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Abstract: Urban structures facilitate human activities and interactions but are also a main source of
air pollutants; hence, investigating the relationship between urban structures and air pollution is
crucial. The lack of an acceptable general model poses significant challenges to investigations on
the underlying mechanisms, and this gap fuels our motivation to analyze the relationships between
urban structures and the emissions of four air pollutants, including nitrogen oxides, sulfur oxides,
and two types of particulate matter, in Korea. We first conduct exploratory data analysis to detect
the global and local spatial dependencies of air pollutants and apply Bayesian spatial regression
models to examine the spatial relationship between each air pollutant and urban structure covariates.
In particular, we use population, commercial area, industrial area, park area, road length, total land
surface, and gross regional domestic product per person as spatial covariates of interest. Except for
park area and road length, most covariates have significant positive relationships with air pollutants
ranging from 0 to 1, which indicates that urbanization does not result in a one-to-one negative
influence on air pollution. Findings suggest that the government should consider the degree of urban
structures and air pollutants by region to achieve sustainable development.
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1. Introduction

Urban structures have become increasingly complicated due to economic factors, such as
agglomeration economies and externalities [1–4]. The composition and configuration of land-use
types and transportation networks are planned to achieve the best economic growth of regions.
For example, Pan et al. [5] found that the distribution of residential and commercial land uses is
planned along with network systems in the Chicago Metropolitan Statistical Area. Although each
city has a different urban structure based on regional socioeconomic status [6], achieving economic
development is a common goal. Given this trend, population concentrations have resulted in 54% of
the world’s population living in urban areas [7]. Although large populations and high employment
rates indicate that a region has a high level of economic sustainability, many urban regions have begun
to experience environmental problems, in particular serious air pollution [8].

Most air pollutants are generated from human activities, including production and consumption,
and interactions between the human social system and environment [9,10]. Given that urban structures
facilitate human activities and their interactions [11], investigating the relationship between the
characteristics of these structures and air pollution is of broad interest to many. In this manuscript,
we study this relationship in the context of Korean cities by considering multiple urban structure
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covariates and air pollutant emissions simultaneously. We also provide a general theoretical framework
for countries entering the terminal stage of urbanization based on this empirical analysis.

The sustainable development paradigm is crucial in terms of the competitiveness of a region [12];
hence, modern governments require different policy formulations and implementations, as opposed
to past governments, which were able to implement strong economic growth-oriented policies.
For example, Korea achieved rapid economic growth by intensively developing specific areas and
focusing on heavy industries. However, this government-led plan was criticized because it neglected
all other value except economic growth. Therefore, recent governments have attempted to incorporate
environmental value into policy making to attain sustainable development by introducing the smart
city concept. Low air quality considerably influences current policy making because residents tend to
respond sensitively to changes in air quality [11,13]. Air pollutants can affect public health in direct
and indirect ways [14–19]; thus, the need for research on air pollution is strong.

Several studies have been conducted to observe the air quality of various regions [20–24]. Jang [20]
found that the atmosphere in Seoul does not satisfy air quality standards due to particle pollution.
Fine dust problems, which have become a major social issue in China, affect Korea’s air situation
because of the latter’s geographical location. Many urban areas in China show levels of PM2.5 higher
than those in other countries [25], and the proportion of particulate matter is higher than the standard
suggested by the World Health Organization [26,27]. However, previous studies are limited by the
fact that they only observe air pollution in specific regions and do not investigate the relationship
between urban characteristics and air quality. Given that the atmosphere over urban areas has become
overburdened with various pollutants, analyzing the relationship between urban structures and air
pollution is necessary.

Complex urban spaces can be divided into fixed-use areas, such as residential, commercial,
and industrial areas, and link-based transportation networks connecting these areas [11]. Since the
distributions of complex urban spaces affect air quality [8], attempts to establish the relationship
between urban structures and air quality through theoretical models have been made. For example,
Borrego et al. [8] conducted simulation studies under different urban planning scenarios to investigate
these relationships. Marquez and Smith [11] developed an integrated land use-transport-air quality
model to evaluate the effect of urban structure on air quality.

Given the increasing availability of relevant data, a number of empirical studies have analyzed
the influence of urban structures on air quality [28–39]. Empirical studies can be classified into
two categories: (1) those that conceptualize the types of land use as urban structures [28–32] and,
(2) those that regard the degree of sprawl or compactness as the urban structures [33–39]. In this
work, we will refer to the first category as the land-use approach and the second category as the
sprawl-and-compact development approach. With regard to land-use approaches, Hussein et al. [28]
investigated the association between traffic-related variables and sizes of ambient particulate matter.
Sánchez-Rodas et al. [30] analyzed the distributions of PM10 in rapidly industrializing regions.
Furthermore, levels of air pollutants in green areas have been examined with an increasing preference
for easily accessible green spaces in modern cities [31,32]. On the other hand, the emergence of
decentralized sprawl and its corresponding concept of compact development have led to attempts
to find a relationship with air quality. Cho and Choi [33] conducted panel analyses to evaluate the
influence of compact development on air quality in Seoul. The proportion of green areas and number
of people within the built-up area variables were used to conceptualize urban compactness. The results
revealed no apparent impact of compact development on air pollution levels. The same approach was
applied to metropolitan areas or urban regions rather than to an individual city. Using macroscopic
structure variables such as centeredness, connectivity, land-use mix, and sprawl index, the researchers
found that the amounts of air pollutants increase as the degree of sprawl increases in most metropolitan
areas [34–37].

Although previous studies indicate a significant relationship between urban structures and air
pollution, both categories of empirical studies have limitations. In the land-use approach, studies
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examining comprehensive relationships using multiple urban structure variables are scarce. In addition,
direct application of the sprawl-and-compact development approach to Korean cities is challenging
because previous theories are based on North American cities. These gaps between the existing
hypotheses and empirical analyses fuel our motivation to investigate the administrative area in Korea
by using multiple urban land-use covariates and air pollutant variables simultaneously.

Air quality can be measured by estimating the amounts of emissions from pollutant sources or
measuring the concentrations of pollutants by monitoring stations [40]. Among the various pollutants,
we focus on emissions of nitrogen oxides (NOX), sulfur oxides (SOX), and two types of particulate
matter (PM10 and PM2.5), all of which are meaningful criteria for air pollution. NOX are mainly
produced in combustion processes, such as in automobile and power plants, while SOX primary
sources include fossil fuel combustion and natural emissions [41]. PM10 is mainly obtained from
the mechanical crushing and abrasion of surfaces while PM2.5 is produced in combustion processes,
similar to NOX [42]. The phenomenon of high particulate matter concentration repeats every spring
and winter has recently been observed in Korea, and studies on the adverse effects of particulate
matter have been conducted. In response to findings, the government implemented new policies,
such as the “Clean Air Conservation Act” and the “Special Act on the Reduction and Management
of Dust,” as regulation measures. Today, NOX and SOX, which react with other substances in the air,
are considered criteria for air pollution in Korea.

Among Organization for Economic Co-operation and Development (OECD) countries, Korea
has the highest population density with more than 500 people per km2, which means the country
may be particularly vulnerable to air pollution. According to the 2018 Environmental Performance
Index, Korea ranked 119th out of 180 countries in air quality; in particular, Korea’s PM2.5-related
indicators were at the bottom. However, regional differences in air pollution have been determined
due to differences in industrial structures and population densities by region. Therefore, we use spatial
regression models to describe the general trend over the entirety of Korea and account for regional
characteristics. We first analyze the spatial distributions of air pollutants, namely, NOX, SOX, PM10,
and PM2.5, from pollutant sources in 225 administrative areas in Korea to determine the existence of
spatial dependencies of air pollutants. On the basis of these results, we fit the spatial regression models
to investigate the relationship between the structural components of cities and air pollutant emissions.
In this analysis, four air pollutants and several urban structure variables are used as response variables
and covariates, respectively. To the best of our knowledge, no existing approach provides a general
spatial model framework for quantifying the relationships between different types of air pollutants
and urban structure covariates in Korea. Finally, we suggest policies to achieve sustainable urban areas
based on our empirical analyses.

The rest of this paper is organized as follows. In Section 2, we introduce the study area and
provide the research background. We also describe the variables and visualize the distributions of four
air pollutants. We describe the methodologies applied to perform exploratory spatial data analysis
and build the Bayesian spatial linear model in Section 3. In Section 4, we present the main findings of
our empirical analysis. We conclude with a discussion and conclusions in Section 5.

2. Data

2.1. Study Area

The spatial extent of this study is Korea (Figure 1). Korea underwent rapid urbanization along
with great economic growth over the last 50 years, and, as a result, five major metropolitan areas
were formed. To account for spatial uncertainties across the entire region, we set the extent of this
study to include the Korean mainland, rather than focusing on a specific region, such as the Seoul
metropolitan area.
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addition, these SGGs consistently emit marginal amounts of air pollutants. Therefore, 225 SGGs are 
used for our analysis. 

2.2. Data and Variable 

We consider four air pollutants, namely, NOX, SOX, PM10, and PM2.5, as response variables and 
use population size, area of commercial land use, area of industrial land use, area of park, road length, 
total land surface, and gross regional domestic product (GRDP) per person as covariates in this study. 
The number of observations for each variable is 225, and 2015 is set as the base year for all variables. 
In this section, we provide a detailed description of each variable. 

Data on the four air pollutants by SGG are obtained from the National Air Pollutants Emission 
Service of the National Institute of Environmental Research. This annual dataset includes estimated 
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Figure 1. Study area.

Korea has a four-level hierarchical administrative structure; in this study, the second-level
administrative area, namely, Si (city)-Gun (county)-Gu (district) (SGG), is set as the spatial unit.
An SGG corresponds to an administrative county in the United States. However, SGG presents fewer
restrictions on the modifiable areal unit problem because the average area of SGGs (438 km2) is smaller
than that of US counties (2,584 km2). In this study, the SGG is used as the unit of analysis. Korea
consists of 229 SGGs, but four of them (Ongjin, Ulleung, Jeju, and Seogwipo) are excluded from this
analysis because they are composed of islands located far from the mainland (Appendix A Figure A1).
In addition, these SGGs consistently emit marginal amounts of air pollutants. Therefore, 225 SGGs are
used for our analysis.

2.2. Data and Variable

We consider four air pollutants, namely, NOX, SOX, PM10, and PM2.5, as response variables and
use population size, area of commercial land use, area of industrial land use, area of park, road length,
total land surface, and gross regional domestic product (GRDP) per person as covariates in this study.
The number of observations for each variable is 225, and 2015 is set as the base year for all variables.
In this section, we provide a detailed description of each variable.

Data on the four air pollutants by SGG are obtained from the National Air Pollutants Emission
Service of the National Institute of Environmental Research. This annual dataset includes estimated
amounts of air pollutants from 13 major pollutant sources by region (Appendix A Table A1). Except for
those on PM2.5, which were collected beginning 2011, data on the three other pollutants were collected
from 1999 to 2015. However, analyzing the panel data is challenging because of discontinuities in
emission estimates due to annual enhancement of emission factors and addition of new sources or
removal of existing sources. Therefore, only the latest dataset (2015) is used for the analysis.

Another dataset on air pollutants is estimated not on the basis of pollutant sources but, rather,
on the measurement instruments. Such data are not used in this study due to limitations associated
with the control of external factors, including weather conditions. Several studies have found a strong
relationship between the concentrations of air pollution and climatic variables, such as wind direction
and speed [20,43–47]. In particular, Korea is heavily affected by pollutants from Northeast Asian
regions due to its geographical characteristics and westerlies. Therefore, air pollutant data based
on measurement instruments can contain air pollutants from both domestic and foreign sources,
which can distort the true relationship between the country’s urban structures and air pollutant
emissions. To avoid this problem, we use 1-year cross-sectional estimated emission data from domestic
pollutant sources.

In this manuscript, we consider multiple covariates to account for complex urban structures. First,
we include the population size of SGGs in the models. Population size has been used for scaling
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analysis to reveal diverse urban indicators [48–51]. The population can be used to determine the
intensity of various socioeconomic activities causing complex urban structures. Second, we choose
areas of commercial and industrial land use as covariates. Although the population can represent the
area of residential land use, it cannot adequately cover commercial or industrial areas. For example,
if SGGs near major metropolitan areas are bedroom towns, they must have a high proportion of
residential area with a low proportion of commercial and industrial areas. By contrast, if SGGs are
central business districts (CBDs), they must have a high proportion of commercial space and a low
proportion of residential area due to the CBD hollowing-out phenomenon. Therefore, we use areas
of commercial and industrial land use to account for the different regional characteristics of urban
structures in each SGG. Third, we include the area of green spaces in SGGs in the models. In the context
of environmental sustainability, the importance of green spaces to residents has been increasingly
emphasized [31,32]. A potential variable for this approach is the area of a green zone defined by the
National Land Planning and Utilization Act. However, this method is unsuitable because it includes
areas of agricultural lands, such as farmland and production forest land, which are planted with crops
focused on economic, rather than environmental, considerations. Hence, we use the area of parks
defined as urban parks as a variable. Fourth, the length of all roads in SGGs regardless of pavement
type is included in the models. The inclusion of road length in the analysis is reasonable because
a considerable volume of air pollutants is directly emitted by the transportation sector [28]. Fifth,
to control potential bias due to the different surfaces of each SGG, we include the total land area of each
SGG in our models as in [37–39]. Finally, we include per capita real GRDP by SGG for 2015, the base
year of which is 2010, to control the economic level on the relationship between urban structure and air
pollutants. All urban structure variables are obtained from the Korean Statistical Information Service
of Statistics Korea. The descriptive statistics and distributions of the original variables are summarized
in Table 1 and Figure 2, respectively. Four air pollutants and seven covariates are transformed into
a natural logarithm before descriptive and empirical analyses to improve normality [52–54].

Table 1. Descriptive statistics of the variables.

No. of Observations: 225 Mean Standard
Deviation Min Max

Response variables

NOX (kg/year) 4,696,321 6,633,836 364,356 46,956,502
SOX (kg/year) 1,487,659 4,943,004 2,526.99 32,832,287

PM10 (kg/year) 1,004,696 2,520,089 49,270.75 27,237,038
PM2.5 (kg/year) 420,354.4 1,350,711 19,340.97 14,346,234

Covariates

Population (person) 226,105.9 218,859.7 17,898 1,184,624
Commercial area (m2) 1,433,670 1,466,489 111,167 10,650,332

Industrial area (m2) 5,109,502 8,598,202 0 57,804,833
Park area (m2) 3,318,364 3,801,371 32,000 24,602,000

Road length (m) 426,654.3 229,819.3 51,497 1,734,727
Total land surface (m2) 436,449,590 381,005,832 2,826,064 1,819,829,902

Gross regional domestic
product (GRDP) per person

(1,000,000 (KRW))
30,559 31.82 6.194 395.476

The Korea Geographic Information Service (GIS) map used to present air pollutant emissions and
local spatial autocorrelations is downloaded from the Statistical Geographic Information Service of
Statistics Korea. All explanatory spatial data analyses are performed using ArcGIS 10.3 by ESRI.
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2.3. Distributions of Air Pollutants

The distributions of the four air pollutants are illustrated in Figure 3. In terms of NOX and
SOX, SGGs show a similar pattern of emission distribution. For example, areas marked by diagonal
lines included in the lowest and second-lowest categories (e.g., southern coastal SGGs, southern
inland SGGs, eastern coastal SGGs, and northeastern SGGs) emit relatively low amounts of pollutants
(Figure 3a,b). By contrast, eastern coastal SGGs (37◦–38◦ north latitude), which are positioned above
the diagonal-line regions, southeastern SGGs, and midwest coastal SGGs emit high amounts of NOX

and SOX. These SGGs possess manufacturing-oriented industrial complexes, thermoelectric power
plants, and coal-fired power plants that are over 30 years old. PM10 emissions are generally higher
than PM2.5 emissions, but some SGGs are included in the largest category of both types of particulate
matter. Although overall patterns are similar among the four air pollutants, this finding does not mean
that all individual SGGs have similar levels of emission of each pollutant. In other words, the amounts
of pollutants emitted by each SGG may vary. For example, two SGGs (Mungyeong and Yecheon),
which feature horizontal stripes in all pollutants, have relatively high emissions of SOX and PM10
(included in the top 50% categories) and low emissions of NOX and PM2.5 (included in the bottom
50% categories); by contrast, other SGGs show the opposite case. These results confirm the necessity of
considering regional characteristics when analyzing air pollution.
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of SOX and PM10 and low emissions of NOX and PM2.5.

In summary, we present three findings. (1) Although the four air pollutants are produced
by different sources and mechanisms, the overall emissions of SGGs present similar patterns.
(2) Some SGGs present different amounts of pollutant emissions due to regional differences in energy
consumption and industrial structure. (3) Some adjacent SGGs that produce similar degrees of
emissions form spatial clusters. On the basis of these findings, exploratory spatial data analyses are
conducted, and spatial linear models are fitted for further analysis.
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3. Methodology

3.1. Exploratory Spatial Data Analysis

Statistical inference in the presence of spatial autocorrelation is challenging because dependencies
among nearby SGGs can lead to unreliable parameter estimates. For example, Dong and Liang [55]
noted the presence of global and local spatial dependencies in emissions of various pollutants in China,
and Réquia et al. [56] discovered the existence of clusters in various types of pollutant emissions.
In this study, spatial autocorrelations of emissions can arise in urban structures, such as in industrial
complexes or power plants where emission sources are usually agglomerated due to economic reasons.
To determine if spatial autocorrelation issues exist in our study, we use Global Moran’s I, a popular
nonparametric statistics of spatial autocorrelation [57]. Moran’s I can detect spatial dependence by
calculating the correlation among nearby regions. If Moran’s I is statistically significant, spatial linear
regression models should be fitted to account for such dependence among the data.

We calculate Global Moran’s I to check whether or not global spatial autocorrelations occur.
Although Global Moran’s I can be a proxy for global spatial autocorrelation, it does not represent
local clusters. Local deviations from a global pattern of spatial autocorrelation can occur even if
the entire study area has a significant spatial autocorrelation. Thus, we also apply Local Moran’s I,
which decomposes Global Moran’s I, to identify local clusters of each pollutant [58]. A positive value
of Local Moran’s I means that the emission values for an SGG are similar to those of adjacent SGGs.
Then, this SGG becomes part of a high-high or low-low cluster. By contrast, a negative value of Local
Moran’s I represents dissimilar emission values among nearby regions. Then, this SGG is part of a
high-low or low-high outlier. The details for the spatial weight matrix for Moran’s I are provided in
Section 3.2.

3.2. Spatial Linear Regression Model

In the presence of spatial autocorrelations, adding a set of spatially correlated random effects to
the linear predictor is the most common approach to account for such dependencies. These random
effects are typically modeled with a conditional autoregressive (CAR) prior [59], which can incorporate
spatial dependence among neighboring areal units. Lee [60] compared several variants of CAR models
and identified the model proposed by Leroux et al. [61] as the most general and practical approach;
therefore, we use this model in our analysis. The hierarchical structure of spatial linear models renders
the Bayesian approach convenient to use. For example, Bayesian spatial regression models have been
widely used to analyze the relationship between air pollution and health in Scotland [62] and estimate
the effects of air pollution on respiratory hospital admissions in London [63]. Liu et al. [64] predicted
air quality in Xiamen, China, by using a Bayesian hierarchical model.

In this context, Bayesian spatial linear regression models are fitted to examine the relationship
between the covariates and response variables, namely, NOX, SOX, PM10, and PM2.5 models. We have
n = 225 number of observations across the spatial domain and p = 7 number of predictors. We let Y
be a 225 × 1 response variable vector and X be a 225 × 7 matrix of values of covariates. We note that
Y is log-transformed air pollutants and X is log-transformed urban structure and control variables.
Our models can be written as follows:

Y = Xβ+ϕ, (1)

where β is a regression coefficient and ϕ is a spatial random effect. ϕ is modeled by a CAR [59,61]
prior distribution to incorporate spatial dependence among observations as follows:

ϕi|ϕ−i, W, τ2, ρ ∼ N

(
ρ∑n

j=1 wijϕj

ρ∑n
j=1 wij + 1− ρ

,
τ2

ρ∑n
j=1 wij + 1− ρ

)
, (2)
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where ρ is a spatial autocorrelation parameter and τ2 is a variance parameter. The covariance structure
of ϕ is determined by selecting spatial weight matrix W that summarizes the spatial associations
among observations. The priors for our parameters of interest are:

β ∼ N(0, 1002), τ2 ∼ Inverse Gamma(1, 0.01), ρ ∼ Uniform(0, 1). (3)

We infer the model parameters (β, τ2, ρ) via a Bayesian approach by using a Markov chain Monte
Carlo (MCMC) algorithm. The code for statistical analysis is implemented by using the CARBayes [65]
package in R [66].

For spatial weight matrix W, we use k-nearest neighbor weights based on the Euclidean distance
of the centroid of areal units. An SGG is unlikely to have more than eight neighbors; therefore,
we set the range of k from 3 to 8. We use the Bayesian information criterion (BIC) to select k for each
model. The implementation proceeds as follows. (1) We fit spatial regression models for each of the
response variables (NOX, SOX, PM10, and PM2.5) with different k values. (2) BIC values are calculated,
and a small BIC indicates a good model. We then select models with the smallest BIC for each of the
response variables. (3) To validate our analysis, we calculate the Global Moran’s I for each model’s
residuals. When the Global Moran’s I value is significantly small, the models successfully account for
spatial autocorrelation.

4. Results

The Global Moran’s I values for air pollutants are summarized in Table 2. All values are
significantly positive, which means that pollutants are clustered together. In particular, the Global
Moran’s I value for PM2.5 is higher than that for other pollutants. Hence, PM2.5 is more clustered
than the other pollutants are. Our result reveals the existence of spatial autocorrelation in emissions
and thus provides theoretical justifications for using spatial linear regression models.

Table 2. Global Moran’s I (p-values) for air pollutants.

NOX SOX PM10 PM2.5

Global Moran’s I 0.177 *
(<0.001)

0.191 *
(<0.001)

0.192 *
(<0.001)

0.236 *
(<0.001)

* indicate statistically significant estimates.

We also examine the local clusters and outliers of each pollutant (Figure 4). Each air pollutant
has a different local spatial pattern. For example, most of the high-high clusters of NOX are located in
western coastal areas, and many of the high-high clusters of SOX are at 37◦ north latitude, especially
in either eastern or western coastal regions. With regard to two types of particulate matter, most of
the high-high clusters of PM10 and PM2.5 are at 37◦ north latitude or in eastern coastal areas at 36◦

north latitude. In terms of low-low clusters, NOX have more clusters than other pollutants do, and the
clusters are distributed all over the study area. Meanwhile, SOX and PM2.5 have distinctly few low-low
clusters indicating that an SGG with low emission of either SOX or PM2.5 does not cluster together.

Several implications for further analysis are deduced on the basis of the spatial pattern of clusters.
(1) The distributions of statistically calculated clusters are in discord with those of descriptive clusters
in Figure 3 to some degree. For example, not all diagonal-line areas of NOX and SOX indicate low
emissions form low-low clusters. (2) Several SGGs are included in the high-high clusters of four
pollutants, indicating that common urban characteristics can occur among these SGGs. In other words,
several urban structure factors can influence the emissions regardless of air pollutant type. For example,
several western coastal SGGs where national industrial complexes are located are included in each
high-high cluster of four pollutants. (3) By contrast, the different distribution of clusters indicates that
the relationship might differ by air pollutants. The degree of influence may vary by pollutant even if
urban structure variables affect emissions. The results of Global and Local Moran’s I suggest potential
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spatial dependencies of air pollutants. Therefore, we use a spatial regression model as a rigorous
approach to investigate the relationship between urban structures and each air pollutant.

Figure 4. Spatial clusters and outliers of (a) NOX, (b) SOX, (c) PM10, and (d) PM2.5.

We select k for each spatial regression model based on the BIC values summarized in Table 3.
On the basis of the results in Table 3, we choose k = 8 for the NOX model, k = 7 for the SOX model,
and k = 6 for the PM10 and PM2.5 models. Figure 5 shows the extent of spatial dependencies among
SGGs for different k values.

Table 3. Bayesian information criterion (BIC) for each model.

NOX Model SOX Model PM10 Model PM2.5 Model

K = 3 −407.249 −323.998 330.579 390.741
K = 4 −505.341 −513.312 330.661 337.124
K = 5 −524.871 −411.576 307.652 −461.686
K = 6 −456.650 −456.619 −214.554 −484.580
K = 7 −537.169 −555.418 327.363 −455.380
K = 8 −561.229 828.030 318.267 387.368

1 Bold indicates the smallest BIC for each model.



Sustainability 2019, 11, 476 11 of 17
Sustainability 2019, 11, x FOR PEER REVIEW 11 of 17 

   
(a) (b) (c) 

Figure 5. K-nearest neighbor maps of (a) k = 6, (b) k = 7, and (c) k = 8. 

The estimated regression coefficients for each model are summarized in Table 4. When the 
response variables are NOX, PM10, and PM2.5, coefficients for population, industrial area, total land 
surface, and GRDP per person are positively significant. When the response variable is SOX, 
commercial area, industrial area, and GRDP per person are significant, and the coefficients are 
positively estimated. The coefficients for industrial area and GRDP per person are positively 
significant across all models. 

Table 4. Estimated coefficients (p-value) for independent variables. 

 NOX Model SOX Model PM10 Model PM2.5 Model 

Population 0.565 * 
(<0.001) 

0.014 
(0.9431) 

0.456 * 
(<0.001) 

0.379 * 
(<0.001) 

Commercial area 0.109 
(0.091) 

0.529 * 
(<0.001) 

0.077 
(0.180) 

0.102 
(0.112) 

Industrial area 
0.057 * 

(<0.001) 
0.145 * 

(<0.001) 
0.039 * 

(<0.001) 
0.052 * 

(<0.001) 

Park area −0.029 
(0.546) 

0.158 
(0.174) 

−0.066 
(0.096) 

−0.062 
(0.157) 

Road length 0.103 
(0.461) 

0.117 
(0.721) 

0.139 
(0.219) 

0.173 
(0.176) 

Total land surface 
0.177 * 
(0.009) 

0.083 
(0.572) 

0.340 * 
(<0.001) 

0.334 * 
(<0.001) 

GRDP per person 
0.006 * 

(<0.001) 
0.014 * 

(<0.001) 
0.006 * 

(<0.001) 
0.006 * 

(<0.001) 
* indicate statistically significant estimates. 

In general, significant covariates show positive values, and the magnitude of the values is 
smaller than that of the one-to-one correspondence in the relationships. In other words, a 1% increase 
in urban structure variables results in increments in emissions of air pollutants by less than 1%. These 
results show that the negative effects of urbanization can be mitigated in the concept of efficiency. 

First, when the population increases by 1%, the emissions of NOX, PM10, and PM2.5 increase by 
0.565%, 0.456%, and 0.379%, respectively. These positive effects are reasonable because population 
size determines the size of the residential area and the degree of socioeconomic activities in the 
regions. Meanwhile, an increase in the area of commercial land use is significant only on SOX 
(0.529%). Given that the commercial area considered here includes traditional and distribution 
commercial districts, the positive influence of commercial area on the emission of SOX is sensible. 
Increments in the area of industrial land use commonly show increments in emissions. An industrial 

Figure 5. K-nearest neighbor maps of (a) k = 6, (b) k = 7, and (c) k = 8.

The estimated regression coefficients for each model are summarized in Table 4. When the
response variables are NOX, PM10, and PM2.5, coefficients for population, industrial area, total
land surface, and GRDP per person are positively significant. When the response variable is SOX,
commercial area, industrial area, and GRDP per person are significant, and the coefficients are
positively estimated. The coefficients for industrial area and GRDP per person are positively significant
across all models.

Table 4. Estimated coefficients (p-value) for independent variables.

NOX Model SOX Model PM10 Model PM2.5 Model

Population 0.565 *
(<0.001)

0.014
(0.9431)

0.456 *
(<0.001)

0.379 *
(<0.001)

Commercial area 0.109
(0.091)

0.529 *
(<0.001)

0.077
(0.180)

0.102
(0.112)

Industrial area 0.057 *
(<0.001)

0.145 *
(<0.001)

0.039 *
(<0.001)

0.052 *
(<0.001)

Park area −0.029
(0.546)

0.158
(0.174)

−0.066
(0.096)

−0.062
(0.157)

Road length 0.103
(0.461)

0.117
(0.721)

0.139
(0.219)

0.173
(0.176)

Total land surface 0.177 *
(0.009)

0.083
(0.572)

0.340 *
(<0.001)

0.334 *
(<0.001)

GRDP per person 0.006 *
(<0.001)

0.014 *
(<0.001)

0.006 *
(<0.001)

0.006 *
(<0.001)

* indicate statistically significant estimates.

In general, significant covariates show positive values, and the magnitude of the values is smaller
than that of the one-to-one correspondence in the relationships. In other words, a 1% increase in urban
structure variables results in increments in emissions of air pollutants by less than 1%. These results
show that the negative effects of urbanization can be mitigated in the concept of efficiency.

First, when the population increases by 1%, the emissions of NOX, PM10, and PM2.5 increase by
0.565%, 0.456%, and 0.379%, respectively. These positive effects are reasonable because population size
determines the size of the residential area and the degree of socioeconomic activities in the regions.
Meanwhile, an increase in the area of commercial land use is significant only on SOX (0.529%). Given
that the commercial area considered here includes traditional and distribution commercial districts,
the positive influence of commercial area on the emission of SOX is sensible. Increments in the area of
industrial land use commonly show increments in emissions. An industrial area primarily is filled with
secondary industries that are one of the primary sources of air pollutants, especially SOX. However,
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a park area, which is assumed to have negative impacts on emissions, is not significant in all models.
This is because although the park area exists in the region, we cannot determine the amounts, kinds,
and spatial patterns of plants within the park that are directly related to the reduction of air pollutants.
The road length variable is not statistically significant to the emissions of all air pollutants, which may
seem counterintuitive, because a potential confounding issue exists in this variable. For example,
a two-lane back road and an eight-lane main road can have the same length. However, the emissions
from the two roads are completely different because of the difference in traffic volumes, road widths,
and average vehicle speeds. Considering this additional information for each road is challenging in
practice. The total land surface is positively significant to the emissions of air pollutants, except for
SOX. In particular, the emissions of the two types of particulate matter increase more than the emission
of NOX. This result indicates that large areas usually have many particulate matter pollutant sources.
Moreover, increases in GRDP per person have positively significant effects on pollutant emissions,
but their degrees are relatively small. We conclude that the impact of regional economic level on air
pollution is lower than that of the urban structure in Korea.

Table 5 shows the Global Moran’s I values for each model’s residuals. The absolute values of all
pollutants, except for the SOX model, are insignificant. Thus, the Bayesian models (NOX, PM10, and
PM2.5) effectively account for the spatial dependencies. Although the SOX model’s Global Moran’s
I value is significant, the value decreases from 0.191 to 0.103, which means the model accounts for
spatial autocorrelation.

Table 5. Global Moran’s I (p-values) for residuals.

NOX Model SOX Model PM10 Model PM2.5 Model

Global Moran’s I −0.004
(0.999)

0.103 *
(<0.001)

−0.059
(0.071)

−0.042
(0.223)

* indicate statistically significant estimates.

5. Discussion and Conclusions

Korea has pushed ahead with urbanization through government-initiated planning. Hence, its
urban structures have become complicated. At the same time, air pollution as a serious environmental
issue has recently elicited attention in Korea. Spatial models for underlying mechanisms are critical
for estimating emissions of air pollutants from urban structures and for accounting for regional
characteristics. Against this background, we study the spatial relationship between urban structures
and emissions of air pollutants via exploratory data analyses and Bayesian spatial regression models.
Our approach provides a general framework for analyzing spatial relationships between different
air pollutants and urban structure covariates. The results show a smaller increase than the direct
proportion in the emissions of air pollutants with increasing urban structure variables. This finding
is crucial because it suggests that urbanization progress does not result in a one-to-one negative
influence on air pollution. Previous studies have focused on investigating the relationship between
few urban structure variables and the emission of a particular air pollutant. By contrast, we use
multiple regression models to address the uncertainty in the underlying mechanisms. Population
size is significant, except in the SOX model, and it conforms to the results of other studies [33,37].
Furthermore, population coefficients are estimated to be less than one, which indicates that the
innovation effect occurs in urban areas in the context of scaling analysis [48–51]. The positively
significant regression coefficients for commercial and industrial areas in the SOX model are similar to
the results of Cárdenas Rodríguez et al. [38].

The insignificant park area in all the models supports the study of McCarty and Kaza [37].
However, the spatial pattern of the forest variable considered in their research has a positive influence
on the atmospheric environment. The traffic-related variable, which was assumed to be the major cause
of low air quality in the study of Hussein at al. [28], is not significant in our study. This result can be due
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to the confounding of the road length variable as we pointed out in Section 4. Furthermore, a variable
related to local economic levels can be used to identify unique relationships between air pollution
and economic growth in Korea. On the basis of the positive coefficients for GRDP per person, we find
that economic growth negatively affects air conditions in Korea. This finding is in contrast with the
results of McCarty [37] and Cárdenas Rodríguez et al. [38], who found that economic level covariates
show negative relations with air pollutant variables in the United States and Europe, respectively.
Our findings align with the results of Kim and Oh [67], who found positive relationships between
economic growth and air pollution in Korea. This fact demonstrates the importance of implementing
Korea-specific air-related policies.

Policies for urban development should be planned according to the degree of urban structure and
the pollutant level by region. In this process, scenario planning can be introduced to achieve sustainable
development by considering ecosystem functions [68,69]. One of the applicable scenarios is that most
SGGs are in the urbanization terminal stage. This scenario indicates that many regions have a complex
urban structure with a large population that is difficult to change. In this situation, rapidly changing
existing areas that are closely related to the emission of air pollutants to other uses is difficult because
of numerous economic and social limitations. Hence, the government should recommend a means
of maintaining current uses and reducing emissions without manipulating the existing ecosystem.
The approach is linked to a smart city, which is a concept for the future in Korea. The smart city
plan aims to respond to urban environmental problems, including air pollution, and ultimately block
pollution in advance by introducing new technologies in the existing urban structure [70,71]. Thus, the
government can reduce air pollution without radical urban transformations.

Furthermore, regional policies should be applied differently depending on the pollutant level
because emissions by pollutants vary from region to region. Cárdenas Rodríguez et al. [34] found
that positively significant correlations occur between nitrogen dioxide and PM10 and between sulfur
dioxide and PM10. Thus, a region with a high level of a specific pollutant may also have a high level
of other air pollutants. However, regional differences remain in air pollution. The local government
should examine and understand the condition of regional air pollution and apply air pollution
reduction policies in consideration of its urban structure characteristics. An air pollution policy, the
“Clean Air Conservation Act,” suggests local government action toward regional pollution, but the
policy still targets high administrative units. Furthermore, if a region and its neighboring areas have
a similar level of a specific air pollutant, then a macro approach that considers these areas’ structures
together is required.

In this study, we use multiple urban structure covariates by considering composition factors,
such as size and area, in investigating the underlying mechanisms. We note that the configuration
of the urban structures, which can affect the emission of air pollutants as well, must be considered.
For example, the widely distributed industrial complex and agglomerated industrial complex may
have a different influence on emissions even if both complexes have the same area. The remote-sensing
method might provide raster data for configuration information. However, in the interest of clear
model interpretation and the limited availability of configuration data on urban structures, our urban
structure covariates appear to be a good choice. The other open question is how to conceptualize
the green area and transportation factors in the urban area. We use park area and road length as
practical proxies, but they have potential confounding issues as we pointed out in the previous sections.
However, finding appropriate proxies poses significant challenges in practice.

In summary, we investigate the relationship between urban structures and emissions of air
pollutants in Korea. The descriptive distribution of emissions of four air pollutants presents the degree
of local emission by pollutants. SGGs with agglomerated industry complexes or large populations
usually emit large amounts of air pollutants. We use Bayesian spatial linear regression models
to account for existing spatial dependencies and to study the underlying mechanisms. We utilize
population size, commercial area, industrial area, park area, road length, total land surface, and GRDP
per person as spatial covariates. The results provide a theoretical implication for countries that are at
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the end of the acceleration stage or at the beginning of the terminal stage of urbanization. The models
indicate that urbanization does not result in a one-to-one negative influence on air pollution. However,
the government should consider sustainable development because a positive relationship exists
between urbanization and air pollutant emissions. In this context, the smart city concept and scenario
planning can be considered in the policy making process to achieve a sustainable environment.
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12. Balkytė, A.; Tvaronavičienė, M. Perception of Competitiveness in the Context of Sustainable Development:

Facets of “Sustainable Competitiveness”. J. Bus. Econ. Manag. 2010, 11, 341–365. [CrossRef]
13. Briggs, D.; Abellan, J.J.; Fecht, D. Environmental inequity in England: Small area associations between

socio-economic status and environmental pollution. Soc. Sci. Med. 2008, 67, 1612–1629. [CrossRef]
14. Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [CrossRef]
15. Janssen, N.A.H.; Hoek, G.; Fischer, P.H.; Wijga, A.H.; Koppelman, G.; de Jongste, J.J.; Brunekreef, B.;

Gehring, U. Joint Association of Long-term Exposure to Both O3 and NO2 with Children’s Respiratory
Health. Epidemiology 2017, 28, e7–e9. [CrossRef]

16. Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution
sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [CrossRef] [PubMed]

17. Medina, S.; Plasencia, A.; Ballester, F.; Mücke, H.G.; Schwartz, J. Apheis: Public health impact of PM10 in
19 European cities. J. Epidemiol. Community Health 2004, 58, 831–836. [CrossRef] [PubMed]

18. Pope, C.A., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air
Waste Manag. Assoc. 2006, 56, 709–742.

19. Seo, S.; Kim, D.; Min, S.; Paul, C.; Yoo, Y.; Choung, J.T. GIS-based Association Between PM10 and Allergic
Diseases in Seoul: Implications for Health and Environmental Policy. Allergy Asthma Immunol. Res. 2016,
8, 32–40. [CrossRef]

20. Jang, Y.-K. Current Status and Problems of Particulate Matter Pollution. J. Environ. Stud. 2016, 58, 4–13.
21. Lee, J.H.; Kim, Y.M.; Kim, Y. Spatial panel analysis for PM2.5 concentrations in Korea. J. Korean Data Inf.

Sci. Soc. 2017, 28, 473–481.
22. Schneider, P.; Lahoz, W.A.; van der A, R. Recent satellite-based trends of tropospheric nitrogen dioxide over

large urban agglomerations worldwide. Atmos. Chem. Phys. 2015, 15, 1205–1220. [CrossRef]
23. van der Wal, J.T.; Janssen, L.H.J.M. Analysis of spatial and temporal variations of PM 10 concentrations in

the Netherlands using Kalman filtering. Atmos. Environ. 2000, 34, 3675–3687. [CrossRef]
24. Wang, Y.; Zhang, Q.Q.; He, K.; Zhang, Q.; Chai, L. Sulfate-nitrate-ammonium aerosols over China: Response

to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 2013,
13, 2635–2652. [CrossRef]

25. van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global Estimates
of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development
and Application. Environ. Health Perspect. 2010, 118, 847–855. [CrossRef] [PubMed]

26. Chai, F.; Gao, J.; Chen, Z.; Wang, S.; Zhang, Y.; Zhang, J.; Zhang, H.; Yun, Y.; Ren, C. Spatial and temporal
variation of particulate matter and gaseous pollutants in 26 cities in China. J. Environ. Sci. 2014, 26, 75–82.
[CrossRef]

27. Xu, L.; Batterman, S.; Chen, F.; Li, J.; Zhong, X.; Feng, Y.; Rao, Q.; Chen, F. Spatiotemporal characteristics of
PM2.5 and PM10 at urban and corresponding background sites in 23 cities in China. Sci. Total Environ. 2017,
599–600, 2074–2084. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.regsciurbeco.2018.04.009
http://dx.doi.org/10.1111/jors.12000
https://www.unhabitat.org/wp-content/uploads/2014/03/WCR-%20Full-Report-2016.pdf
https://www.unhabitat.org/wp-content/uploads/2014/03/WCR-%20Full-Report-2016.pdf
http://dx.doi.org/10.1016/j.envsoft.2004.07.009
http://dx.doi.org/10.1016/j.atmosenv.2007.09.003
http://dx.doi.org/10.1016/S1364-8152(99)00018-3
http://dx.doi.org/10.3846/jbem.2010.17
http://dx.doi.org/10.1016/j.socscimed.2008.06.040
http://dx.doi.org/10.1016/S0140-6736(14)60617-6
http://dx.doi.org/10.1097/EDE.0000000000000572
http://dx.doi.org/10.1038/nature15371
http://www.ncbi.nlm.nih.gov/pubmed/26381985
http://dx.doi.org/10.1136/jech.2003.016386
http://www.ncbi.nlm.nih.gov/pubmed/15365108
http://dx.doi.org/10.4168/aair.2016.8.1.32
http://dx.doi.org/10.5194/acp-15-1205-2015
http://dx.doi.org/10.1016/S1352-2310(00)00085-6
http://dx.doi.org/10.5194/acp-13-2635-2013
http://dx.doi.org/10.1289/ehp.0901623
http://www.ncbi.nlm.nih.gov/pubmed/20519161
http://dx.doi.org/10.1016/S1001-0742(13)60383-6
http://dx.doi.org/10.1016/j.scitotenv.2017.05.048
http://www.ncbi.nlm.nih.gov/pubmed/28558430


Sustainability 2019, 11, 476 16 of 17

28. Hussein, T.; Hämeri, K.; Aalto, P.P.; Paatero, P.; Kulmala, M. Modal structure and spatial–temporal variations
of urban and suburban aerosols in Helsinki—Finland. Atmos. Environ. 2005, 39, 1655–1668. [CrossRef]

29. Oh, K.-S.; Chung, H.-B. The Influence of Urban Development Density on Air Pollution. J. Korea Plan. Assoc.
2007, 42, 197–210.

30. Sánchez-Rodas, D.; Sánchez de la Campa, A.M.; de la Rosa, J.D.; Oliveira, V.; Gómez-Ariza, J.L.; Querol, X.;
Alastuey, A. Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in
southwestern Spain. Chemosphere 2007, 66, 1485–1493. [CrossRef]

31. Freiman, M.T.; Hirshel, N.; Broday, D.M. Urban-scale variability of ambient particulate matter attributes.
Atmos. Environ. 2006, 40, 5670–5684. [CrossRef]

32. Fantozzi, F.; Monaci, F.; Blanusa, T.; Bargagli, R. Spatio-temporal variations of ozone and nitrogen dioxide
concentrations under urban trees and in a nearby open area. Urban Clim. 2015, 12, 119–127. [CrossRef]

33. Cho, H.-S.; Choi, M.J. Effects of Compact Urban Development on Air Pollution: Empirical Evidence from
Korea. Sustainability 2014, 6, 5968–5982. [CrossRef]

34. Stone, B. Urban sprawl and air quality in large US cities. J. Environ. Manag. 2008, 86, 688–698. [CrossRef]
[PubMed]

35. Bereitschaft, B.; Debbage, K. Urban Form, Air Pollution, and CO2 Emissions in Large U.S. Metropolitan
Areas. Prof. Geogr. 2013, 65, 612–635. [CrossRef]

36. Schweitzer, L.; Zhou, J. Neighborhood Air Quality, Respiratory Health, and Vulnerable Populations in
Compact and Sprawled Regions. J. Am. Plann. Assoc. 2010, 76, 363–371. [CrossRef]

37. McCarty, J.; Kaza, N. Urban form and air quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179.
[CrossRef]

38. Cárdenas Rodríguez, M.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages:
Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [CrossRef]

39. Clark, L.P.; Millet, D.B.; Marshall, J.D. Air Quality and Urban Form in U.S. Urban Areas: Evidence from
Regulatory Monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [CrossRef] [PubMed]

40. Gutenberg, S. Demystifying the Air Quality Health Index. Can. Pharm. J. Rev. Pharm. Can. 2014, 147, 332–334.
[CrossRef] [PubMed]

41. Gschwandtner, G.; Gschwandtner, K.; Eldridge, K.; Mann, C.; Mobley, D. Historic Emissions of Sulfur and
Nitrogen Oxides in the United States from 1900 to 1980. J. Air Pollut. Control Assoc. 1986, 36, 139–149.
[CrossRef]

42. Suh, H.H.; Bahadori, T.; Vallarino, J.; Spengler, J.D. Criteria air pollutants and toxic air pollutants.
Environ. Health Perspect. 2000, 108, 625–633.

43. Harrison, R.M.; Deacon, A.R.; Jones, M.R.; Appleby, R.S. Sources and processes affecting concentrations of
PM10 and PM2.5 particulate matter in Birmingham (U.K.). Atmos. Environ. 1997, 31, 4103–4117. [CrossRef]

44. Liu, Z.; Hu, B.; Wang, L.; Wu, F.; Gao, W.; Wang, Y. Seasonal and diurnal variation in particulate matter
(PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study. Environ. Sci. Pollut. Res. 2015,
22, 627–642. [CrossRef] [PubMed]

45. Noble, C.A.; Mukerjee, S.; Gonzales, M.; Rodes, C.E.; Lawless, P.A.; Natarajan, S.; Myers, E.A.; Norris, G.A.;
Smith, L.; Özkaynak, H.; et al. Continuous measurement of fine and ultrafine particulate matter, criteria
pollutants and meteorological conditions in urban El Paso, Texas. Atmos. Environ. 2003, 37, 827–840.
[CrossRef]

46. Park, S.; Shin, H. Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors. J. Environ.
Policy Adm. 2017, 25, 227–248. [CrossRef]

47. Slini, T.; Kaprara, A.; Karatzas, K.; Moussiopoulos, N. PM10 forecasting for Thessaloniki, Greece.
Environ. Model. Softw. 2006, 21, 559–565. [CrossRef]

48. Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G.B. Growth, innovation, scaling, and the pace
of life in cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7301–7306. [CrossRef]

49. Bettencourt, L.M.A.; Lobo, J.; Strumsky, D.; West, G.B. Urban Scaling and Its Deviations: Revealing the
Structure of Wealth, Innovation and Crime across Cities. PLoS ONE 2010, 5, e13541. [CrossRef] [PubMed]

50. Bettencourt, L.M.A. The Origins of Scaling in Cities. Science 2013, 340, 1438–1441. [CrossRef]
51. Fragkias, M.; Lobo, J.; Strumsky, D.; Seto, K.C. Does Size Matter? Scaling of CO2 Emissions and U.S. Urban

Areas. PLoS ONE 2013, 8, e64727. [CrossRef]

http://dx.doi.org/10.1016/j.atmosenv.2004.11.031
http://dx.doi.org/10.1016/j.chemosphere.2006.08.043
http://dx.doi.org/10.1016/j.atmosenv.2006.04.060
http://dx.doi.org/10.1016/j.uclim.2015.02.001
http://dx.doi.org/10.3390/su6095968
http://dx.doi.org/10.1016/j.jenvman.2006.12.034
http://www.ncbi.nlm.nih.gov/pubmed/17368703
http://dx.doi.org/10.1080/00330124.2013.799991
http://dx.doi.org/10.1080/01944363.2010.486623
http://dx.doi.org/10.1016/j.landurbplan.2015.03.008
http://dx.doi.org/10.1016/j.rser.2015.07.190
http://dx.doi.org/10.1021/es2006786
http://www.ncbi.nlm.nih.gov/pubmed/21766846
http://dx.doi.org/10.1177/1715163514552560
http://www.ncbi.nlm.nih.gov/pubmed/25364348
http://dx.doi.org/10.1080/00022470.1986.10466052
http://dx.doi.org/10.1016/S1352-2310(97)00296-3
http://dx.doi.org/10.1007/s11356-014-3347-0
http://www.ncbi.nlm.nih.gov/pubmed/25096488
http://dx.doi.org/10.1016/S1352-2310(02)00935-4
http://dx.doi.org/10.15301/jepa.2017.25.1.227
http://dx.doi.org/10.1016/j.envsoft.2004.06.011
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1371/journal.pone.0013541
http://www.ncbi.nlm.nih.gov/pubmed/21085659
http://dx.doi.org/10.1126/science.1235823
http://dx.doi.org/10.1371/journal.pone.0064727


Sustainability 2019, 11, 476 17 of 17

52. Gilbert, N.L.; Goldberg, M.S.; Beckerman, B.; Brook, J.R.; Jerrett, M. Assessing spatial variability of ambient
nitrogen dioxide in Montreal, Canada, with a land-use regression model. J. Air Waste Manag. Assoc. 2005,
55, 1059–1063. [CrossRef]

53. Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of land use regression to estimate
long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol.
2007, 41, 2422–2428. [CrossRef]

54. Ross, Z.; Jerrett, M.; Ito, K.; Tempalski, B.; Thurston, G.D. A land use regression for predicting fine particulate
matter concentrations in the New York City region. Atmos. Environ. 2007, 41, 2255–2269. [CrossRef]

55. Dong, L.; Liang, H. Spatial analysis on China’s regional air pollutants and CO2 emissions: Emission pattern
and regional disparity. Atmos. Environ. 2014, 92, 280–291. [CrossRef]

56. Réquia, W.J.; Koutrakis, P.; Roig, H.L. Spatial distribution of vehicle emission inventories in the Federal
District, Brazil. Atmos. Environ. 2015, 112, 32–39. [CrossRef]

57. Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [CrossRef] [PubMed]
58. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
59. Besag, J.; York, J.; Mollié, A. A Bayesian image restoration with two applications in spatial statistics. Ann. Inst.

Stat. Math. 1991, 43, 1–59. [CrossRef]
60. Lee, D. A comparison of conditional autoregressive models used in Bayesian disease mapping.

Spat. Spatio-Temporal Epidemiol. 2011, 2, 79–89. [CrossRef]
61. Leroux, B.G.; Lei, X.; Breslow, N. Estimation of disease rates in small areas: A new mixed model for spatial

dependence. In Statistical Models in Epidemiology, the Environment, and Clinical Trials; Springer: New York, NY,
USA, 2000; pp. 179–191.

62. Lee, D.; Ferguson, C.; Mitchell, R. Air pollution and health in Scotland: A multicity study. Biostatistics 2009,
10, 409–423. [CrossRef]

63. Rushworth, A.; Lee, D.; Mitchell, R. A spatio-temporal model for estimating the long-term effects of air
pollution on respiratory hospital admissions in Greater London. Spat. Spatio-Temporal Epidemiol. 2014,
10, 29–38. [CrossRef]

64. Liu, Y.; Guo, H.; Mao, G.; Yang, P. A Bayesian hierarchical model for urban air quality prediction under
uncertainty. Atmos. Environ. 2008, 42, 8464–8469. [CrossRef]

65. Lee, D. CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive priors.
J. Stat. Softw. 2013, 55, 1–24. [CrossRef]

66. Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996,
5, 299–314.

67. Kim, J.I.; Oh, K.H. A Study on Environmental Kuznets Curve in Korea. J. Korean Off. Stat. 2005, 10, 119–144.
68. Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning.

Ecol. Econ. 2013, 86, 235–245. [CrossRef]
69. Deal, B.; Pan, H.; Timm, S.; Pallathucheril, V. The role of multidirectional temporal analysis in scenario

planning exercises and Planning Support Systems. Comput. Environ. Urban Syst. 2017, 64, 91–102. [CrossRef]
70. Jin, J.; Gubbi, J.; Marusic, S.; Palaniswami, M. An Information Framework for Creating a Smart City through

Internet of Things. IEEE Internet Things J. 2014, 1, 112–121. [CrossRef]
71. Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives:

Some stylised facts. Cities 2014, 38, 25–36. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/10473289.2005.10464708
http://dx.doi.org/10.1021/es0606780
http://dx.doi.org/10.1016/j.atmosenv.2006.11.012
http://dx.doi.org/10.1016/j.atmosenv.2014.04.032
http://dx.doi.org/10.1016/j.atmosenv.2015.04.029
http://dx.doi.org/10.1093/biomet/37.1-2.17
http://www.ncbi.nlm.nih.gov/pubmed/15420245
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.1007/BF00116466
http://dx.doi.org/10.1016/j.sste.2011.03.001
http://dx.doi.org/10.1093/biostatistics/kxp010
http://dx.doi.org/10.1016/j.sste.2014.05.001
http://dx.doi.org/10.1016/j.atmosenv.2008.08.018
http://dx.doi.org/10.18637/jss.v055.i13
http://dx.doi.org/10.1016/j.ecolecon.2012.08.019
http://dx.doi.org/10.1016/j.compenvurbsys.2017.01.004
http://dx.doi.org/10.1109/JIOT.2013.2296516
http://dx.doi.org/10.1016/j.cities.2013.12.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data 
	Study Area 
	Data and Variable 
	Distributions of Air Pollutants 

	Methodology 
	Exploratory Spatial Data Analysis 
	Spatial Linear Regression Model 

	Results 
	Discussion and Conclusions 
	
	References

