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Abstract: After almost a decade of crisis, the housing market in Spain shows significant signs of
recovery, with increases in both the average price and the number of sales transactions. Housing is the
main asset for the majority of households, and it also has the most resources devoted to it, thus, when
it comes to buying a residence, people do not only look at the asset’s intrinsic characteristics, but also
consider other particularities such as the neighbourhood, accessibility to services, availability of
public transport or adequate funding. The study aimed to analyse and quantify the relationship that
exists between the asking price of second-hand housing on the market in Alicante and the attributes
that characterise them. This was done using a multivariate analysis to estimate a hedonic pricing
model by ordinary least squares and a quantile regression to analyse the impact of the characteristics
in different price ranges. The results show the segmentation of the prices in the Alicante market, with
higher prices in the northern coastal area over the southern and inland comarcas.

Keywords: hedonic pricing method; quantile regression; real estate market; property prices;
characteristics of dwellings; real estate portal; Alicante

1. Introduction

Housing is a primary need asset. The Spanish Constitution sustains, within its fundamental rights
and duties, the “right to decent and adequate housing”. The most common type of tenure in Spain
is property ownership, which represents approximately 76.7%, whether with or without a mortgage,
while only 16.9% of dwellings are utilised for rental, and 6.4% correspond to other types of tenure [1].

Consumer goods are products that are acquired on the market at a certain price, with the objective
of satisfying a need. Dwellings have a twofold consideration: on the one hand, as durable consumer
goods, and, on the other hand, as an investment asset [2] (p. 46). This concept is old and was initialled
by Keynes [3] (p. 75).

This study analysed the behaviour of the real estate market in the province of Alicante (Spain).
To demonstrate the importance of this market in the territory studied, in Figure 1a, you can see
the number of real estate transactions in the province of Alicante compared to provinces such as
Madrid or Barcelona that have triple the number of inhabitants. Analysing the type of transactions
in detail, there is a strong relevance of second-hand housing compared to new construction, which
represents approximately 88% of the transactions in the 2014–2017 period. New construction was
of great importance in years prior to the financial crisis of 2007, however, in recent years, it only
represents 12% the transactions in the real estate market in the province of Alicante.
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In a national context, during the last four years (2014–2017), the average prices of housing have
been stable, a trend that is also extended to the province of Alicante (Figure 1b). However, this is
not the case in Barcelona and Madrid, where prices show an upward trend. The data shown try to
summarise the price of housing in a single mean value for an entire province. This simplification of
reality provides a synthetic value that allows the study of its evolution but implies not considering the
existing diversity in local markets or consumer preferences regarding the characteristics of housing.
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second-hand housing, with reference to transactions carried out in the provinces of Madrid and
Barcelona; and (b) evolution of the average unit price of housing at the national level, in the province
of Alicante, Madrid and Barcelona. Source: Ministry of Development [4].

In this study, we used a methodology based on the hedonic price model, which is a substantial
body of historical research used to try to explain the value of housing based on the valuation of its
components [5] (p. 3). The hedonic pricing method (HPM) is a procedure that allows you to set the
characteristics that are determinant in the value of a heterogeneous asset, as is the case of a dwelling,
as well as quantify the contribution of each one of them. The HPM has been used in the automotive
market, with several authors highlighting the work of Court [6], to incorporate improvements to
the methodology of analysis. The theoretical basis was developed by different authors, highlighting
among others Lancaster [7], Ridker and Henning [8] and Rosen [9]. It is one of the globally most-used
methodologies in the analysis of the real estate market, as well as its application to other markets such
as the automotive or food sectors, to cite two examples.

The research objectives proposed were: (1) to estimate the impact of the characteristics of housing
in the asking price, in the province of Alicante; and (2) to identify, for the same housing characteristic,
the differences in seller valuations based on the asking price.

The first hypothesis that arose in the investigation is that there are certain characteristics of housing
that have a greater effect on determining sales prices than others. A multitude of characteristics
can influence the determination of the sales price, such as the dwelling’s intrinsic characteristics,
the characteristics of the environment, the geographic location, etc. The second hypothesis proposed is
that the same characteristic can be valued differently within the different ranges of property prices.
For example, in housing with low prices, the relevance of having elevator should be higher than in
those with a higher price.

The first objective was intended to be addressed through an analysis of ordinary least squares
(OLS) regression, allowing the variables that are more relevant to the determination of the sales prices
of multifamily housing projects in the province of Alicante to be determined. Several regression
models were made to evaluate the incidence of including new variables, quantifying the improvement
of the explanatory variability of the different models. Afterwards, a method was used that allows
for the breakdown of the explanatory variability of each variable, thereby estimating the relative
importance of each variable in the regression model. Lastly, the signs and the effects obtained in the
statistically significant characteristics were analysed. OLS models are based on the conditional mean of
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the dependent variable given certain values of the predictor variables, but do not provide information
for other conditional quantiles of the dependent variable.

The second objective was addressed through a method of quantile regression, which enables
modelling different conditional quantiles of the dependent variable, overcoming the limitations of the
OLS models. This way, it is possible to estimate the effect of each independent variable on different
segments of the conditional distribution of the price of housing.

This paper contributes to the literature in several ways. Firstly, it presents an exhaustive review
of the literature of recent years to identify the most relevant characteristics in the determination of
the price of housing. Secondly, it includes a database of prices, with a large sample that describes the
housing market in Alicante. Thirdly, the relative importance of the characteristics of the dwelling in
the determination of the price was estimated, and the behaviour of the regression coefficients in the
different price ranges was evaluated.

The results obtained in this study show that housing characteristics and building characteristics
are very relevant in the determination of the price, as well as the characteristics of the location. Other
socio-demographic characteristics and housing tenure also moderately influence the determination of
the asking price of a home. From the quantile regression, it is noted that the characteristics of housing
have a different effect depending on the quantile the price is in, finding different effects depending on
the variable analysed.

The document is organised as follows. Section 2 presents a review of the literature and shows
an overview of the determinants of housing prices. Section 3 describes the materials and method,
detailing the sources used and the generated database. Section 4 provides the results, comparing
various models obtained using OLS and another model using quantile regression. Section 5 is the
discussion of the results. Section 6 synthesises the conclusions obtained.

2. Review of the Literature

There are studies showing the many characteristics that can be used as determinants of the price
of housing, and how these can be grouped into categories. Smith et al. [10] (pp. 34–41) assumed that
housing is composed of a series of special characteristics such as: durability, heterogeneity, spatial
fixation and government involvement. Sirmans et al. [5] analysed one hundred and twenty-five articles
that used hedonic models, collecting the variables that are significant to determine the price and its
sign, comparing the coefficients by geographic location and examining the relationship between the
price of housing and amount of time on the market. The study concludes in the grouping of variables
in the following categories: (1) structural characteristics; (2) internal; (3) external; (4) environmental;
(5) public services; (6) market, occupation and sales factors; and (7) funding.

Based on the classification suggested by Sirmans et al. [5], a classification for the variables
adapted to this research was created (Table 1, column Category). Five categories of variables were
establish: (A) dwelling characteristics; (B) features of the building; (C) characteristics of the location;
(D) characteristics of the neighbourhood; and (E) market, occupation, and sale characteristics. In these
categories, the different characteristics that may have an impact on the sale price of a dwelling
were organised.

Fifty-seven articles were selected, published between 2008 and 2018, which deal with identifying
the characteristics of housing that can influence the determination of the price of a dwelling. These
documents were analysed. Table 1 summarises the characteristics used that have proven to be
statistically significant (at >95% level) in the corresponding models.
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Table 1. Variables used by other authors for the determination of the price of housing.

Category Characteristics References

Dwelling characteristics (A) Dwelling typology [11–24]
Age of the dwelling [12,16,18–47]
Dwelling surface area [11,13,15,16,18,20–24,26–31,33–39,41–46,48–61]
Number of bedrooms [11,13,14,17,19–21,23,24,28,31,34,41,50,56,61–63]
Number of bathrooms [14,20,23,24,31,38,49,55,57,61,64]
Floor of the dwelling [15,21,24,27,37–39,42,55–57,60,61]
Terrace [23,28,31,52,61]
Wardrobe [24,43,59]
State of conservation [11,16,22–24,28,30,34,59]

Features of the building (B) Garage slot [13,16,18,23,24,28,31,38,44–46,49,54,55,58,59,61,64]
Elevator [13,16,22–24,29,31,43,52,57,59]
Swimming pool in the building [13,18,22,31,54,57–61]

Characteristics of the location (C) Location within the territory or
the city

[13,16,24,31,35,36,38,39,41,44–46,48,54,56,58,61,62,
64,65]

Proximity to the coast [24,25,48,66]

Characteristics of the
neighbourhood (D)

Age of the population [15,28]
Number of Foreigners [15,22,23,28,42,51,67]
Level of studies [15,21,25,50,57,67,68]

Market, occupation and sale
characteristics (E)

Price In all studies this is the dependent variable
Use of the dwelling [34,52,56]
Housing tenure [19]

Sagner [26] analysed the characteristics that are determinant in the price of housing in the
metropolitan area of Chile through the analysis of a sample of 419 observations for 17 years (1990–2007),
concluding that 68–71% of the price was determined by the characteristics of the dwelling, with the
most important variables being antiquity and the surface area.

Bohl et al. [27] analysed the real estate market of Munster during the period of 1999–2009, both for
single family homes and housing projects. Their results show that the most important characteristics
were surface area, the age of the property, quality of life and proximity to the centre. In single-family
dwellings, typology and surface area of the plot were also significant.

Kaya and Atan [31] obtained 756,082 observations from the price database from the Central Bank
of Turkey, for the period from December 2010 to June 2012. Although the document does not show
the standardised betas as it uses only dichotomous variables, regression coefficients could be used to
determine the relative importance of each variable. Noteworthy results are that the location component
was an important factor: users were willing to pay a lot more for a dwelling in Istanbul as opposed to
the rest of the locations. Of the remaining housing characteristics, the most important was the surface
area, which increased the price of dwellings if it was greater than 250 m2, penalising those with a lower
surface area.

In another study conducted in Turkey, Yayar and Demir [18] collected data from the survey
on household budgets for 2010 and used 3709 observations with 45 variables. It was clear that
housing characteristics such as the typology, the availability of central heating, the type of flooring
in the bathrooms and the floor the dwelling was located on were the most influential variables.
For location variables, the most important ones were distance to banking services and educational
centres. Alkan [33] analysed the housing market in Ankara with prices offered on webpages in 2011,
had a sample of 149 observations and used different statistical techniques to conclude that location
was the most relevant factor.

Quispe Villafuerte [55] obtained estimates of the value of the characteristics of a dwelling in
Metropolitan Lima with a dataset of 188 single-family dwellings and 146 flats for January 2010.
The results obtained show that the most important characteristics were the type of neighbourhood
(socio-economic status) and dwelling characteristics (mainly surface area and bathrooms), with the
surface area of the plot being of the utmost relevance in single family homes.
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In Machala (Ecuador), Zambrano Monserrate [36] analysed the real estate market of apartments
for rent in 2013, with a sample of 635 observations. The most important characteristics were those
that refer to the utilities such as water supply and garbage disposal, while the most relevant location
characteristic was distance to parks.

Nicodemo and Raya [29] studied how distribution of the attributes affects the price of housing
over time through quantile estimates, between the years 2004 and 2007, for five major Spanish
cities. It has a database with 21,517 observations, provided by a real estate agency. Two regression
models were performed, the first with OLS estimates and the second with a quantile regression.
They concluded that the variation in prices between 2004 and 2007 was mainly due to changes in
regression coefficients (implicit value that individuals assign to each characteristic), rather than by
differences in the characteristics of the homes sold during the same period. In addition, it was evident
that the difference was greater in lower price percentiles than those in the higher percentiles.

McGreal and Taltavull de la Paz [52] analysed the attributes that were determinant in pricing
using two statistical methodologies (spatio-temporal autoregressive STAR and general linear model
GLM), trying to control the space and time random effects. They used a sample of 2,362,800 housing
prices for 16 years (1995–2010), located in seven provinces in Spain. The results show that there are
market characteristics that are particular to different regions. The value of the attributes changes over
time, which is evidence of the economic cycle of the real estate market. In addition, it emphasises the
importance of income, population, accessibility and structural characteristics, to explain the price of
housing and spatial differences.

Keskin and Watkins [37] compared whether the experience of professionals from the real estate
market was as effective as a statistical analysis, comparing the predictive analysis of real estate agents
and other market analysts with an econometric analysis in Istanbul. To accomplish this goal, real estate
agents and appraisers were consulted, in such a way that delimits the different sub-markets that make
up the city. In addition, a hedonic regression with a linear model was performed, with prices and
attributes of dwellings obtained from real estate portals on the Internet. The results did not reveal
which method was more effective given that they both have a good capacity for prediction.

Zhang and Yi [60] studied the determinants in the price of residential housing in Beijing during
the 2013–2015 period. To this end, they carried out an OLS and a quantile regression with a sample
of 190,580 dwellings on a leading real estate portal in China. They concluded that the impact of the
specific characteristics of a dwelling (surface area, number of rooms, sizes of the living room and green
area of the complex) vary differently depending on the conditional distribution of housing prices.

Zahirovich-Herbert and Gibler [20] analysed how the construction of new real estate promotions
affects the sales price of existing dwellings, using a hedonic regression model with OLS estimates.
They concluded that, when a new home construction that is larger than the average is promoted, it has
a positive effect on the existing real estate stock, especially on those with a low price.

Chasco Yrigoyen and Sanchez Reyes [15] analysed how air pollution and noise affects housing
prices in the downtown area of Madrid through a quantile regression. As determinants, they used
the structural attributes of housing, variables of accessibility, and characteristics of the social and
environmental environment. There was a spatial quantile regression with nine deciles, where the
autoregressive coefficients were very significant especially in the last two, corresponding to the
dwellings with higher prices. On the other hand, more affordable housing (deciles 0.1 and 0.2), located
in not-so-central areas, could have a spatial autocorrelation problem, which becomes evident in the
lower explanatory power of the model. In all deciles, air pollution has a negative effect on price, but
significantly in the more expensive properties. On the other hand, noise was not significant, except for
luxury homes or the last decile located in the centre of Madrid, where the increase in noise carries an
increase in the price. Fitch Osuna et al. [68] obtained similar results in Mexico; housing prices increase
in more noisy areas, as location and demographic characteristics prevails over other factors.

From the studies analysed, it can be determined that most of them aimed to reveal what
characteristics determine the price of housing, but there were also other documents whose purpose was
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to analyse how a particular characteristic affects the value of the property. A recent line of research in
Europe focuses on analysing the influence of the energy rating of housing in the price [11,17,19,56,57,64].
Numerous other studies relate to the influence of location in the price of housing [22,25,38,39,50,51].
Xiao et al. [41] studied how prices of homes in Beijing change depending on atmospheric pollution.
Stetler et al. [48] analysed the effect of the proximity of dwellings to forest fires in Montana. Other
documents focus their attention on the ecological, scenic and entertainment value that housing in
proximity to bodies of water has [32,35,47], or analyse how the price of housing is affected by proximity
to landfill sites [42], train stops [28] or subway stations [49]. Wen et al. [40] analysed how school quality
affects the price of housing. Agnew and Lyons [67] studied the variation in the price depending on
proximity to locations that generate employment. Zahirovich-Herbert and Gibler [20] studied how
newly constructed dwellings affect real estate stock. There is also research aimed at determining which
statistical method was the best predictor of price [44,46]. Another purpose of the documents is to apply
econometric models for the urban rating [16,34,54,59] or determine how much the price of land affects
the price of housing [53].

3. Materials and Methods

3.1. Study Area

This study focused on the province of Alicante in the southeast of Spain. The province has an
extension of 5817 km2, distributed in nine comarcas (Comarcas are administrative units equivalent to
the districts in England or the Kreise in Germany) and 141 municipalities (Figure 2a). It is the fifth
Spanish province by number of inhabitants, with a total population of 1.8 million inhabitants, and the
third in terms of number of real estate transactions, which shows a large housing market.
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Figure 2b shows urban areas represented in red stains, where it is apparent that there are more
built up areas on the Mediterranean coast, with greater dispersion in inland areas. There is a broad
typological diversity in the various municipalities of the province, and even within each municipality.
The predominant typology in the province is of compact and monocentric cities, but most tourist areas
are dominated by more extensive urban developments. For example, in the city of Alicante there are
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differences between the traditional town with a compact development, and the area of Playa de San
Juan with scattered high-rise buildings (Figure 3a,b). Regarding differences between municipalities,
for example, urban development includes high-rise buildings in the city of Benidorm (Figure 3c),
or scattered, low-rise developments of single-family and multifamily dwellings on the Orihuela Costa
(Figure 3d).Sustainability 2018, 10, x FOR PEER REVIEW  7 of 35 
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in the municipality of Orihuela. Source: Google Maps.

3.2. Methodology

This study used two methods of regression, OLS and quantile regression. In this way, it was
possible to compare the results obtained with both methods, and to identify the percentage of change
in the price, against a unitary change in the variable that defines each characteristic (OLS), and the
incidence of unitary changes of the characteristics in the different price ranges (quantile regression).

For both models, a semi-logarithmic functional form was chosen, as it lends certain
advantages [69] (p. 80). The log transformation reduces problems of heteroscedasticity, improving
the goodness of fit of the data; in addition, it facilitates the interpretation of the coefficients as they
show the percentage variation in the dependent variable that would be obtained for each increase in
a unit of the explanatory variable [5] (p. 4) [70] (pp. 193–194). Sirmans et al. [5] (p. 4) indicated that
hedonic models are often estimated with semi-logarithmic forms, with the natural log of price used as
the dependent variable.

The hedonic price method (HPM) is based on the existence of heterogeneous assets [7] (p. 134).
This method aimed to determine which attributes or characteristics explain the price of second-hand
housing on the Alicante market and the importance of each one of them [8]. To obtain the values
for these attributes or parameters, the most used method is OLS. Freeman et al. [71] (pp. 327–331)
indicated that this method presents the problem that it cannot estimate the marginal willingness to
pay due to identification problems. However, this method is not always the most representative of
the sample, if there are important extreme values or high variability [15] (p. 5). The advantage of
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quantile regression over the OLS method is that it can explain the importance of the determinants of
the dependent variable at any point in the distribution [72] (p. 318), thus it looks less prejudiced as it
does not require establishing hypotheses about the random disturbance [15] (p. 5). The OLS model is
the following:

ln(Pi) = α0 +
J

∑
j=1

β jXij +
K

∑
k=1

γkDik +
M

∑
m=1

δmLim + εi (1)

where ln (Pi) is the Napierian logarithm of the advertised asking price for housing “i”; α is the
fixed component, it does not depend on the market; βj is the parameter to estimate related to the
characteristic “j”; Xij is the continuous variable that collects the characteristic “j” of the observation “i”;
γk is the parameter to estimate related to the characteristic “k”; Dik is the dummy variable that collects
the characteristic “k” of the observation “i”; δm is the parameter to estimate related to the location “m”;
Lim is the dummy variable that collects the location “m” of the observation “i”; and εi is the error term
in the observation “i”.

In Equation (1), the term Xij is a matrix of independent continuous variables that describe several
characteristics of the dwelling, the building, the environment and the market (see Table 2); the term Dik
is a matrix of independent dummy variables that describe characteristics of the dwelling, the building
and the location; and Lim is a matrix of independent dummy variables that describe localisation
characteristics, whether they be comarcas or municipalities, that control the fixed effects due to the
spatial location of the data.

The steps followed to estimate the OLS model are described below. A first step examined the
bivariate correlations matrix and scatter charts, to identify the existence of linearity between variables.
An analysis of ordinary least square regressions was subsequently performed using a stepwise method
for the selection of variables. Since the database has observations with missing or incomplete data,
it was decided to use the selection of cases according to listwise deletion. The possible presence of
multicollinearity was studied from the correlation coefficients, the variance inflation factor (VIF) and
condition indices. The Breusch–Pagan test and a scatter chart of residuals were used to assess the
presence of heteroscedasticity, and the Kolmogorov–Smirnov test and a frequency diagram were used
to study the normality of the residuals.

The quantile model has certain advantages over the OLS model, as it allows control over
non-linearity, non-normality due to skewness, outliers and heteroscedasticity [15] (p. 1). In addition,
it allows the implied value of each of the characteristics for different price ranges to be identified,
as they can vary [5] (p. 4). In this way, it is possible to identify the different impacts that characteristics
have on the ranges of sales prices.

To explain the quantile regression model [73,74], a multiple linear regression model was used as a
basis, as follows (Equation (2)):

Yi = Xiβθ + uθi (2)

where Yi is the dependent variable; Xi is the matrix of independent variables; βθ the vector of
parameters to be estimated for the quantile θ; and uθi is the random disturbance corresponding
to the quantile θ.

According to Koenker and Bassett [73] (p. 38), let {Xi: i = 1, . . . , N} denote a sequence of (row) K
vectors of a known design matrix, and suppose {Yi: i = 1, . . . , N} is a random sample on the regression
process ui = Yi − Xiβ having distribution function F. In this regression model, θ quantiles for the
dependent variable were defined, given a series of Xi: Quant(Yi|Xi) = Xiβθ , being Quantθ(uθi|Xi) = 0
the only imposed condition. The θth regression quantile, 0 < θ < 1, was defined as any solution to the
minimisation problem of Equation (3):

min
β∈Rk

 ∑
i∈{i:Yi≥Xi β}

θ|Yi − Xiβθ |+ ∑
i∈{i:Yi<Xi β}

(1− θ)|Yi − Xiβθ |

 (3)
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This non-linear equation was solved through a simplex linear programming model.
The estimation of the parameters in the case of the quantile regression is carried out through the
minimisation of weighted absolute deviations with asymmetric weights [75], whereas OLS minimises
the sum of the squared residuals. The median regression is a particular case of the quantile regression
in which θ = 0.5, and it is the only case in which the weights are symmetric.

To perform the quantile regressions the R package “quantreg” (version 5.36) [76] was used.
The algorithmic method used to compute the fit is the modified version of Barrodale and Roberts’
method [77], and is described in detail in [78,79]. The goodness of fit of the quantile models was
calculated based on absolute deviations by pseudo-R1 [80]. It is useful for comparing quantile models,
but they are not comparable to the coefficient of determination R2 obtained by OLS (which is based on
the variance of the squared deviations). Pseudo-R1 is obtained as 1 minus the ratio between the sum of
absolute deviations in the fully parameterised models and the sum of absolute deviations in the null
(non-conditional) quantile model.

3.3. The Sources of Information

Three main sources of data were used: a real estate portal, the Real Estate Cadastre (Catastro
Inmobiliario) and the National Institute of Statistics (Instituto Nacional de Estadística). From the real
estate portal, information was collected about the offer prices and characteristics of the dwellings.
The electronic headquarters of the Real Estate Cadastre [81] was used to calculate the age of the
buildings, since these data are not available on the real estate portal. Finally, data from the 2011
Population and Housing Census [82], published by the National Institute of Statistics every ten years,
were used to gather the socio-demographic characteristics of the population.

The first set of data was obtained from one of the most important real-estate portals in Spain
(idealista.com). This portal has a long history and implementation throughout Spain, as it has
advertised real estate since 2000 and has nearly 1.5 million ads for sale, rental and sharing. Other
studies also use real estate portals to collect sales prices and characteristics of dwelling [15,28,30,67,83],
due to the lack of information from other official sources. It is rare to have data of actual transactions,
the most common dataset being obtained from the offer, with several authors suggesting the possibility
of extrapolating the data obtained to the demand side [69,84]. Data were collected on the asking
price offered within the market, the characteristics of the dwelling (construction typology, constructed
surface area, number of bedrooms, bathrooms, etc.), characteristics of the building (garage slot, elevator
and swimming pool), and characteristics of the location (geographical coordinates, municipality and
comarca where the property was located).

An important characteristic in the literature that affects the price of a property is its age.
This characteristic was not advertised on the real estate portal, thus it was necessary to obtain
it by other means. The electronic headquarters of the Spanish Real Estate Cadastre was used,
extracting the information for 412,900 plots throughout the province of Alicante, following the
methodology developed by Mora García [85] (pp. 85–111). The data used were geographical
coordinates, the constructed surface area and the age of each cadastral plot. From this information,
a raster map was compiled, which served to obtain an approximate age of the construction in relation
to the surrounding buildings. Since the coordinates provided by the real estate portal may have slight
discrepancies with actual location (around 100 m), this option allowed the most realistic estimate of
the antiquity of the property.

The last source of information used was the 2011 population and housing census, where
socio-demographic data were obtained in terms of census tract. Data regarding the age of the
population, level of education, foreign population, use and tenure of housing were used. Based
on the geographical coordinates of each property, it was possible to assign a census tract and associate
the data relating to it.
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3.4. Data

A total of 64,039 multifamily dwelling offers were taken from the real estate portal during June
and August 2017, though the data presented inconsistencies since the information published was
provided by the advertising party. Ads were identified for whole buildings that were offered as a single
dwelling, or 200 m2 constructed surface area dwellings with no bedrooms. For this reason, a previous
screening was carried out to identify properties with unlikely data. Subsequently, the sample was
subjected to an analysis of univariate outliers, discarding properties that differ by more or less than
three standard deviations in their respective classified variables (Z scores), the focus of which process
was on the constructed surface area, price, number of bedrooms, bathrooms and building floor. After
these processes, the initial sample was reduced to 56,307 buildings.

The data extracted from the Real Estate Cadastre and the data from the census of population
and housing were added to the information about prices and characteristics of dwellings obtained
from the real estate portal. Once the database was completed, those cases with missing data for some
characteristics were excluded, resulting in a sample of 34,138 dwellings.

Table 2 lists the 40 variables collected for this research, arranged according to the five categories
defined in Table 1. It also indicates the unit with which each variable was measured, a brief description
of each and if it has been used in the final regression model.

Table 2. Set of variables that make up the study, with their units and description.

Category Characteristics Unit Description of the Variable Used
Dwelling
characteristics (A)

A_flat
A_penthouse
A_duplex
A_studio_flat

dummy Indicates whether the property has this
typology:
Flat or apartment, penthouse, duplex, studio
flat

A_age numerical Age of the building (years)
Number of years that have passed since it was
built

A_area_m2 Built dwelling surface (sqm)
Gross square meters of the dwelling

YES

A_bedrooms Number of bedrooms in the dwelling NO
A_bathrooms Number of bathrooms YES
A_floor Floor the dwelling was located on within the

building
A_terrace dummy Availability of terrace
A_wardrobe Availability of built-in wardrobes NO
A_good_condition Classification that the seller assigns to the state

of the dwelling, such as “good” YES

A_new_construction Newly build housing that can be: a project,
under construction, or less than 3 years old

A_state_to_reform Requires refurbishment
Features of the
building (B)

B_parking Availability of garage slot
YESB_elevator Availability of elevator

B_pool

dummy

Availability of swimming pool
Characteristics of
the location (C)

C_Alicante dummy Identifier of the comarca: Alicante, Marina
Alta, Marina Baja, Bajo Vinalopó, Bajo Segura,
El Condado, Alcoy, Alto Vinalopó and Medio
Vinalopó

YES
C_Marina_Alta
C_Marina_Baja
C_Bajo_Vinalopo
C_Bajo_Segura
C_Condado
C_Alcoy
C_Alto_Vinalopo
C_Medio_Vinalopo
C_coastalregion Identification of property location within a

coastal region
C_coastal_dist_km numerical Distance (km) from the property to the coast NO
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Table 2. Cont.

Category Characteristics Unit Description of the Variable Used
Characteristics of
the neighbourhood
(D)

D_elderly numerical Ratio of dependant elderly YES
D_foreigners Ratio of foreign population
D_no_studies Ratio of population without education
D_university Ratio of the population with university studies
D_students Ratio of the population with primary and

secondary studies
NO

Market, occupation
and sale
characteristics (E)

E_price numerical The property price offered by the seller (in
Euro)

Dependent
variable

E_vacant_dwelling numerical Ratio of empty dwellings NO
E_main_dwelling Ratio of main dwellings
E_secondary_dwelling Ratio of second dwellings YES
E_rented_dwelling Ratio of housing for rent
E_mortgaged_dwelling Ratio of mortgaged housing NO
E_home_ownership Home ownership ratio

Category A was made up of 14 variables that were used to define the characteristics of the
dwelling. The first four were dummy variables, which were used to identify the typology of multifamily
dwellings (flat or apartment, penthouse, duplex and studio flat), encoded with a value of 1 when
they have that characteristic and 0 when they do not. The following five variables were quantitative
and were used to define the age of the construction (in years), the constructed surface area (m2),
the number of bedrooms, the number of bathrooms and the floor that the dwelling was located
on within the building. The two following variables were dummy and refer to if the home has
a terrace and fitted wardrobes. The last three in the category were also dummy and define the
state of conservation, differentiating between new construction, second-hand in good condition, and
second-hand needing refurbishing.

Category B was made up of three variables that were used to define the characteristics of the
building. Differentiation was made if the house has a garage slot in the building, and if the building
has an elevator and a swimming pool. The three have been defined as dummy variables, such that a
value 0 indicates that they do not have that characteristic and 1 that they do.

Category C was composed of eleven variables, nine of which were used to quantify the differences
throughout the territory. A variable was defined for each of the nine comarcas that make up the
province of Alicante (Figure 2a). It was possible to estimate the price differences on a territorial scale
(infra-provincial) by means of these nine variables that identify the comarcas. In total, 106 municipalities
were used (35 of the 141 do not have data) to control the fixed effects due to the spatial location of the
data. To assess the influence of proximity to the coast on prices, two variables were defined: the first
indicates whether the property is located in a coastal municipality, and the second quantifies the
shortest distance from the property to the coast, considering the journey by road (network distance).

Category D brings together five variables that describe the characteristics of the neighbourhood.
They were quantitative variables and were all expressed in ratios. They refer to characteristics of the
census tract where the property was located. The dependant elderly ratio was calculated as the ratio
of the sum of the population aged 65 or over for any given area, and the sum of the population aged
between 16 and 64 in the same area. The ratio of foreign population was calculated as the ratio of the
sum of the foreign population that resides in an area, and the sum of the total population in that area.
To characterise the level of education, three variables were established: ratio of population without
education or illiterate, population with primary and secondary education, and ratio of population
with university education. Each ratio was calculated as the ratio of the sum of the population with that
level of education that resides in an area, and the sum of the total population in that area.

Finally, Category E included six variables that describe the characteristics related to the market,
occupation and sale. They were quantitative variables, all of which were expressed in ratios. Variables
related to the use and tenure of housing were used. Three uses were established: vacant homes, main
dwellings (used routinely by its owners) and second homes (vacation homes). In relation to land
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tenure, three types were established: rental housing (the owner was leasing the property), mortgaged
housing (the user was the owner of the home but has outstanding mortgage payments), and home
ownership (the user was the owner of the home that was fully paid for).

The descriptive statistics for all variables are shown in Table 3.

Table 3. Descriptive statistics for the variables.

Cat.
Continuous Variables Dummies Variables

Characteristics Mean SD Min. Max. Coding. Freq. Percent.

D
w

el
lin

g
(A

)

A_flat 30,140 88.3
A_penthouse 2328 6.8
A_duplex 1179 3.5
A_studio_flat 491 1.4
A_age 31.2 11.3 1.0 93.1
A_area_m2 95.3 31.8 20.0 249.0
A_bedrooms 2.6 0.9 0.0 5.0
A_bathrooms 1.6 0.6 0.0 4.0
A_floor 2.9 2.5 0.0 20.0
A_terrace No Terrace

With Terrace
14,932
19,206

43.7
56.3

A_wardrobe No wardrobe
Wardrobe

12,743
21,395

37.3
62.7

A_good_condition 32,069 93.9
A_new_construction 255 0.8
A_state_to_reform 1814 5.3

Bu
ild

in
g

(B
) B_parking No garage

With garage
21,055
13,083

61.7
38.3

B_elevator No elevator
With elevator

8715
25,423

25.5
74.5

B_pool No pool
With pool

20,296
13,842

59.5
40.5

Lo
ca

ti
on

(C
)

C_Alicante 12,674 37.1
C_Marina_Alta 3833 11.2
C_Marina_Baja 3938 11.5
C_Bajo_Vinalopo 4276 12.5
C_Bajo_Segura 7165 21.0
C_Condado 137 0.4
C_Alcoy 905 2.7
C_Alto_Vinalopo 327 1.0
C_Medio_Vinalopo 883 2.6
C_coastalregion Non-coastal

Coastal
8636
25,502

25.3
74.7

C_coastal_dist_km 5.78 10.37 0.00 54.90

N
ei

gh
bo

ur
ho

od
(D

)

D_elderly 0.30 0.19 0.00 1.05
D_foreigners 0.24 0.21 0.00 0.93
D_no_studies 0.07 0.05 0.00 0.37
D_university 0.17 0.10 0.00 0.54
D_students 0.61 0.10 0.00 0.86

M
ar

ke
t,

et
c

(E
)

price 131,039 80,061 15,000 610,000
price_ln 11.61 0.59 9.62 13.32
E_vacant_dwelling 0.16 0.13 0.00 0.68
E_main_dwelling 0.57 0.27 0.10 1.00
E_secondary_dwelling 0.27 0.25 0.00 0.84
E_rented_dwelling 0.13 0.11 0.00 0.53
E_mortgaged_dwelling 0.39 0.17 0.04 0.96
E_home_ownership 0.42 0.16 0.00 0.83

Regarding the distribution of prices (Figure 4a), it can be observed that the littoral strip
concentrated unit prices (€/m2) higher than the rest of the province of Alicante. This map shows the
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distribution of the average unit price by municipalities, using a minimum of 10 real estate prices to
determine an average value. The municipalities in white have fewer than 10 dwellings, whereby they
were omitted. The largest number of properties were concentrated in the municipality of Alicante
(provincial capital), followed by other coastal municipalities (Figure 4b), showing the areas where
there was greater activity in the real estate market.Sustainability 2018, 10, x FOR PEER REVIEW  13 of 35 
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Table 4 shows that only three of the nine comarcas in Alicante (the three coastal areas) have a price
higher than the provincial average. The average market price in the province of Alicante was 131,039 €
(1390 €/m2), but there was evidence of significant differences between coastal (higher prices) and
inland comarcas (lower prices).

Table 4. Average (€) and unit (€/m2) prices, by province and comarca.

Zone N (%) Average Price
€ (SD)

Unit Price
€/m2 (SD)

Province of Alicante 34,138 (100%) 131,039 (80,060) 1390 (687)

C
oa

st
al

ar
ea Marina Alta 3833 (11.2%) 162,816 (88,418) 1754 (741)

Marina Baja 3938 (11.5%) 155,244 (83,295) 1829 (692)
Alicante 12,674 (37.1%) 149,077 (85,498) 1427 (667)
Bajo Vinalopó 4276 (12.5%) 111,428 (63,235) 1157 (575)
Bajo Segura 7165 (21.0%) 98,323 (54,090) 1239 (544)

In
la

nd
ar

ea Condado 137 (0.4%) 86,903 (49,904) 807 (334)
Alcoy 905 (2.7%) 75,502 (44,883) 734 (337)
Alto Vinalopó 327 (1.0%) 75,402 (42,474) 711 (341)
Medio Vinalopó 883 (2.6%) 71,042 (37,342) 695 (323)

Notes: N, sample size; SD, Standard Deviation.

The most represented typology in the sample were flats, with 30,140 units, of which 75% have an
elevator and an average asking price of 142,257 € (1,505 €/m2). Table 5 shows differences in the sales
prices according to typology and availability of an elevator.
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Table 5. Average (€) and unit (€/m2) prices by typology of housing and availability of elevator.

Total by
Typology

Without /with
Elevator

Average Price
€ (SD)

Unit Price
€/m2 (SD)

Typology N (%) %/% no elevator with elevator no elevator with elevator
flat 30,140 (88.3%) 25.0/75.0 81,650 (54,609) 142,257 (77,293) 967 (596) 1505 (664)
penthouse 2328 (6.8%) 15.8/84.2 115,169 (76,454) 185,014 (98,239) 1270 (684) 1634 (674)
duplex 1179 (3.5%) 59.5/40.5 151,423 (69,715) 204,958 (90,011) 1360 (536) 1625 (634)
studio flat 491 (1.4%) 21.0/79.0 64,933 (39,548) 69,876 (50,707) 1347 (541) 1569 (650)
Total 34,138 (100%) 25.5/74.5 88,484 (60,265) 145,626 (80,798) 1016 (608) 1518 (665)

Notes: N, sample size; SD, Standard Deviation.

4. Results

4.1. OLS Hedonic Price Models

Of the variables described in Table 2, those evidencing multicollinearity problems with other
variables were discarded, as in the case of the number of bedrooms with the constructed surface area,
or the ratio of main and vacant dwellings to secondary homes. For this reason, seven variables were
discarded: number of bedrooms (A_bedrooms), ratio of the population with primary and secondary
education (D_students), ratio of vacant and main homes (E_vacant_dwelling and E_main_dwelling), ratio
of mortgaged and owned property (E_mortgaged_dwelling and E_home_ownership), and distance to coast
(C_coastal_dist_km). The fitted wardrobes (A_wardrobe) variable, despite being statistically significant,
had a low explanatory power in the model, whereby it was ruled out to simplify the model (principle
of parsimony).

Following the line of other authors [35,40,42,47,57,86,87], six regression models were made to
evaluate the incidence of including new variables (grouped by categories), quantifying the explanatory
improvement of the different models. Afterwards, a method was used that allows for the breakdown
of the explanatory variability of each variable, thereby estimating the relative importance of each of
them in the regression model. Once the six models were evaluated, Model 5 was adopted as definitive,
and was taken as reference for the quantile regression.

Table 6 shows the regression models using OLS, generated according to the characteristics grouped
by categories. Model 1 was built only with the characteristics of dwellings, allowing explanation of
44.0% of the variability of the price (Table 7). Reviewing standardised beta coefficients (Table A1),
the three variables of greater explanatory power, listed in order of relevance, were: the number
of bathrooms, the constructed surface area and the availability of a terrace. All of them were
statistically significant and showed a positive sign, such that the greater the number of bathrooms,
or the availability of a terrace, the higher the price of housing.

Model 2 was built with the characteristics of the dwelling and the building. The explanatory
power of the model increased dramatically, from 44.0% to 56.8%. According to the standardised beta
coefficients, the most important characteristics were the constructed surface area, and the availability
of a pool and elevator (Table A1). All variables were statistically significant and had the expected sign,
except for antiquity, which obtained a positive sign. In this model, the characteristics of the building
exercised a great influence on explaining variability in price.

In Model 3, the location characteristics, as in the comarca where the property was located, were
added, increasing the percentage of explained variance to 65.4%. The most influential variables in this
model were constructed surface area, coastal municipality and number of bathrooms. Regarding the
location variables, it was apparent that coastal comarcas located to the north of the province (Marina
Alta and Marina Baja) had a higher price than in the case of the comarca of Alicante (reference), while,
in the comarcas located in the south or in the inland areas of the province, prices were lower.

In Model 4, neighbourhood characteristics (socio-demographic characteristics) were added,
obtaining a coefficient of determination of 70.6%. In this case, the three most important variables were
constructed surface area, number of bathrooms and the ratio of people with a university education.



Sustainability 2019, 11, 437 15 of 33

It was evident that the socio-demographic characteristics of the neighbourhood had some relevance in
determining the price.

Model 5 was made up of five categories, represents the final model object of study and
showed a slight increase in the explanatory power compared to the previous one, peaking at 71.5%
(Table 7). The regression model reached a high level of robustness and relevance in the estimated
parameters, making it acceptable for making inferences. To assess the existence of heteroscedasticity, a
Breusch–Pagan test was performed, leading to the rejection of the null hypothesis of homoscedasticity
(BP = 1239.4, df = 28, p < 0.001), and the heteroscedasticity prevalence. Upon analysis of the residuals
scatter plot, there was no evidence of serious problems of heteroscedasticity, showing a random
distribution of residuals (Figure A1b). The normality of the residuals was contrasted with the
Kolmogorov–Smirnov test, rejecting the null hypothesis of normality (D = 0.192, p < 0.001). Reviewing
the diagram of frequencies, a certain normality of residuals was observed (Figure A1a). For the analysis
of the collinearity of the variables, the variance inflation factor (VIF) statistic was used. Several authors
have suggested that there are collinearity problems if the VIF is greater than 10 [88] (p. 363) [89]
(pp. 28–29). Most values were close to 1 (Table A2), reaching a maximum value of 3.09, thus it was
interpreted that there was no evidence of the existence of serious collinearity among the variables.

The variable that reached the highest VIF value was the ratio of foreign population,
with correlations with other variables such as the elderly-dependency ratio (D_elderly) being observed,
with a Pearson correlation coefficient r = 0.444; the ratio of second homes (E_secondary_dwelling) with
r = 0.500; the ratio of rented housing (E_rented_dwelling) with r = 0.425; being located in Marina Alta
(C_Marina_Alta) with r = 0.320; and in Bajo Segura (C_Bajo_Segura) with r = 0.433. These data suggest
that foreign population was located in highly touristic comarcas such as Marina Alta and Bajo Segura,
where there were higher percentages of secondary and rental homes.

The results of Model 5 show that penthouse and duplex typologies have a price increase of
11.6% and 4.0% compared to a flat typology dwelling with the other characteristics remaining
constant. Conversely, studio flats show a discount of 30.9% compared to flats. For each additional
year a dwelling has been standing, the sale price reduced on average 0.1%. The most influential
characteristics to determine the sale price were the constructed surface area and the number of
bathrooms (see standardised beta coefficients in Table A1). With everything else remaining constant,
an increasing in square meters of surface area implies an increase in the price of 0.6%, while having an
additional bathroom represents an average increase in the price of 23.6%. The model evidences that
a home located on an additional floor implies an increase in the price of 0.2%. Using a second-hand
dwelling in good condition as reference, new housing represents an average increase in the price of
17.7%, while a second-hand dwelling in need of refurbishing implies a discount of 21.8%.

In terms of building characteristics, having a garage slot, an elevator and a swimming pool,
on average, increases the price by approximately 14.2%, 23.1% and 11.9%, respectively. By analysing
the characteristics of location, the comarcas of Marina Alta and Marina Baja have higher prices than the
reference comarca of Alicante, while comarcas in the south and inland areas imply lower prices. If the
house is located in a municipality near the coast, the price increases by an average of 12.9%. In terms of
neighbourhood characteristics, a 1% increase in the ratio of elderly residing in a census tract implied
an increase in the price of 0.28% (for a correct interpretation of the regression coefficients, it must be
considered that these variables were measured as ratios). In this category, the lowest effect was in the
ratio of foreign population: a 1% increase of foreign population leads to a price increase of 0.11%. In terms
of the level of education, an increase of 1% in the ratio of the population with university education
implies a 1.00% increase in the price; on the other hand, an increase of 1% in the ratio of population
without an education leads to a 0.87% reduction in the price. The last category of characteristics indicates
that a 1% increase in the ratio of second homes increases the price by an average of 0.32%, and that a 1%
increase in the ratio of rental housing implies a 0.20% increase in the price.

The fixed effects due to the spatial location of the data were managed using the last model
(Model 6), by means of the 106 dummy variables that represent the municipalities (35 of the 141
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municipalities in the province have been discarded as they do not have price data). The explanatory
variability increases to 73.0%, showing coefficients very similar to Model 5. The most important
differences are: the A_age variable is no longer statistically significant, the C_coastalregion coefficient is
reduced by half, and the D_foreigners coefficient is reduced and changes its sign

Table 6. OLS regression models, according to variables introduced.

Characteristics Model 1
OLS

Model 2
OLS

Model 3
OLS

Model 4
OLS

Model 5
OLS

Model 6
OLS

(Intercept) 10.574 ***
(0.011)

10.205 ***
(0.011)

10.056 ***
(0.013)

9.961 ***
(0.013)

10.010 ***
(0.012)

9.849 ***
(0.154)

A

A_flat Reference

A_penthouse 0.021 *
(0.010)

0.074 ***
(0.009)

0.091 ***
(0.008)

0.107 ***
(0.007)

0.116 ***
(0.007)

0.119 ***
(0.007)

A_duplex −0.028 *
(0.013)

0.076 ***
(0.012)

0.073 ***
(0.011)

0.050 ***
(0.010)

0.040 ***
(0.010)

0.036 ***
(0.010)

A_studio_flat −0.187 ***
(0.020)

−0.246 ***
(0.018)

−0.259 ***
(0.016)

−0.309 ***
(0.015)

−0.309 ***
(0.015)

−0.315 ***
(0.014)

A_age −0.006 ***
(0.0002)

0.001 ***
(0.0002)

0.001 **
(0.0002)

−0.0002
(0.0002)

−0.001 ***
(0.0002)

−0.0003
(0.0002)

A_area_m2 0.005 ***
(0.0001)

0.006 ***
(0.0001)

0.006 ***
(0.0001)

0.006 ***
(0.0001)

0.006 ***
(0.0001)

0.006 ***
(0.0001)

A_bathrooms 0.342 ***
(0.006)

0.224 ***
(0.005)

0.239 ***
(0.005)

0.231 ***
(0.004)

0.236 ***
(0.004)

0.233 ***
(0.004)

A_floor 0.037 ***
(0.001)

0.013 ***
(0.001)

0.005 ***
(0.001)

0.004 ***
(0.001)

0.002 *
(0.001)

0.002 **
(0.001)

A_terrace 0.236 ***
(0.005)

0.117 ***
(0.005)

0.070 ***
(0.004)

0.052 ***
(0.004)

0.041 ***
(0.004)

0.037 ***
(0.004)

A_good_condition Reference

A_new_construction 0.194 ***
(0.028)

0.105 ***
(0.025)

0.186 ***
(0.022)

0.166 ***
(0.020)

0.177 ***
(0.020)

0.163 ***
(0.020)

A_state_to_reform −0.379 ***
(0.011)

−0.251 ***
(0.010)

−0.229 ***
(0.009)

−0.223 ***
(0.008)

−0.218 ***
(0.008)

−0.217 ***
(0.008)

B
B_parking 0.168 ***

(0.005)
0.156 ***

(0.004)
0.149 ***

(0.004)
0.142 ***

(0.004)
0.133 ***

(0.004)

B_elevator 0.284 ***
(0.005)

0.244 ***
(0.005)

0.241 ***
(0.005)

0.231 ***
(0.005)

0.232 ***
(0.004)

B_pool 0.308 ***
(0.005)

0.207 ***
(0.005)

0.137 ***
(0.004)

0.119 ***
(0.005)

0.124 ***
(0.004)

C

C_Alicante Reference

C_Marina_Alta 0.132 ***
(0.007)

0.076 ***
(0.007)

0.058 ***
(0.007)

C_Marina_Baja 0.146 ***
(0.007)

0.197 ***
(0.007)

0.143 ***
(0.007)

C_Bajo_Vinalopo 0.043 ***
(0.007)

0.099 ***
(0.006)

0.030 ***
(0.007)

C_Bajo_Segura −0.108 ***
(0.006)

−0.130 ***
(0.007)

−0.186 ***
(0.007)

C_Condado −0.098 **
(0.030)

−0.082 **
(0.028)

−0.146 ***
(0.028)

C_Alcoy −0.182 ***
(0.013)

−0.166 ***
(0.012)

−0.221 ***
(0.012)

C_Alto_Vinalopo −0.156 ***
(0.020)

−0.078 ***
(0.019)

−0.144 ***
(0.018)

C_Medio_Vinalopo −0.213 ***
(0.013)

−0.149 ***
(0.012)

−0.202 ***
(0.012)

C_coastalregion 0.315 ***
(0.006)

0.202 ***
(0.005)

0.129 ***
(0.006)

0.068 ***
(0.010)

D

D_elderly 0.343 ***
(0.011)

0.282 ***
(0.012)

0.244 ***
(0.012)

D_foreigners 0.238 ***
(0.013)

0.108 ***
(0.014)

−0.038 *
(0.016)

D_no_studies −0.910 ***
(0.045)

−0.874 ***
(0.045)

−0.722 ***
(0.046)

D_university 1.112 ***
(0.024)

0.996 ***
(0.024)

1.021 ***
(0.024)
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Table 6. Cont.

Characteristics Model 1
OLS

Model 2
OLS

Model 3
OLS

Model 4
OLS

Model 5
OLS

Model 6
OLS

E
E_secondary_dwelling 0.321 ***

(0.010)
0.335 ***

(0.012)

E_rented_dwelling 0.201 ***
(0.021)

0.195 ***
(0.023)

Spatial fixed effects No No Yes
(by comarcas)

Yes
(by comarcas)

Yes
(by comarcas)

Yes
(by municipality)

Notes: dependent variable price_ln; N = 34,138; *** p < 0.001, ** p < 0.01, * p < 0.05; standard errors in parentheses.

Table 7. Descriptive statistics for the OLS regression models.

Statistics Model 1
OLS

Model 2
OLS

Model 3
OLS

Model 4
OLS

Model 5
OLS

Model 6
OLS

R2 0.440 0.568 0.654 0.706 0.715 0.731
adj. R2 0.439 0.568 0.654 0.706 0.715 0.730

Std. Error 0.441 0.387 0.347 0.320 0.315 0.306
F

(sig.)
2676.7

(p < 0.001)
3449.9

(p < 0.001)
2935.0

(p < 0.001)
3154.3

(p < 0.001)
3054.7

(p < 0.001)
732.5

(p < 0.001)

To assess the forecasting accuracy in Model 5, a resampling method was performed using a k-fold
cross-validation [90] (pp.181–183). The sample was randomly divided into 10 folds, the first subset of
data formed by k−1 folds was used to train the model, and the second subset formed by the excluded
fold was used to estimate the prediction errors. The process was repeated k times excluding a different
fold each time, quantifying the error rates in each repetition. The mean square error (MSE) and the root
mean squared error (RMSE) was calculated as measures of error, and R2 as a measure of goodness of fit.

Figure 5 shows the box plots of the measurements, with a low dispersion and very close mean
and median values. As for the R2 statistic, the values obtained range from 0.697 to 0.740, with mean
and median of 0.715 similar to the R2 of Model 5.
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square error MSE and root mean squared error RMSE.

To estimate the relative importance of each variable in the regression model, a method developed
by Lindeman et al. [91] was used, which allows for the breakdown of the explanatory variability
of each independent variable. The averaged over orderings method (lmg metric) included in the
“relaimpo” package (version 2.2-3) of R [92], developed by Grömping [93], was used. One advantage
of this metric is that R2 breaks down in non-negative contributions that total R2. One disadvantage is
that it is a computationally prohibitive method as the number of predictors increases. This is because it
calculates the contribution of each predictor in all possible forms of input to the regression model, and
by taking the average of those contributions, in this way as many regression models as possible are
created as permutations without repetition [93,94]. Johnson et al. [94] defined the relative importance
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of predictors in a regression model as “The proportionate contribution each predictor makes to R2, considering
both its direct effect and its effect when combined with the other variables in the regression equation” (p. 240).

As described in Figure 6a, Model 5 explains a variance percentage of 71.5%, which can be
broken down into the five grouping categories described in Table 2. In order of importance, Category
A—Dwelling characteristics—explains 32.2% of the total explanatory variance, Category B—Features of
the building—15.3%, followed by Category D—Characteristics of the neighbourhood—11.7%. Categories C
and E have less explanatory power.

The relative importance of each variable is shown in Figure 6b, indicating the greater importance of
the constructed surface area and the number of bathrooms (A_area_m2 and A_bathrooms, respectively),
the ratio of population with university level studies (D_university), and the characteristics of the
building (B_parking, B_elevator and B_pool). The graph shows the great importance of the characteristics
of the dwelling (Category A) and of the building (Category B) in the determination of the price (47.5%
of the explanatory variance).
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Figure 6. (a) Breakdown of the explanatory variance (R2) in Model 5 according to the grouping
categories; and (b) relative importance of each variable from the breakdown of the explanatory variance
in Model 5.

4.2. Quantile Regression

Quantile regression was applied to the variables used in Model 5, extracting five new models
depending on the corresponding quantile: 0.10, 0.25, 0.50, 0.75 and 0.90. The coefficients of the quantile
regression are shown in Table 8 and the statistics of goodness of fit in Table 9. The magnitude of the
coefficients varies along the quantiles.

The following analysis of coefficients refers to Model 9 QR 0.5, in the same way as done previously
with the Model 5 OLS. In relation to the characteristics of Category A, the values obtained were
very similar to those in the Model 5 OLS. Reviewing the standardised beta coefficients (Table A3),
the three characteristics of greater explanatory power were the constructed surface area, number of
bathrooms, and the availability of an elevator. Taking as a reference the flat typology, studio flats imply
a discount in the price of 33.5%, while penthouses and duplexes show higher prices than flats. Using a
second-hand dwelling in good condition as reference, new housing represents increase in the price of
23.0%, while a second-hand dwelling in need of refurbishing implies a discount of 22.8%. In reference
to Category B, the three characteristics have relevant standardised beta coefficients. The existence of
an elevator implies an increase in the price of 22.6%, while having a garage slot or a pool implies an
increase in the price of 12–14%. The location characteristics in Category C show a pattern identical
to that obtained in the OLS, but with some variations in the coefficients. If the dwelling is located
in a coastal municipality, the price increases by an average of 8.6%. In relation to Categories D and
E, the most relevant characteristics were the ratio of people with university studies and the second
home ratio.
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Table 8. Quantile Regression Models, QR 0.10, 0.25, 0.50, 0.75 and 0.90.

Characteristics Model 7
QR 10

Model 8
QR 25

Model 9
QR 50

Model 10
QR 75

Model 11
QR 90

(Intercept) 9.736 ***
(0.019)

9.905 ***
(0.016)

10.073 ***
(0.015)

10.205 ***
(0.016)

10.241 ***
(0.023)

A

A_flat Reference

A_penthouse 0.089 ***
(0.012)

0.102 ***
(0.009)

0.122 ***
(0.008)

0.136 ***
(0.009)

0.126 ***
(0.012)

A_duplex 0.060 ***
(0.010)

0.078 ***
(0.013)

0.042 ***
(0.010)

0.020
(0.014)

0.016
(0.017)

A_studio_flat −0.416 ***
(0.022)

−0.392 ***
(0.022)

−0.335 ***
(0.026)

−0.239 ***
(0.019)

−0.160 ***
(0.031)

A_age −0.003 ***
(0.0003)

−0.002 ***
(0.0002)

−0.001 ***
(0.0002)

0.0004
(0.0003)

0.003 ***
(0.0003)

A_area_m2 0.005 ***
(0.0001)

0.005 ***
(0.0001)

0.006 ***
(0.0001)

0.006 ***
(0.0001)

0.007 ***
(0.0001)

A_bathrooms 0.236 ***
(0.006)

0.232 ***
(0.005)

0.237 ***
(0.005)

0.235 ***
(0.006)

0.229 ***
(0.008)

A_floor 0.0001
(0.001)

0.001
(0.001)

0.002 **
(0.001)

0.004 ***
(0.001)

0.007 ***
(0.001)

A_terrace 0.056 ***
(0.005)

0.044 ***
(0.005)

0.042 ***
(0.004)

0.038 ***
(0.005)

0.023 ***
(0.007)

A_good_condition Reference

A_new_construction 0.130 **
(0.045)

0.141 ***
(0.042)

0.230 ***
(0.023)

0.220 ***
(0.020)

0.181 **
(0.069)

A_state_to_reform −0.245 ***
(0.011)

−0.221 ***
(0.010)

−0.228 ***
(0.009)

−0.226 ***
(0.012)

−0.204 ***
(0.020)

B
B_parking 0.159 ***

(0.006)
0.158 ***
(0.005)

0.138 ***
(0.005)

0.124 ***
(0.005)

0.121 ***
(0.007)

B_elevator 0.293 ***
(0.007)

0.268 ***
(0.006)

0.226 ***
(0.006)

0.180 ***
(0.006)

0.161 ***
(0.008)

B_pool 0.129 ***
(0.006)

0.120 ***
(0.005)

0.117 ***
(0.005)

0.118 ***
(0.006)

0.126 ***
(0.008)

C

C_Alicante Reference

C_Marina_Alta 0.042 ***
(0.011)

0.048 ***
(0.009)

0.055 ***
(0.008)

0.067 ***
(0.009)

0.097 ***
(0.011)

C_Marina_Baja 0.126 ***
(0.009)

0.115 ***
(0.009)

0.126 ***
(0.008)

0.147 ***
(0.009)

0.177 ***
(0.012)

C_Bajo_Vinalopo 0.065 ***
(0.011)

0.029 ***
(0.009)

0.010
(0.008)

0.001
(0.008)

0.045 ***
(0.013)

C_Bajo_Segura −0.194 ***
(0.010)

−0.211 ***
(0.008)

−0.220 ***
(0.008)

−0.196 ***
(0.009)

−0.135 ***
(0.012)

C_Condado −0.070
(0.056)

−0.156 ***
(0.046)

−0.168 **
(0.058)

−0.178 ***
(0.038)

−0.189 ***
(0.045)

C_Alcoy −0.211 ***
(0.016)

−0.233 ***
(0.021)

−0.224 ***
(0.016)

−0.240 ***
(0.012)

−0.233 ***
(0.020)

C_Alto_Vinalopo −0.173 ***
(0.038)

−0.134 ***
(0.035)

−0.128 ***
(0.036)

−0.123 ***
(0.024)

−0.139 ***
(0.019)

C_Medio_Vinalopo −0.249 ***
(0.033)

−0.230 ***
(0.018)

−0.224 ***
(0.019)

−0.190 ***
(0.018)

−0.148 ***
(0.026)

C_coastalregion 0.195 ***
(0.009)

0.131 ***
(0.007)

0.086 ***
(0.007)

0.081 ***
(0.007)

0.104 ***
(0.010)

D

D_elderly 0.340 ***
(0.017)

0.299 ***
(0.015)

0.282 ***
(0.015)

0.255 ***
(0.016)

0.246 ***
(0.022)

D_foreigners 0.050 *
(0.020)

0.098 ***
(0.018)

0.122 ***
(0.017)

0.127 ***
(0.020)

0.123 ***
(0.026)

D_no_studies −1.131 ***
(0.071)

−1.015 ***
(0.055)

−0.927 ***
(0.052)

−0.792 ***
(0.060)

−0.697 ***
(0.085)

D_university 0.811 ***
(0.033)

0.946 ***
(0.029)

0.991 ***
(0.027)

1.031 ***
(0.030)

1.107 ***
(0.044)

E
E_secondary_dwelling 0.205 ***

(0.014)
0.259 ***
(0.013)

0.323 ***
(0.012)

0.381 ***
(0.014)

0.392 ***
(0.018)

E_rented_dwelling 0.150 ***
(0.032)

0.183 ***
(0.027)

0.184 ***
(0.024)

0.189 ***
(0.029)

0.262 ***
(0.041)

Notes: dependent variable price_ln; N = 34,138; *** p < 0.001, ** p < 0.01, * p < 0.05; standard errors in parentheses.
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Table 9. Statistics of goodness of fit of the quantile regression models.

Statistics Model 7
QR 0.10

Model 8
QR 0.25

Model 9
QR 0.50

Model 10
QR 0.75

Model 11
QR 0.90

pseudo-R1 0.504 0.494 0.478 0.457 0.442

Notes: pseudo-R1, see [80].

The graphic representation of the quantile regression allows the variation of the slope of each
regression coefficient to be seen for various values of the dependent variable (quantiles). The horizontal
axis holds the different quantiles and the vertical axis values of the regression coefficient. The solid line
with dots in each quintile is the estimate of the regression coefficient for the quantiles; the grey shaded
area represents the confidence interval of the coefficients at 95%. The red continuous line, parallel
to the horizontal axis, corresponds with the OLS coefficient, and the red dashed lines represent the
confidence intervals at 95% of the OLS estimate. If the confidence intervals of the coefficients reach zero
(grey horizontal line), it indicates that, for that quantile, the coefficient was not statistically significant.

If we analyse the charts related to Category A (Figure 7), they can be grouped, based on the
results, into four groups. A first grouping includes the A_penthouse, A_studio_flat, A_age, A_area_m2
variables, which show a clear trend toward regression coefficients of greater value, as prices progress
towards the higher quantiles. This implies that, in the higher quantiles, faced with a change to
the independent variable, the effect on prices was greater than in the lower quantiles. In this way,
for example, an increase of one additional square meter of surface area produces greater effect on
prices in higher-priced dwellings (0.66%) than in the lower-priced ones (0.55%).

In a second group, the variable A_bathrooms would be included, where the regression coefficient
remains relatively constant as the price increases. This implies that, regardless of the housing price, the
provision of having an additional bathroom was valued in a similar way, with the other characteristics
remaining constant.

A third group includes the A_floor, A_terrace, and A_state_to_reform variables, which present an
almost horizontal intermediate zone, with the extremes showing sloping changes. This indicates that,
in the houses with prices in the intermediate quantiles, the influence of the variable was similar, but,
in the quantiles at the extremes, the behaviour of the coefficient varies. In the case of the variable
A_state_to_reform, the dwellings that needed refurbishing that were placed in the intermediate price
quantiles (0.15 < θ < 0.85) were marketed with a discount of 22–23%. However, for dwellings with
low prices (θ ≤ 0.15), the discount can reach 24–25%, while for higher priced dwellings (θ ≥ 0.9),
the discount varies within 16–20%.

The last group was made up of the variables where the regression coefficient did not show
a defined pattern as the sales price increases. This was the case of the variables A_duplex and
A_new_construction.



Sustainability 2019, 11, 437 21 of 33
Sustainability 2018, 10, x FOR PEER REVIEW  21 of 35 

 Figure 7. OLS and quantile regression coefficients, for the characteristics of the dwelling (Category A):
(a) A_penthouse; (b) A_duplex; (c) A_studio_flat; (d) A_age; (e) A_area_m2; (f) A_bathrooms; (g) A_floor;
(h) A_terrace; (i) A_new_construction; and (j) A_state_to_reform.



Sustainability 2019, 11, 437 22 of 33

Regarding Category B (Figure 8), it can be observed that the presence of an elevator and a garage
slot, controlled by variables B_elevator and B_parking, have the same downward trend, while in both
cases there was a lower incidence of the regression coefficient in the prices of the higher quantiles.
In the case of the variable B_elevator, it can be seen that properties located in the low-price quantiles
(θ < 0.25) place more value in having an elevator (27–30% increase in the price); for dwellings in the
intermediate-price quantiles (0.25≤ θ ≤ 0.75), the valuation drops (18–27%); and high-priced dwellings
(θ > 0.75) value it less (14–17%). Regarding the existence of swimming pool (B_pool), the regression
coefficient remains relatively constant along with the price.
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(Category B): (a) Intercept; (b) B_parking; (c) B_elevator; and (d) B_pool.

In relation to Category C (Figure 9), the graphs also suggest three groupings. The first includes
the variables C_Marina_Alta, C_Marina_Baja and C_Medio_Vinalopo. For these variables, the regression
coefficient increases along with the sale price, but there was evidence of a number of behaviours. In the
case of Marina Baja, all coefficients were positive regardless of the price quantile, taking as reference the
comarca of Alicante. In the case of Marina Alta, the coefficients in the low-price percentiles (for θ < 0.10)
were not statistically significant, and the high price percentiles (for θ > 0.80) show a sharp increase
in the regression coefficient. In the case of C_Medio_Vinalopo, negative coefficients could be seen in
the entire series of prices, however the coefficients were lower in the low-price quantiles than in the
high ones. The second group was comprised of the variables C_Alcoy, C_Condado and C_Alto_Vinalopo,
where the regression coefficients remain relatively constant along with the price. The third group
consists of the C_Bajo_Segura and C_Bajo_Vinalopo variables, showing a decrease in the coefficients
up to the 0.6 and 0.75 quantiles, respectively, changing sharply to an upward trend in the higher
quantiles. Regarding the C_coastalregion variable, a negative slope is observed in the coefficients up to
the 0.5 quantile, from which the coefficient stabilises. It should be noted that the quantile coefficients
are very far from the OLS coefficient, which suggests a worse estimate of the latter coefficient.
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Regarding the neighbourhood characteristics, Category D (Figure 10), the variables D_no_studies
and D_university, showed the same trend indicating that the effect on prices of the regression
coefficients was more relevant in the case of higher priced dwellings, while the variable D_elderly
showed the opposite behaviour. For the variable D_foreigners, similar behaviour was observed to
that seen in variables in other categories, with an initial area, up to quantile 0.40, which showed a
significant increase of the effect and then tended to stabilise in higher quantiles.
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Figure 10. OLS and quantile regression coefficients, for the characteristics of the neighbourhood
(Category D): (a) D_elderly; (b) D_foreigners; (c) D_no_studies; and (d) D_university.

Finally, in Category E (Figure 11), the variable E_secondary_dwelling shows an increase in the
regression coefficient along with increases in the price. A 1% increase in the ratio of second homes
in a census tract implies that the price increases 0.17–0.24% in the low-price quantiles (θ < 0.25),
whereas, in the high price quantiles (θ > 0.75), the price increases by 0.39–0.41%. Regarding the variable
E_rented_dwelling, the behaviour was different in the average price quantiles and, at the extremes,
with the extremes placing more value.

Sustainability 2018, 10, x FOR PEER REVIEW  24 of 35 

 

Figure 9. OLS and quantile regression coefficients, for the characteristics of the location (Category C): 
(a) C_Marina_Alta; (b) C_Marina_Baja; (c) C_Bajo_Vinalopo; (d) C_Bajo_Segura; (e) C_Condado; 
(f) C_Alcoy; (g) C_Alto_Vinalopo; (h) C_Medio_Vinalopo; and (i) C_coastalregion. 

Regarding the neighbourhood characteristics, Category D (Figure 10), the variables D_no_studies 
and D_university, showed the same trend indicating that the effect on prices of the regression 
coefficients was more relevant in the case of higher priced dwellings, while the variable D_elderly 
showed the opposite behaviour. For the variable D_foreigners, similar behaviour was observed to that 
seen in variables in other categories, with an initial area, up to quantile 0.40, which showed a 
significant increase of the effect and then tended to stabilise in higher quantiles. 

Figure 10. OLS and quantile regression coefficients, for the characteristics of the neighbourhood 
(Category D): (a) D_elderly; (b) D_foreigners; (c) D_no_studies; and (d) D_university. 

Finally, in Category E (Figure 11), the variable E_secondary_dwelling shows an increase in the 
regression coefficient along with increases in the price. A 1% increase in the ratio of second homes in 
a census tract implies that the price increases 0.17–0.24% in the low-price quantiles (𝜃<0.25), whereas, 
in the high price quantiles (𝜃>0.75), the price increases by 0.39–0.41%. Regarding the variable 
E_rented_dwelling, the behaviour was different in the average price quantiles and, at the extremes, 
with the extremes placing more value. 

Figure 11. OLS and quantile regression coefficients, for the characteristics of Category E:
(a) E_secondary_dwelling; and (b) E_rented_dwelling.



Sustainability 2019, 11, 437 25 of 33

5. Discussion

If one compares the results of the models based on the average and median (Model 5 OLS and
Model 9 QR 50), within Category A, the negative signs on the variables A_studio_flat, A_age and
A_state_to_reform were matched in both models, with the variable with the highest explanatory power
in both models being constructed surface area (A_area_m2). Within Category B, it was the existence of
an elevator (B_elevator) variable that showed greater explanatory power in both models, with the other
two characteristics showing similar incidence. In reference to Category D, it was properties located to
the north of the province (D_Marina_Alta and D_Marina_Baja) that showed higher prices than those
located in Alicante (reference) in both models, with dwellings located in the remaining comarcas in
Alicante having a lower price. For the variables that make up the other two categories, Categories
C and E, the signs obtained for variables in both models were the same, and their incidence in the
explanatory capacity was similar, there being few differences between both models.

The OLS regressions carried out showed that the explanatory variable with greater weight was
constructed surface area. Dwelling characteristics (Category A) obtained positive values expected in
constructed surface area and the number of bathrooms the, same as in other studies [31,38,49,55,57].
Regarding the floor the dwelling was located on, the sign obtained was positive, as in [27,37–39,55,56,60].
On the other hand, negative values were obtained in the age of the property, as occurred in other
studies [25–31,35,36], as well as when the state of housing was to be refurbished [15]. For the new
housing characteristic, a positive sign was obtained as in other documents [15,23,61].

This research finds that the values obtained from the quantile regression show that the percentage
of price change, for certain characteristics, varies considerably throughout the quantiles, which confirms
the need to perform this type of analysis. This was consistent with other research [15,29,37,72,95].

Regarding the results of the quantile regression, the surface area of the dwelling was more
important in the higher quantiles, as in [15]. The floor level also showed higher coefficients in the
higher quantiles, gaining importance probably due to better views and more light, highly valued
aspects in the province of Alicante [52] (p. 2038). However, Liao and Wang [95] obtained negative
values when floor level of the dwelling increased, probably motivated by the high density of Asian
cities. Chasco Yrigoyen and Sanchez Reyes [15] only considered if the dwelling was on a floor different
from the ground floor, with ground floor dwellings having better valuations. On the other hand,
the location of the property within the territory was relevant, as there were large differences in prices
among comarcas [95]. The most expensive comarcas that were identified were those that were located
on the northern coast of the province, followed by the comarcas on the south coast, with the cheapest
being those located inland. If the results obtained in the characteristics of the neighbourhood are
compared with results obtained by Chasco Yrigoyen and Sanchez Reyes [15], they were opposed, due
to the foreigner and university education ratios. This was not a surprise for the authors, since the
values obtained showed the intrinsic characteristics of the analysed area and were consistent with the
economic development of the province of Alicante, whose main activity is tourism in both the coast
and inland areas, as indicated by McGreal and Taltavull de la Paz [52]. The province of Alicante has an
important secondary home market for foreigners, from northern Europe.

6. Conclusions

This research analysed the impact of the characteristics of second-hand housing on asking price,
in the province of Alicante. It used the hedonic price method, estimated by ordinary least squares and
a quantile regression. In both cases, it applied a semi-logarithmic functional form, on a refined sample
of 34,138 observations.

From the obtained results, it was possible to demonstrate that quantile regression is useful for
identifying the effect of characteristics of dwellings on different price ranges. The regression coefficients
of some variables had different behaviours depending on the different price ranges. In this way, sellers
of higher-priced housing seem to value certain characteristics differently than sellers of lower-priced
housing, as suggested in [72] (p. 332).
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The results show well-differentiated behaviour according to the characteristic analysed. Table 10
provides a summary of the relations between the explanatory variables and the asking price as defined
by the quantile regressions (adapted table following [72] p. 331). For example, the surface area of the
dwelling (A_area_m2), dwellings on upper floors (A_studio_flat), or their being located in areas with a
greater number of university graduates (D_university) showed a positive impact as the price increases.
On the other hand, there are variables that showed a negative impact on the price as the price increases,
such as having a garage slot or an elevator (B_parking and B_elevator, respectively). Other variables
have a relatively constant effect on the asking price for the different price ranges, such as the number
of bathrooms or if the building has a swimming pool (A_bathrooms and B_pool, respectively).

Table 10. Relationship between the explanatory variables and the price, according to several patterns
shown in the graphs of the quantile regression coefficients.
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This research found it necessary to perform quantile regression, as did other authors [15,72,95], 
to analyse the behaviour of the sample in different price ranges. From analysis of the results, it is 
important to note the following general findings: 

1. The characteristics of the dwelling and the building have great importance in determining the 
price, followed by the characteristics of the neighbourhood and the location. 

2. Characteristics of dwellings and buildings, such as the surface area, age, housing typology 
(duplex, penthouse, or studio flat), the availability of garage slot or an elevator, have different 
effects on the price depending on the quantile. 

3. Location characteristics also show that there are two distinct markets, the coast and the inland 
areas. 

4. Neighbourhood characteristics show that certain segments of the population are willing to pay 
more for a home: people with university studies and foreigners. The latter are persons with 
sufficient economic resources; therefore, this population segment is mainly from Europe. 

5. Finally, the market characteristics suggest that, in the province of Alicante, there is an ample 
second residence and rental housing market, which carries a rise in the sale price of properties 
as a consequence. 
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This research found it necessary to perform quantile regression, as did other authors [15,72,95],
to analyse the behaviour of the sample in different price ranges. From analysis of the results, it is
important to note the following general findings:

1. The characteristics of the dwelling and the building have great importance in determining the
price, followed by the characteristics of the neighbourhood and the location.

2. Characteristics of dwellings and buildings, such as the surface area, age, housing typology
(duplex, penthouse, or studio flat), the availability of garage slot or an elevator, have different
effects on the price depending on the quantile.

3. Location characteristics also show that there are two distinct markets, the coast and the
inland areas.

4. Neighbourhood characteristics show that certain segments of the population are willing to pay
more for a home: people with university studies and foreigners. The latter are persons with
sufficient economic resources; therefore, this population segment is mainly from Europe.

5. Finally, the market characteristics suggest that, in the province of Alicante, there is an ample
second residence and rental housing market, which carries a rise in the sale price of properties as
a consequence.
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Appendix A

Table A1. Standardised Beta coefficients of the OLS regression models.

Model 1
OLS

Model 2
OLS

Model 3
OLS

Model 4
OLS

Model 5
OLS

A

A_flat Reference
A_penthouse 0.009 0.032 0.039 0.046 0.050
A_duplex −0.009 0.024 0.023 0.016 0.012
A_studio_flat −0.038 −0.050 −0.052 −0.062 −0.062
A_age −0.111 0.022 0.010 −0.004 −0.013
A_area_m2 0.266 0.300 0.317 0.302 0.317
A_bathrooms 0.319 0.209 0.224 0.216 0.221
A_floor 0.155 0.054 0.020 0.016 0.007
A_terrace 0.199 0.098 0.059 0.044 0.035
A_good_condition Reference
A_new_construction 0.028 0.015 0.027 0.024 0.026
A_state_to_reform −0.144 −0.096 −0.087 −0.085 −0.083

B
B_parking 0.139 0.129 0.123 0.117
B_elevator 0.210 0.181 0.178 0.171
B_pool 0.257 0.172 0.114 0.099

C

C_Alicante Reference
C_Marina_Alta 0.071 0.041 0.031
C_Marina_Baja 0.079 0.107 0.078
C_Bajo_Vinalopo 0.024 0.056 0.017
C_Bajo_Segura −0.075 −0.090 −0.129
C_Condado −0.011 −0.009 −0.016
C_Alcoy −0.050 −0.045 −0.060
C_Alto_Vinalopo −0.026 −0.013 −0.024
C_Medio_Vinalopo −0.057 −0.040 −0.054
C_coastalregion 0.232 0.149 0.095

D

D_elderly 0.111 0.091
D_foreigners 0.085 0.039
D_no_studies −0.079 −0.076
D_university 0.182 0.163

E
E_secondary_dwelling 0.136
E_rented_dwelling 0.036

Notes: dependent variable price_ln.
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Table A2. Full details of the regression for the Model 5 OLS.

Unstandardised
Coefficients

Std
Coef. 95.0% CI for B Collinearity

Statistics

B Std.
Error Beta t Sig. Lower

Bound
Upper
Bound ToleranceVIF

(Intercept) 10.010 0.012 802.6 0.000 9.986 10.035

A

A_flat Reference
A_penthouse 0.116 0.007 0.050 16.3 0.000 0.102 0.130 0.90 1.11
A_duplex 0.040 0.010 0.012 4.0 0.000 0.020 0.059 0.88 1.13
A_studio_flat −0.309 0.015 −0.062 −21.1 0.000 −0.338 −0.280 0.96 1.04
A_age −0.001 0.0002 −0.013 −3.5 0.001 −0.001 0.000 0.63 1.59
A_area_m2 0.006 0.0001 0.317 80.3 0.000 0.006 0.006 0.54 1.86
A_bathrooms 0.236 0.004 0.221 56.4 0.000 0.228 0.244 0.55 1.83
A_floor 0.002 0.001 0.007 2.0 0.041 0.000 0.003 0.81 1.24
A_terrace 0.041 0.004 0.035 10.8 0.000 0.034 0.049 0.81 1.23
A_good_condition Reference
A_new_construction 0.177 0.020 0.026 8.8 0.000 0.138 0.216 0.98 1.02
A_state_to_reform −0.218 0.008 −0.083 -28.0 0.000 −0.234 −0.203 0.95 1.05

B
B_parking 0.142 0.004 0.117 34.7 0.000 0.134 0.150 0.74 1.36
B_elevator 0.231 0.005 0.171 51.2 0.000 0.222 0.240 0.75 1.33
B_pool 0.119 0.005 0.099 26.5 0.000 0.110 0.128 0.59 1.68

C

C_Alicante Reference
C_Marina_Alta 0.058 0.007 0.031 8.4 0.000 0.045 0.072 0.61 1.64
C_Marina_Baja 0.143 0.007 0.078 20.6 0.000 0.130 0.157 0.59 1.69
C_Bajo_Vinalopo 0.030 0.007 0.017 4.5 0.000 0.017 0.044 0.59 1.71
C_Bajo_Segura −0.186 0.007 −0.129 −27.7 0.000 −0.199 −0.173 0.39 2.59
C_Condado −0.146 0.028 −0.016 −5.3 0.000 −0.200 −0.092 0.95 1.05
C_Alcoy −0.221 0.012 −0.060 −18.5 0.000 −0.245 −0.198 0.78 1.28
C_Alto_Vinalopo −0.144 0.018 −0.024 −7.8 0.000 −0.180 −0.108 0.90 1.11
C_Medio_Vinalopo −0.202 0.012 −0.054 −16.7 0.000 −0.226 −0.179 0.79 1.27
C_coastalregion 0.129 0.006 0.095 22.0 0.000 0.118 0.141 0.45 2.23

D

D_elderly 0.282 0.012 0.091 23.6 0.000 0.259 0.306 0.56 1.80
D_foreigners 0.108 0.014 0.039 7.6 0.000 0.080 0.136 0.32 3.09
D_no_studies −0.874 0.045 −0.076 −19.6 0.000 −0.962 −0.786 0.56 1.79
D_university 0.996 0.024 0.163 42.2 0.000 0.950 1.043 0.56 1.79

E
E_secondary_dwelling 0.321 0.010 0.136 31.6 0.000 0.301 0.341 0.45 2.20
E_rented_dwelling 0.201 0.021 0.036 9.4 0.000 0.159 0.244 0.57 1.76

Notes: dependent variable price_ln; N = 34,138; CI, Confidence Interval; VIF, Variance Inflation Factor.

Table A3. Full details of the quantile regression for Model 9 QR 50.

Unstandardised
Coefficients

Std
Coef. 95.0% CI for B Collinearity

Statistics

B Std.
Error Beta t Sig. Lower

Bound
Upper
Bound ToleranceVIF

(Intercept) 10.073 0.015 671.6 10.044 10.102

A

A_flat Reference
A_penthouse 0.122 0.008 0.052 15.0 0.000 0.106 0.138 0.90 1.11
A_duplex 0.042 0.010 0.013 4.2 0.000 0.022 0.061 0.87 1.15
A_studio_flat −0.335 0.026 −0.068 −12.9 0.000 −0.386 −0.284 0.98 1.02
A_age −0.001 0.0002 −0.015 −3.5 0.001 −0.001 0.000 0.61 1.63
A_area_m2 0.006 0.0001 0.308 65.3 0.000 0.006 0.006 0.53 1.88
A_bathrooms 0.237 0.005 0.221 49.2 0.000 0.227 0.246 0.54 1.85
A_floor 0.002 0.001 0.010 2.8 0.004 0.001 0.004 0.81 1.23
A_terrace 0.042 0.004 0.036 9.8 0.000 0.034 0.051 0.82 1.22
A_good_condition Reference
A_new_construction 0.230 0.023 0.034 9.8 0.000 0.184 0.276 0.98 1.02
A_state_to_reform −0.228 0.009 −0.087 −24.8 0.000 −0.246 −0.210 0.95 1.06

B
B_parking 0.138 0.005 0.114 30.7 0.000 0.130 0.147 0.72 1.38
B_elevator 0.226 0.006 0.167 38.5 0.000 0.215 0.238 0.79 1.26
B_pool 0.117 0.005 0.098 23.4 0.000 0.107 0.127 0.58 1.73
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Table A3. Cont.

Unstandardised
Coefficients

Std
Coef. 95.0% CI for B Collinearity

Statistics

B Std.
Error Beta t Sig. Lower

Bound
Upper
Bound ToleranceVIF

C

C_Alicante Reference
C_Marina_Alta 0.055 0.008 0.030 7.0 0.000 0.040 0.071 0.59 1.68
C_Marina_Baja 0.126 0.008 0.068 16.1 0.000 0.110 0.141 0.56 1.79
C_Bajo_Vinalopo 0.010 0.008 0.006 1.3 0.184 −0.005 0.025 0.56 1.78
C_Bajo_Segura −0.220 0.008 −0.152 −28.4 0.000 −0.235 −0.205 0.38 2.64
C_Condado −0.168 0.058 −0.018 −2.9 0.004 −0.281 −0.055 0.99 1.02
C_Alcoy −0.224 0.016 −0.061 −14.2 0.000 −0.255 −0.193 0.81 1.23
C_Alto_Vinalopo −0.128 0.036 −0.021 -3.5 0.000 −0.199 −0.057 0.96 1.04
C_Medio_Vinalopo −0.224 0.019 −0.060 −11.8 0.000 −0.261 −0.187 0.87 1.15
C_coastalregion 0.086 0.007 0.063 12.3 0.000 0.072 0.100 0.50 2.01

D

D_elderly 0.282 0.015 0.091 19.4 0.000 0.254 0.311 0.52 1.92
D_foreigners 0.122 0.017 0.044 7.3 0.000 0.089 0.154 0.31 3.21
D_no_studies −0.927 0.052 −0.080 −17.8 0.000 −1.029 −0.825 0.57 1.75
D_university 0.991 0.027 0.162 36.9 0.000 0.938 1.043 0.60 1.68

E
E_secondary_dwelling 0.323 0.012 0.137 27.5 0.000 0.300 0.346 0.47 2.15
E_rented_dwelling 0.184 0.024 0.033 7.7 0.000 0.137 0.231 0.54 1.86

Notes: dependent variable price_ln; N = 34,138; CI, Confidence Interval; VIF, Variance Inflation Factor.
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