Figure 2b,c, where each gene represents an operation
and the locus represents the order of the operation. The first type of chromosome representation [19]
in Figure 2b consists of only active operations that must be processed depending on the selection of
OR relations. The dummy operations are eliminated from the chromosome. For example, the IPPS in
Figure 1a can be represented by the structure shown in Figure 2b. The most significant disadvantage of
this type of representation is that the length of the chromosome varies according to the selected process
routes. Thus, a suitable crossover operator that can address different sizes of chromosome must be
provided. The second type [3,20], in Figure 2c, retains two distinct chromosomes: An operation string
and a process plan string. The operation string is composed of all the operations in the IPPS network,
and each operation has information on job id, operation id, machine id, and tool id. The process plan
string has information on the selected process routes. There are several formations on the process plan
string: However, here, we will describe a straightforward binary string as an example. In Figure 1a,
job 1 has an OR node, and job 2 has two OR nodes. Suppose that the binary process plan string has a
length equivalent to the number of OR nodes in the IPPS network and that the value of a gene is 0 for
the left route and 1 for the right route. In Figure 1a, the right one is selected in OR1, and the right and
left routes are selected in OR2 and OR3, respectively. Therefore, the process plan string on the right
side of Figure 2b becomes 1, 1, and 0. The dummy operations on the unselected routes are determined
by the process plan string during scheduling according to decision rules, as shown in Figure 3b.
This type of representation has a fixed chromosome length for an IPPS. It enables the conventional
genetic operators applicable. However, it requires an independent evolution process for each
chromosome and additional computation to determine the dummy operations during scheduling.
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3.2. Integrated Chromosome Representation

In this paper, we propose a new type of chromosome representation (Figure 2d), namely integrated
chromosome representation (ICR). As it includes all the operations of an IPPS network, the length of
the chromosome is a constant. Each gene contains all five attributes required for scheduling, as shown
in Figure 3a: Job id, operation id, machine id, tool id, and activation. As the remaining attributes
can be conveniently inferred from the name, we explain only the activation attribute. It is a Boolean
variable that indicates whether the operation should be performed. If it is true (white cell in Figure 2d),
the operation is active. Otherwise (gray cell in Figure 2d), it is inactive, i.e., a dummy operation.
The structure resembles that of the second type of the permutation of operations-based representation:
However, it operates in a completely different manner. The key concept is to use the order of operations
as a selection rule for process routes in OR relations, as shown in Figure 3b, rather than a separate
process plan string. At the beginning of decoding, all the activation attributes in all the operations are
set as true. During the decoding, if the first operation in a subroute under OR relation is located toward
the left of one of the complementary subroutes, the subroute is selected as the process plan. Then,
all the operations belonging to the complementary subroutes are deactivated. For example, in OR1 of
Figure 1a, subroutes o1,4 and o1,2 − o1,3 are in an OR relation. Therefore, the order of o1,4 and o1,2 is
important. In the chromosome in Figure 2d, o1,4 is ahead of o1,2: Therefore, the route o1,4 is selected as
the process plan and the operations o1,2 and o1,3 are deactivated as dummy nodes. Similarly, for OR2

of Figure 1a, as the order of o2,5 precedes o2,1 in the chromosome, the activation status of o2,5, o2,6, and
o2,7 are maintained as active, and the operations o2,1, o2,2, o2,3, and o2,4 in the complementary subroute
become dummy nodes. In OR3, all the operations in the subroutes are already inactive: Therefore,
the selection procedure is skipped.

Using ICR, the process plan and the schedule plan (in case of the use of semi-active scheduling)
can be represented in a chromosome. In the example in Figure 2, the process plan becomes o1,1 −
o1,4 − o1,6 − o1,5 − o1,7 for job 1 and o2,5 − o2,6 − o2,7 for job 2. The schedule of each operation is
determined from the left to the right sequentially by semi-active scheduling. In addition, ICR requires a
chromosome for an individual, and therefore, only an evolution procedure is necessary. It simplifies the
structure of GA and consequently results in a shorter computation time. The same chromosome length
also facilitates the development of new genetic operators and enables the adoption of conventional
operators without modification. To decrease the computation time further, the pair information on the
complementary subroutes can be stored in a separate repository in advance and can be retrieved on
demand. This is because all the feasible alternative process subroutes in OR relations are determined
by process engineers prior to the execution of IPPS.
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4. GA Procedures

4.1. Decoding Methods

The ICR directly describes process plans: However, the final schedule must be decoded from
the chromosome by a scheduling algorithm. It is well known that the optimal schedule is an active
schedule in JSP and, consequently, IPPS and IPPST. The most popular active scheduling algorithms are
Giffler–Thompson [15] and the hybrid scheduling algorithm [3,21], as shown in Figure 4.

Those active scheduling algorithms generally provide significantly more effective solutions
than those by a straightforward semi-active scheduling, as shown in Figure 5. However, from the
perspective of computational efficiency, they are not always superior, particularly in GAs for IPPST.
Active scheduling includes numerous search procedures, as shown in Figure 4. Therefore, it consumes
substantial computation time compared to semi-active scheduling. If the number of candidate
operations for the next operation is large, such as in IPPST, the computation time increases rapidly.
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Figure 4. Pseudocode of the hybrid scheduling procedure for integrated process planning and
scheduling (IPPS).

More importantly, active (or hybrid) scheduling does not utilize the information on a sequence
of operations. As shown by the procedure in Figure 4, active scheduling completely disassembles
the sequence of operations and reassigns it to the schedule according to precedence relation and the
assignment rules. It implies that the inheritance characteristic of GA diminishes in active scheduling,
as Shi [22] has indicated. For example, consider two chromosomes that are composed of the same
operations and only whose sequences are different. Then, active scheduling generates almost identical
schedules for both the chromosomes. A crossover operation of the two individuals is also ineffective
because it only changes the sequence of operations. This reduces diversification and degrades the
performance of the GA. However, semi-active scheduling can improve the quality of solution by a
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crossover operation if it is effective because it inherits an important partial sequence. To summarize, in
the GA that utilizes active scheduling as a decoder, the optimization of the process plan is performed
by the GA, and the optimization of the schedule is performed by the active scheduling. However,
in a GA using semi-active scheduling as a decoder, the optimization of both the process plan and
schedule is managed by the GA, and semi-active scheduling serves only as a pure decoder. For these
reasons, in the main procedure of the proposed GA, we adopted semi-active scheduling to increase
computational efficiency.

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 25 

To summarize, in the GA that utilizes active scheduling as a decoder, the optimization of the process 
plan is performed by the GA, and the optimization of the schedule is performed by the active 
scheduling. However, in a GA using semi-active scheduling as a decoder, the optimization of both 
the process plan and schedule is managed by the GA, and semi-active scheduling serves only as a 
pure decoder. For these reasons, in the main procedure of the proposed GA, we adopted semi-active 
scheduling to increase computational efficiency. 

 
Figure 5. Pseudocode of the semi-active scheduling procedure for IPPS. 

4.2 Fitness Function 

The most popular objective function is a makespan, so we employed the inverse of makespan as 
a fitness function. In IPPST, however, the penalties on constraints on tool magazine capacity and tool 
capacity should be considered. In this study, we adopted the fitness function of Kim et al. [3] with a 
marginal modification, which adds penalties to the violation of the constraints. Fitness is calculated 
by Equation (1): fitness = 100,000makespan + 𝑐 ∑ [2𝑇𝑃(𝑡)] + 𝑐 ∑ [2𝑀𝑃(𝑚)]  .         (1) 

Here, 𝑇𝑃(𝑡)  is the tool capacity penalty, indicating the excess amount of tool 𝑡  over the tool 
capacity, and 𝑀𝑃(𝑚) is the tool magazine capacity penalty, indicating the number of overused slots 
relative to the tool magazine capacity of machine 𝑚. If both the penalties do not exceed the capacities, 
they are zeros. In addition, 𝑐 , 𝑐 , 𝛼, and 𝛽 are the parameters that determine the magnitude and 
the degree of the penalties. Several preliminary tests revealed that the fitness function of Kim et al. 
[3] derived infeasible solutions for large-sized problems. Thus, we modified it as Equation (1) by 
multiplying two on 𝑇𝑃(𝑡) and 𝑀𝑃(𝑚) in the original one. The coefficients (𝑐 , 𝑐 , 𝛼, 𝛽) were also 
changed from (10, 10, 0.5, 0.5) to (200, 200, 2, 2) for the same purpose. 

  

Semi-active Scheduling Procedure for IPPST: 
 
Construct sets 𝑆 = {𝑜 , |∀𝑖, 𝑗} and 𝐴 = ∅;  
Let 𝑎𝑐𝑡 , = 𝑡𝑟𝑢𝑒, 𝜆 , = 0, and 𝜏 , = 0 ∀𝑜 , ∈ 𝑆;  
Let 𝛿 = 0 ∀𝑚; 
While 𝑆 ≠ ∅ do 
    𝑜 ,∗ ← 𝑆; 𝐴 ← 𝑜 ,∗ ;  
    Calculate 𝜆 ,∗ = max 𝜆 ,∗ , 𝛿 ,∗ ;   
    If 𝑎𝑐𝑡 ,∗ = 𝑡𝑟𝑢𝑒 then 
        𝜏 ,∗ = 𝜆 ,∗ + 𝑝𝑡 ,∗ ;  
        𝐴 ← 𝑜 ,∗ ;  
        If 𝑜 ,∗  is the first operation in subroutes in OR relation, then 
            Let 𝑎𝑐𝑡 , = 𝑓𝑎𝑙𝑠𝑒 for all operations in the complementary sub-routes;  
        End If  
    Else 
        𝜏 ,∗ = 𝜆 ,∗ ; 
    End If  
    Set 𝜆 , = 𝜏 ,∗  for all 𝑜 , ∈ 𝑜 ,⃗ and 𝛿 ,∗ = 𝜏 ,∗ ; 
End While 
Return 𝐴; 

Figure 5. Pseudocode of the semi-active scheduling procedure for IPPS.

4.2. Fitness Function

The most popular objective function is a makespan, so we employed the inverse of makespan as a
fitness function. In IPPST, however, the penalties on constraints on tool magazine capacity and tool
capacity should be considered. In this study, we adopted the fitness function of Kim et al. [3] with a
marginal modification, which adds penalties to the violation of the constraints. Fitness is calculated by
Equation (1):

fitness =
100, 000

makespan + c1 ∑t[2TP(t)]α + c2 ∑m [2MP(m)]β
(1)

Here, TP(t) is the tool capacity penalty, indicating the excess amount of tool t over the tool capacity,
and MP(m) is the tool magazine capacity penalty, indicating the number of overused slots relative to
the tool magazine capacity of machine m. If both the penalties do not exceed the capacities, they are
zeros. In addition, c1, c2, α, and β are the parameters that determine the magnitude and the degree
of the penalties. Several preliminary tests revealed that the fitness function of Kim et al. [3] derived
infeasible solutions for large-sized problems. Thus, we modified it as Equation (1) by multiplying two
on TP(t) and MP(m) in the original one. The coefficients (c1, c2, α, β) were also changed from (10, 10,
0.5, 0.5) to (200, 200, 2, 2) for the same purpose.

4.3. Overall GA Procedure

The proposed GA follows the typical GA procedure, as shown in Figure 6. In the beginning,
a certain number of precedence-preserved individuals are generated as an initial population by using
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the hybrid scheduling in Figure 4. At the end of each generation, fitness evaluation for all individuals
is performed. Reproduction follows the conventional selection–crossover–mutation procedures.
The proposed GA uses binary tournament selection for reproduction to increase diversification,
wherein a superior individual is selected if a random number is less than or equal to pTS, and an
inferior individual is selected if the number is larger than pTS. In crossover, the precedence-preservative
crossover (PPX) is executed for the selected parents with a probability of pCX . The generated offspring
is applied with a location change mutation (LCM) with a probability of pLCM. It moves the locus of a
randomly selected operation while satisfying precedence relations. Then, the offspring is applied with
a machine–tool change mutation (MTCM) with a probability of pMTCM. In the procedure, the machine
and tool of randomly selected operations with pMTL are replaced by a machine and tool inducing a
minimal processing time. The next generation is constructed as follows: 50% of individuals with good
solutions in the population survive, and the rest are replaced by superior solutions in the offspring.
A termination condition is a number of generations. Detailed procedures will be described in the
following subsections.
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4.4. Generation of Initial Population

The initial population affects the quality of the solution. Although the proposed GA uses a
semi-active scheduling as a main decoder, the hybrid scheduling in Figure 4 is adopted for generating
the initial population to obtain more effective initial solutions, as shown in Figure 7.
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Figure 7. Pseudocode of the initial population generation procedure.

4.5. Crossover Operation

Because the proposed GA uses semi-active scheduling as a decoder, the precedence relationship
among the operations in the chromosome must be retained always. Hence, we adopted the PPX of
Bierwirth and Mattfeld [21] for a crossover. Although the procedure of PPX is popular, we describe it
via the example of Figure 8. If a random number is larger than pCX , a string composed of one or two is
generated arbitrarily with an identical length to the individual chromosome. Starting from the first
element, if the value is one, the first operation of P1 (P2 if two) is copied to the leftmost empty gene of
the offspring (O), and the operation with identical job and operation ids is deleted from the parents
(P1 and P2). This process is repeated until all the operations are assigned to the offspring.
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4.6. Mutation Operation

Mutation is an important genetic operator to enhance diversification of GA. The typical mutation
operation is to change the locus of a selected gene. Thus, we employed an LCM (location change
mutation), as shown in Figure 9a. First, an operation (o3,1

2,1, black-arrowed gene) is randomly selected,
and the loci are changed arbitrarily to the first locus. At this time, to retain the precedence relationship,
the permissible range of loci (within white arrows) is restricted between the predecessor (o2,0 or
nothing) and successors (o3,7

2,2 and o1,5
2,3) of the operation o3,1

2,1. If the ICR is adopted, LCM can change the
selected process route as well as the sequence of operations. Note that the dummy operations are also
changed in Figure 9a.
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Though LCM increases intensification of GA well, our preliminary experiments revealed that the
improvement of solution quality was unsatisfiable due to the large solution space of IPPST. Therefore,
we adopted another mutation operator, namely, MTCM (machine–tool change mutation). It increases
the intensification capability of GA and therefore helps to improve solution quality even with a
reasonable size of population. The fundamental concept of MTCM is to change the machine and tool of
an operation into the combination that induces the minimal processing time. The detailed procedure is
illustrated in the example of Figure 9b. First, a random binary string of the length of the chromosome
is generated, in which the number of ones is the largest integer less than or equal to pMTL times the
chromosome length. Then, at each gene, if the value is one, the machine and the tool are reassigned
as the machine and tool set of the minimal processing time: Otherwise, the existing assignments are
retained. For instance, the minimal processing time 9 of o2,6 is derived from machine 3 and tool 2,
as shown in Figure 1b. Thus, o2,1

2,6 is changed into o3,2
2,6 in Figure 9b.

The factors that significantly influence the schedule in IPPST are the sequence of operations,
the selected process route in OR relations, and the machine and tool to be processed. LCM changes the
sequence of operations and the selected process route. On the other hand, MTCM changes the machine
and tool. Machine change can be effective in reducing the idling time between operations because it
changes the starting time of the operation and distributes the resources. Particularly, a change in the
early period affects all the subsequent schedules. Tool change only changes the processing time of
the operation. However, changes in machine and tool influence the feasibility of the solution due to
the constraints.

5. Benchmark Problems and Experimental Environment

For the performance evaluation of the proposed GA, the set of problems of Kim et al. [3] was
selected as a benchmark. The problems are well defined and also have the advantage of being
convenient to compare to available results. In fact, most IPPS studies that do not consider tool flexibility
and tool-related constraints use Kim et al.’s [3] problem set as a benchmark. As shown in Table 1,
the total number of benchmark problems is 31, and each problem consists of a subset of 18 jobs (parts),
as shown in Table 2. Each job consists of 12–22 operations (#ops) with precedence relations, and the
number of OR nodes (#ORs) is 1–4. The number of operations (#ops) for each problem varies from 76
to 310.
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Table 1. Benchmark problems for IPPST.

Problem #ops Job Number Problem #ops Job Number
P1 89 1, 2, 3, 10, 11, 12 P16 160 2, 3, 6, 9, 11, 12, 15, 17, 18
P2 100 4, 5, 6, 13, 14, 15 P17 155 1, 2, 4, 7, 8, 12, 15, 17, 18
P3 121 7, 8, 9, 16, 17, 18 P18 155 3, 5, 6, 9, 10, 11, 13, 14, 16
P4 99 1, 4, 7, 10, 13, 16 P19 159 4, 5, 6, 7, 8, 9, 10, 11, 12
P5 102 2, 5, 8, 11, 14, 17 P20 151 1, 2, 3, 13, 14, 15, 16, 17, 18
P6 109 3, 6, 9, 12, 15, 18 P21 189 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15
P7 103 1, 4, 8, 12, 15, 17 P22 221 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18
P8 96 2, 6, 7, 10, 14, 18 P23 201 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17
P9 111 3, 5, 9, 11, 13, 16 P24 211 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18

P10 105 4, 5, 6, 10, 11, 12 P25 199 1, 2, 4, 6, 7, 8, 10, 12, 14, 15, 17, 18
P11 76 7, 8, 9, 13, 14, 15 P26 207 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18
P12 105 1, 2, 3, 16, 17, 18 P27 205 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
P13 142 1, 2, 3, 5, 6, 10, 11, 12, 15 P28 212 1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18
P14 168 4, 7, 8, 9, 13, 14, 16, 17, 18 P29 262 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18
P15 150 1, 4, 5, 7, 8, 10, 13, 14, 16 P30 266 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18
P31 310 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

Table 2. Job description of the benchmark problem for IPPST.

Job id #ops #ORs Job id #ops #ORs Job id #ops #ORs

1 12 2 7 21 4 13 18 3
2 14 1 8 20 4 14 13 2
3 19 2 9 20 3 15 15 2
4 16 2 10 11 1 16 21 3
5 18 2 11 15 2 17 22 4
6 20 2 12 18 2 18 17 3

The facility has machine magazine capacity and tool capacity, as mentioned in Section 2. There are
in total 10 machining centers, and each machine operates a magazine with 26–38 tool slots, as shown
in Table 3. There are 20 types of tools, each of which exhibits a certain quantity: The number of slots
required in the magazine varies according to each tool.

Table 3. Magazine capacity and tool capacity of the benchmark problems.

Magazine Capacity Tool Capacity
Machine id #Slots Tool id #Copies #Required Slots Tool id #Copies #Required Slots

1 28 1 6 1 11 7 1
2 31 2 7 2 12 10 2
3 38 3 6 2 13 9 3
4 28 4 6 2 14 8 2
5 36 5 10 1 15 6 2
6 37 6 6 2 16 10 2
7 29 7 10 3 17 9 1
8 28 8 9 2 18 6 2
9 29 9 7 1 19 8 2

10 26 10 5 2 20 7 3

The proposed GA was implemented using Julia language version 1.0, which is a recently
introduced programming language based on a low-level virtual machine (LLVM) just-in-time (JIT)
complier. The experiment was performed on an Intel® Core™ i7-6700U CPU@3.4 GHz with 16 GB
memory. The computation time was measured by CPU time in seconds.
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6. Experimental Results

6.1. Determination of Operating Parameters

A preliminary test was performed to determine the parameters pCX , pLCM, pMTCM, pTS, and pMTL.
Two or three levels were assigned to each parameter. The experimental conditions were as follows:
The selected problems were P1, P13, P21, P29, and P31; the number of repetitions was 10 for each
treatment; the population size was 50; and the number of generations was 1000. Table 4 shows the
experimental results of the average makespan (Cmax) and the sum of the average computation time
(Σtcomp) according to the level of parameters for the five selected problems, where the last column of
Cmax is the rank of the sum of Cmax (ΣCmax) in ascending order. Figure 10ab shows the boxplots of
ΣCmax and Σtcomp depending on the level of the five parameters.

Table 4. Average makespan according to operating parameters for the five selected problems.

pCX pLCM pMTCM pTS pMTL
Cmax ΣtcompP1 P13 P21 P29 P31 ΣCmax Rank

0.3

0.1

0.1
0.6

0.05 177.9 214.5 290.1 389.7 449.0 1521.2 41 16.1
0.10 168.2 209.2 274.5 365.3 482.2 1499.4 34 17.38

0.7
0.05 188.1 211.1 284.8 369.9 463.1 1517.0 40 16.98
0.10 171.7 210.8 279.7 355.1 455.4 1472.7 23 17.12

0.2
0.6

0.05 169.4 210.8 282.0 359.2 453.0 1474.4 26 17.39
0.10 170.3 199.5 270.4 358.3 454.3 1452.8 16 17.72

0.7
0.05 172.9 208.9 278.9 370.6 421.1 1452.4 15 17.13
0.10 176.2 204.4 274.9 366.0 442.3 1463.8 21 17.72

0.1
0.6

0.05 172.2 209.7 274.7 379.0 473.0 1508.6 36 16.97
0.10 170.2 197.2 280.8 358.0 426.3 1432.5 6 17.49

0.7
0.05 177.4 209.3 285.0 379.7 461.9 1513.3 39 16.68
0.10 167.4 203.1 266.5 357.3 463.5 1457.8 19 17.06

0.6
0.05 172.2 212.0 269.8 347.7 426.9 1428.6 5 17.24
0.10 170.1 200.9 263.3 366.2 465.3 1465.8 22 17.46

0.7
0.05 169.3 205.2 280.7 358.7 424.1 1438.0 9 16.89

0.2

0.2

0.10 171.1 199.3 275.3 352.1 445.6 1443.4 13 17.37

0.5

0.1

0.1
0.6

0.05 177.5 227.3 297.2 367.9 461.3 1531.2 45 17.81
0.10 169.6 208.8 279.1 371.8 482.4 1511.7 37 17.99

0.7
0.05 177.4 209.1 292.4 372.9 473.9 1525.7 42 17.66
0.10 169.6 206.7 290.3 357.1 449.8 1473.5 24 17.95

0.2
0.6

0.05 177.0 210.6 286.4 350.3 472.3 1496.6 33 17.99
0.10 171.5 206.3 271.0 363.9 428.1 1440.8 11 18.43

0.7
0.05 175.2 202.7 289.8 385.3 458.9 1511.9 38 17.55
0.10 173.7 206.7 278.3 351.3 428.8 1438.8 10 18.31

0.1
0.6

0.05 175.8 219.7 282.5 368.4 455.2 1501.6 35 17.58
0.10 170.1 210.3 275.0 353.0 428.3 1436.7 7 17.87

0.7
0.05 172.7 216.0 284.6 369.3 451.4 1494.0 32 17.44
0.10 172.2 213.7 271.6 351.8 436.0 1445.3 14 17.60

0.6
0.05 174.3 213.1 278.0 345.2 426.8 1437.4 8 17.70
0.10 169.3 205.1 261.4 358.4 410.7 1404.9 3 18.28

0.7
0.05 169.6 201.2 280.5 347.4 443.1 1441.8 12 17.60

0.2

0.2

0.10 169.1 202.1 268.8 347.0 418.1 1405.1 4 17.89

0.7

0.1

0.1
0.6

0.05 172.4 215.8 296.8 391.4 496.3 1572.7 48 18.50
0.10 171.5 212.4 281.3 346.1 475.4 1486.7 31 18.75

0.7
0.05 186.5 223.9 300.2 373.5 450.9 1535.0 46 18.46
0.10 171.0 212.3 278.4 363.8 501.8 1527.3 43 18.71

0.2
0.6

0.05 180.3 219.7 290.2 361.0 428.4 1479.6 29 18.86
0.10 174.4 203.7 270.8 378.0 447.0 1473.9 25 19.38

0.7
0.05 173.6 211.8 282.6 365.7 448.8 1482.5 30 18.59
0.10 172.3 202.2 274.8 357.5 448.4 1455.2 18 19.06

0.1
0.6

0.05 178.5 226.1 287.5 370.1 467.3 1529.5 44 18.63
0.10 174.5 211.4 274.2 361.6 457.3 1479.0 28 18.69

0.7
0.05 177.4 223 292.5 390.5 470.6 1554.0 47 18.14
0.10 170.2 206.4 270.4 355.6 461.0 1463.6 20 18.45

0.6
0.05 174.5 212.2 275.4 368.1 445.5 1475.7 27 18.68
0.10 168.9 196.7 264.2 341.5 424.0 1395.3 1 19.02

0.7
0.05 170.1 205.4 267.2 360.7 450.8 1454.2 17 18.24

0.2

0.2

0.10 170.9 208.9 262.3 347.4 409.1 1398.6 2 18.94
average 173.3 209.5 278.9 363.0 450.3 1475.0 17.90

standard deviation 4.3 7.0 9.4 12.2 21.1 41.0 0.70
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In Figure 10, pCX only affected computation time critically, while the remaining parameters
affected both makespan and computation time. To confirm the effects of each parameter, a Kruskal–
Wallis test was performed on ΣCmax and Σtcomp, and the results are summarized in Table 5.
All interaction effects were pooled because they were not statistically significant at a significance
level of 0.05. In the table, parameters affecting makespan were pLCM, pMTCM, and pMTL, and only pCX
was statistically significant at computation time. Preferentially, pLCM, pMTCM, and pMTL were selected
as 0.2, 0.2, and 0.1, respectively, and were statistically significant and yielded less makespan. Although
pCX was statistically significant at computation time, the temporal differences between parameter
values were negligible. Therefore, pCX and pTS were determined to be 0.7 and 0.6, respectively, which
showed the best rank. The final determined values of the parameters are shown in bold in Table 4.
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Table 5. Kruskal–Wallis test results for ΣCmax and Σtcomp.

Parameters
ΣCmax Σtcomp

p-Value p-Value

pCX 0.372 0.000 **
pLCM 0.004 ** 0.332

pMTCM 0.000 ** 0.208
pTS 0.837 0.322

pMTL 0.001 ** 0.061

Note: ** means p-value < 0.05.

6.2. Performance Comparison to Previous Metaheuristics

The performance of the proposed GA was compared to that of four other metaheuristics:
asymmetric multileveled symbiotic evolutionary algorithm (AMSEA) proposed by Kim et al. [3],
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modified PSO (mPSO) by Miljković and Petrović [23], feasible sequence discrete PSO (FSDPSO) by
Dou et al. [24], and enhanced ACO (E-ACO) by Zhang and Wong [25]. Besides AMSEA, all other
metaheuristics were proposed in the last two years. AMSEA is a multilevel evolutionary algorithm.
It divides an IPPS into four layered hierarchical subproblems: An integrated layer, a process planning
layer, a part layer, and a resource layer. Each subproblem is optimized through its own evolutionary
process. The metaheuristic mPSO has a conventional PSO procedure but adopts GA operators such
as crossover and mutation to increase diversification. FSDPSO follows conventional continuous PSO
conceptually, but it adopts genetic operations in all updating procedures of particles to address the
discrete IPPS. E-ACO applies pheromone trails to both nodes and edges to overcome the various
flexibilities of IPPS. In addition, various methods such as elitist strategy and MAX-MIN strategy are
applied to improve solution quality.

Since AMSEA applied the same benchmark problems as ours, we reused the experimental
results presented in the paper [3]. On the other hand, the results of the other metaheuristics were not
available because the benchmark problems, objective function, consideration of the tool flexibility,
and tool-related capacity constraints were different from ours. Therefore, other metaheuristics were
newly coded and evaluated in the same computing environment as the proposed GA. At that time,
we slightly modified them to solve our benchmark problems. The operating parameters of the methods
were applied as the values suggested in the papers. Table 6 shows the parameter values, where the
names of the parameters are the same as those given in the papers.

Table 6. Assigned parameter values for other metaheuristics. Here, mPSO: Modified particle swarm
optimization; FSDPSO: feasible sequence discrete PSO; E-ACO: Enhanced ant colony optimization.

Method Parameter

mPSO Wmin = 0.4, Wmax = 1.2, C1 = 2.0, C2 = 2.0, pc = 0.6, pm = 0.1, ps= 0.1

FSDPSO ω = 1.0, C1 = 2.0, C2 = 2.0, k1 = 0.5, k2 = 0.005, pm = 0.1

E-ACO Q = 300, C = 150, D = 15, τmin = 1.0, τmax = 20.0, τ0 = 10, α = 1, β = 2, ρ = 0.15

Table 7 summarizes the experimental results on the best makespan (C∗max), the average makespan
(Cmax), the average computation time in CPU seconds (tcomp), and the number of infeasible solutions
(nin f ) for 31 benchmark problems. The results of all metaheuristics were obtained by performing 30
repeated experiments for each problem. The experimental conditions of all methods were fixed at a
population size of 50 and a number of generations of 2000. The results of the infeasible solutions were
excluded from all calculations.

FSDPSO was superior to other existing metaheuristics (AMSEA, mPSO, and E-ACO) in both
solution quality (C∗max and Cmax) and computation time (marked in bold italic text in Table 7). In Table 7,
tcomp and nin f of AMSEA are omitted because the results are not presented in the paper. However, the
computation time of AMSEA was assumed to be long due to the complicated procedure of AMSEA.
Here, mPSO had the worst solution quality among them. This was because PSO is a metaheuristic
suitable for solving the continuous domain problem, whereas IPPST is a highly discrete combinatorial
problem. On the other hand, FSDPSO, which is an improved PSO used to solve a discrete problem,
showed very good performance in IPPST. E-ACO provided better solution quality than mPSO, but the
solution quality was significantly worse than AMSEA or FSDPSO, and the calculation time was even
longer than the others. In E-ACO, every ant agent searched for a new path every iteration. However,
due to the high complexity of IPPST, it consumed a lot of computing resources to explore the path. It is
noteworthy that E-ACO frequently produced infeasible solutions in large-sized problems (P29, P30,
P31). In E-ACO, an ant agent constructed a path successively. Thus, if the incumbent solution broke
the tool-related constraints once while constructing a path, it could not be reentered into the feasible
region. To solve this problem, colony size and number of generations must be increased, which leads
to long computation times.
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In all the problems, the proposed GA outperformed all other metaheuristics (marked in bold text
and gray cells in Table 7) in terms of solution quality and computation time. In Table 7, the improved
rate [%] was calculated as 100 (result of FSDPSO− result of Proposed GA)/result of FSDPSO.
Compared to C∗max by FSDPSO, that by the proposed GA was improved by 0.0–27.6% (an average of
14.5%). The proposed GA improved Cmax by 1.9–31.0% (an average of 17.1%) compared to that by
FSDPSO. Moreover, the zero nin f for all the problems indicated that all the solutions obtained were
feasible. Another notable point is that the computation time of the proposed GA was about 60% of that
of FSDPSO. Figure 11 shows the comparison bar charts of Cmax and tcomp of various methodologies
for the five selected problems (P1, P11, P21, P29, and P31). In the figure, regardless of the size of
the problem, the proposed GA was superior to other metaheuristics in both solution quality and
computation time. FSDPSO had the second-best performance. On the other hand, mPSO had poor
solution quality, and E-ACO had weakness in computation time.Sustainability 2019, 11, x FOR PEER REVIEW 18 of 25 
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Table 7. Comparison of performance for benchmark problems.

Method AMSEA [3] mPSO [23] FSDPSO [24] E-ACO [25] Proposed GA Improved Rate [%]
Problem C∗max Cmax C∗max Cmax tcomp nin f C∗max Cmax tcomp nin f C∗max Cmax tcomp nin f C∗max Cmax tcomp nin f C∗max Cmax tcomp

P1 280 292.2 355 382.9 21.66 0 164 181.3 4.9 0 328 345.0 30.3 0 164 168.5 2.4 0 0.0 7.1 50.3
P2 237 257.3 382 411.6 24.39 0 187 205.0 5.9 0 324 362.3 34.7 0 185 192.2 3.4 0 1.1 6.2 42.7
P3 234 246.6 373 420.97 29.783 0 148 175.8 7.3 0 335 365.3 46.1 0 126 143.6 4.5 0 14.9 18.3 38.6
P4 211 219.1 310 352.43 24.212 0 185 192.9 6.0 0 293 325.4 29.9 0 185 189.2 3.5 0 0.0 1.9 40.7
P5 207 214.2 351 380.7 24.797 0 144 169.5 6.0 0 309 331.6 36.3 0 128 150.5 3.5 0 11.1 11.2 41.5
P6 346 365.5 401 451.43 26.2 0 194 214.6 6.2 0 362 402.3 44.7 0 176 181.0 3.4 0 9.3 15.7 44.9
P7 235 263.4 394 425.03 24.785 0 187 207.7 5.5 0 350 372.7 37.0 0 185 203.1 3.4 0 1.1 2.2 37.6
P8 250 258.8 355 409.77 23.194 0 176 191.7 5.5 0 340 360.6 32.8 0 176 176.8 3.0 0 0.0 7.8 44.3
P9 278 291.9 353 395.17 27.237 0 163 181.6 7.1 0 317 344.8 41.0 0 118 127.0 4.0 0 27.6 30.1 43.7
P10 266 284.1 393 436.67 23.437 0 188 224.3 5.4 0 363 389.5 34.2 0 185 199.3 3.1 0 1.6 11.2 43.5
P11 230 243.3 364 405 26.005 0 147 169.5 6.4 0 312 347.0 37.8 0 128 143.0 3.7 0 12.9 15.6 41.6
P12 269 286.3 336 370.8 25.826 0 124 144.9 6.3 0 291 325.1 39.1 0 106 121.8 3.7 0 14.5 16.0 40.6
P13 365 379.6 445 492.67 34.078 0 202 245.6 8.1 0 405 433.1 66.1 0 177 198.9 4.5 0 12.4 19.0 44.6
P14 309 335.1 467 526.3 41.274 0 221 261.0 10.5 0 408 444.6 78.2 0 186 211.1 6.3 0 15.8 19.1 39.9
P15 277 283.3 412 465.8 36.864 0 203 229.4 9.3 0 368 396.9 59.0 0 185 200.3 5.6 0 8.9 12.7 40.4
P16 397 421.9 477 533.47 38.762 0 232 266.8 9.3 0 431 467.7 85.6 0 184 204.5 5.2 0 20.7 23.4 44.4
P17 385 399.9 484 531.8 37.712 0 211 256.4 8.7 0 428 452.7 70.6 0 205 234.6 5.2 0 2.8 8.5 40.4
P18 364 370.7 456 487.67 38.196 0 220 251.9 9.8 0 404 430.2 72.3 0 176 188.6 5.5 0 20.0 25.1 43.5
P19 370 383.2 496 558.63 38.586 0 259 301.7 9.3 0 447 485.8 72.3 0 218 240.0 5.2 0 15.8 20.4 44.0
P20 335 343.1 383 441.43 37.404 0 162 190.1 9.3 0 347 379.8 70.9 0 128 143.4 5.5 0 21.0 24.6 40.8
P21 448 465.1 572 631.87 45.995 0 286 327.3 11.2 0 489 523.0 103.7 0 228 258.0 6.3 0 20.3 21.2 43.7
P22 407 426.5 553 706.57 55.011 0 295 336.0 14.3 0 506 572.3 133.3 0 224 261.0 8.8 0 24.1 22.3 38.0
P23 351 362.9 536 600.7 49.833 0 263 303.4 12.7 0 480 507.2 104.1 0 212 245.9 7.8 0 19.4 19.0 38.9
P24 484 500.2 620 733.97 51.626 0 300 350.7 12.8 0 523 577.3 136.1 0 221 260.0 7.4 0 26.3 25.9 42.5
P25 422 448.7 572 727.53 48.647 0 298 328.5 11.5 0 524 593.2 112.9 0 264 296.0 6.9 0 11.4 9.9 40.3
P26 428 455.1 559 656.33 51.32 0 266 315.2 13.4 0 500 538.3 119.5 0 194 217.4 7.8 0 27.1 31.0 42.1
P27 411 435.6 616 731.9 50.248 0 309 357.8 12.5 0 530 582.7 117.2 0 256 291.1 7.2 0 17.2 18.6 41.9
P28 415 440.3 534 660.53 52.847 0 245 288.4 13.5 0 496 529.5 124.8 0 195 215.7 8.2 0 20.4 25.2 39.1
P29 554 580.2 798 996.73 65.73 0 354 418.6 17.5 0 658 772.5 191.9 8 271 330.0 10.7 0 23.4 21.2 38.9
P30 499 526.6 935 1071.4 66.621 0 387 425.3 17.7 0 750 812.8 190.5 19 296 341.9 11.2 0 23.5 19.6 36.5
P31 639 669.2 1290 1342.3 78.742 26 442 504.7 21.9 0 N/A N/A N/A 30 330 399.0 14.1 0 25.3 20.9 35.8

minimum 0.0 1.9 35.8
average 14.5 17.1 41.5

maximum 27.6 31.0 50.3

* Bold and italic text: The best performance among the existing metaheuristics. * Bold text and gray cells: The best performance among the metaheuristics under comparison.
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A Gantt chart is a useful tool to easily identify the process plan and the schedule of operations,
the final solution of IPPST. Figures 12 and 13 show the Gantt charts of the pseudo-optimal solutions by
the proposed GA for P1 and P31, respectively. At the head of the figures, the problem id, the type of
metaheuristic, the size of population, the number of generations, the parameter values, the makespan of
the solution, the tool remaining at present for each tool type (Tool Remaining), the number of tool slots
available at present for each machine (Slot Remaining), and the computation time (Comp Time) are
displayed. In both figures, the solutions were feasible because all the values were higher than or equal
to zero in Tool Remaining and Slot Remaining. Each colored box represents the schedule (the starting
time and the completion time) of each operation, and the internal numbers of each box represent the
assigned process plan, that is, the job id, operation id, machine id, tool id, and processing time.
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In Figure 12, the schedule for P1, which was a small-sized problem, had many machine idling times
(areas without operation boxes, for example, 0–40 sections of M10 in Figure 12). These were generated
by the precedence relations between operations and machine availability. To reduce makespan and
increase utilization of machines, these idling times should be reduced as much as possible. However,
small-sized problems have a limited number of available operations, so reducing the idling times was
limited. On the other hand, as shown in Figure 13, large-sized problems such as P31 can be more
efficiently scheduled because there are a lot of available operations, so that the number and size of
machine idling times are small. Nevertheless, if the makespan is the same, it is recommended that
machine idling times be increased to save energy and increase machine and tool lifetime.

7. Discussion

In manufacturing, sustainability has been mainly addressed at strategic levels such as supply
chain design, layout design, cleaner product and production mean design, construction, and recycling
processes [26]. However, Giret et al. [26] have argued that approaches in operational levels are needed
for practical sustainable manufacturing, and they have pointed out that optimization of scheduling
can enhance energy efficiency and manageability of oversized capacity. IPPS, which considers process
planning and scheduling at the same time, is more practical and useful than scheduling in terms of
sustainability because it can eliminate schedule conflicts, reduce process flow time and work-in-process
inventory, increase utilization rate, and enhance responsiveness to uncertainties. The limitation
of this study was that it did not address the multi-objective problem. Even though makespan is
a representative objective variable that potentially contains many factors in IPPS, multi-objective
optimization enables detailed control over various sustainable factors such as energy, cost, and
greenhouse gas emissions.

Tool flexibility and tool-related constraints are important considerations that determine cost,
flexibility, and feasibility, as well as energy consumption. Since the energy efficiency of machine tools
is very low [27], efficient operation using scheduling is essential [26]. According to Petrović et al. [8],
only four studies [11,28–30] in IPPS-related research from 1999 to 2015 considered tool flexibility.
Moreover, tool-related constraints such as tool capacity and tool magazine capacity have so far
been considered only by Kim et al. [3]. These constraints affect solution quality and resource saving.
As shown in the nin f column in Table 7, if the capacities are tight or the size of the problem is large,
an infeasible solution is obtained. In addition, even if the solution is feasible, the solution quality is
poor because convergence is not sufficient. To pursue sustainable manufacturing at operation levels,
additional factors such as sequence-dependent setups, facility maintenance, workpiece loading and
unloading, etc., must be considered [31,32]. Since these are generally regarded as constraints, the
optimization algorithm must derive a feasible solution under various constraints. Existing algorithms
for IPPS do not include constraints other than precedence relations between operations, so performance
verification for it is insufficient. On the other hand, the proposed GA efficiently provides a feasible
solution even under tool-related constraints, as shown in the experimental results in Table 7.

In the meantime, many optimization methods for IPPS have been proposed. According to
Ausaf et al. [33] and Petrović et al. [8], GAs or evolutionary algorithms [3,11,19,34–36], ACOs [4,28,37],
PSOs [8,11,23,24], and hybrid metaheuristics [8,38] have been most widely used for IPPS optimization.
However, they have constructed complex procedures, combined various algorithms, or added specific
subprocedures to address the various flexibilities of IPPS and to improve the solution quality of the
complex problem. Nevertheless, as shown in the experimental results, the existing metaheuristics
do not show remarkable performance. Rather, these approaches, which increase the complexity of
the algorithms, result in an increase in computation time without improving the solution quality.
On the other hand, even though the GA proposed in this paper follows the conventional simple GA
framework, it showed the best performance in terms of both the solution quality and the computation
time. This was possible because the proposed integrated chromosome representation could handle the
various flexibilities of the IPPS despite the single string structure.
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8. Conclusions

The IPPST problem, which is a highly complex combinatorial problem due to various flexibilities,
requires complicated representation structures and operating procedures when applying GAs.
The main contribution of this study was the implementation of a straightforward simple structured GA
for IPPST. To achieve this, we proposed a new chromosome representation. Regarding performance,
the proposed GA outperformed the existing metaheuristics for IPPST by over 17% on an average
makespan. Decreasing makespan caused an increase in throughput (the amount of production per unit
time), which meant that manufacturing capacity increased without additional production facilities.
The reduction of makespan also contributes to the profit margin of the company by reducing energy use
and manufacturing costs. This not only strengthens the company’s competitiveness and sustainability,
but it is also desirable for environmental preservation.

Moreover, the proposed GA could solve even large-sized problems within a short computation
time. This means that process planning and scheduling could be solved simultaneously in near-real
time by using the proposed GA. The key to smart manufacturing, which has recently been focused on
in the manufacturing field, is fast and effective decision making using real-time data. To effectively
respond to changes in dynamic manufacturing environments such as emergency orders, cancellation
of orders, and machine breakdown, an optimal decision algorithm based on real-time shop floor data
is required. The proposed GA is fast and effective, so it can be a countermeasure.

IPPST is constructed under some static assumptions, as mentioned in Section 2. To develop an
optimization method that works in a dynamic manufacturing environment, some assumptions must
be relaxed. However, such relaxations further increase the complexity of the IPPS and complicate the
algorithm for solving the problem. Increasing the complexity of the algorithm degrades efficiency and
flexibility, so a more efficient algorithm is needed to solve the problem in real time. Our future work
will focus on this topic.
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23. Miljković, Z.; Petrović, M. Application of modified multi-objective particle swarm optimisation algorithm
for flexible process planning problem. Int. J. Comput. Integr. Manuf. 2017, 30, 271–291. [CrossRef]

24. Dou, J.; Li, J.; Su, C. A discrete particle swarm optimisation for operation sequencing in CAPP. Int. J. Prod. Res.
2018, 56, 3795–3814. [CrossRef]

25. Zhang, S.; Wong, T.N. Integrated process planning and scheduling: An enhanced ant colony optimization
heuristic with parameter tuning. J. Intell. Manuf. 2014, 29, 1–17. [CrossRef]

26. Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in manufacturing operations scheduling: A state of the art
review. J. Manuf. Syst. 2015, 37, 126–140. [CrossRef]

27. Hu, S.; Liu, F.; He, Y.; Hu, T. An on-line approach for energy efficiency monitoring of machine tools.
J. Clean. Prod. 2012, 27, 133–140. [CrossRef]

28. Srinivas, P.S.; Raju, V.R.; Rao, C.S.P. Optimization of Process Planning and Scheduling using ACO and PSO
Algorithms. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 343–354.

29. Li, W.D.; McMahon, C.A. A simulated annealing-based optimization approach for integrated process
planning and scheduling. Int. J. Comput. Integr. Manuf. 2007, 20, 80–95. [CrossRef]

30. Zhang, Y.F.; Saravanan, A.N.; Fuh, J.Y.H. Integration of process planning and scheduling by exploring the
flexibility of process planning. Int. J. Prod. Res. 2003, 41, 611–628. [CrossRef]

31. Zhou, X.; Liu, F.; Cai, W. An energy-consumption model for establishing energy-consumption allowance of a
workpiece in a machining system. J. Clean. Prod. 2016, 135, 1580–1590. [CrossRef]

32. Liao, W.; Wang, T. Promoting Green and Sustainability: A Multi-Objective Optimization Method for the
Job-Shop Scheduling Problem. Sustainability 2018, 10, 4205. [CrossRef]

33. Ausaf, M.F.; Li, X.; Gao, L. Optimization Algorithms for Integrated Process Planning and Scheduling
Problem—A Survey. In Proceedings of the Proceeding of the 11th World Congress on Intelligent Control and
Automation, Shenyang, China, 29 June–4 July 2014; pp. 5287–5292.

34. Kim, Y.K.; Park, K.; Ko, J. A symbiotic evolutionary algorithm for the integration of process planning and job
shop scheduling. Comput. Oper. Res. 2003, 30, 1151–1171. [CrossRef]

http://dx.doi.org/10.1016/0925-5273(94)90048-5
http://dx.doi.org/10.1080/09537289408919468
http://dx.doi.org/10.1080/00207540701827905
http://dx.doi.org/10.1080/00207549608905065
http://dx.doi.org/10.1016/0360-8352(96)00047-2
http://dx.doi.org/10.4236/jsea.2010.312135
http://dx.doi.org/10.1287/opre.8.4.487
http://dx.doi.org/10.1080/00207543.2011.622310
http://dx.doi.org/10.1016/j.eswa.2011.01.136
http://dx.doi.org/10.1016/j.ijpe.2010.04.001
http://dx.doi.org/10.1016/j.ejor.2015.01.032
http://dx.doi.org/10.1016/j.cor.2008.07.006
http://dx.doi.org/10.1162/evco.1999.7.1.1
http://dx.doi.org/10.1080/00207729708929359
http://dx.doi.org/10.1080/0951192X.2016.1145804
http://dx.doi.org/10.1080/00207543.2018.1425015
http://dx.doi.org/10.1007/s10845-014-1023-3
http://dx.doi.org/10.1016/j.jmsy.2015.08.002
http://dx.doi.org/10.1016/j.jclepro.2012.01.013
http://dx.doi.org/10.1080/09511920600667366
http://dx.doi.org/10.1080/0020754021000037874
http://dx.doi.org/10.1016/j.jclepro.2015.10.090
http://dx.doi.org/10.3390/su10114205
http://dx.doi.org/10.1016/S0305-0548(02)00063-1


Sustainability 2019, 11, 502 23 of 23

35. Morad, N.; Zalzala, A. Genetic algorithms in integrated process planning and scheduling. J. Intell. Manuf.
1999, 10, 169–179. [CrossRef]

36. Li, X.; Gao, L.; Shao, X. An active learning genetic algorithm for integrated process planning and scheduling.
Expert Syst. Appl. 2012, 39, 6683–6691. [CrossRef]

37. Wan, S.Y.; Wong, T.N.; Zhang, S.; Zhang, L. Integrated process planning and scheduling with setup time
consideration by ant colony optimization. In Proceedings of the 41st International Conference on Computers
and Industrial Engineering, Los Angeles, CA, USA, 23–26 October 2011; pp. 998–1003.

38. Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem.
Int. J. Prod. Econ. 2016, 174, 93–110. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1008976720878
http://dx.doi.org/10.1016/j.eswa.2011.11.074
http://dx.doi.org/10.1016/j.ijpe.2016.01.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Definition and Representation of IPPS 
	Proposed Chromosome Representation 
	Conventional Chromosome Representation 
	Integrated Chromosome Representation 

	GA Procedures 
	Decoding Methods 
	Fitness Function 
	Overall GA Procedure 
	Generation of Initial Population 
	Crossover Operation 
	Mutation Operation 

	Benchmark Problems and Experimental Environment 
	Experimental Results 
	Determination of Operating Parameters 
	Performance Comparison to Previous Metaheuristics 

	Discussion 
	Conclusions 
	References

