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Abstract: Constructing natural disaster shelters is important for disaster emergency management, 

and site selection models provide a feasible technique and method. This paper presents site selection 

models for natural disaster shelters. A synthesis of the types, objectives, constraints, methods of 

solutions, targeted disasters and applications of different site selection models for natural disaster 

shelters is investigated. Shelter location models can be classified as single-objective models, 

multiobjective models and hierarchical models, according to the objective and hierarchy type. 

Minimizing the evacuation distance or time, shelter construction cost or number, and the total risk 

are the general objectives of the models. Intelligent optimization algorithms are widely used to solve 

the models, instead of the Geographic Information System (GIS) method, due to the complexity of 

the problem. The results indicate that the following should be the main focuses of future works: 

How to set a model that can be applied for determining the shelter locations of multiple disasters; 

how to consider the uncertainty in the models; how to improve the existing algorithms or models 

to solve large-scale location-allocation problems; and how to develop a new resource-saving model 

that is consistent with the concept of sustainable development, as advocated by shelter planners and 

policy makers, which can be applied in real situations. This study allows those undertaking shelter 

location research to situate their work within the context of shelter planning.  

Keywords: natural disaster; shelters; site selection problem; optimization model 

 

1. Introduction 

Site selection is always an interestingly new problem, although it was proposed in 1909 by 

Weber [1], who focused on the selection of a warehouse that is nearest to all customers. It is vital to 

social development and is involved in many fields, such as economics, mathematics, politics, natural 

science, and so on. At the beginning, the study concerning site selection is not systematic, but is 

mainly about solving the problems associated with living and produce, and most of them are 

continuous problems, such as selecting a position for a facility location in a continuous space. 

Hotelling [2] studied another situation, that of determining the positions of two competitive 

corporations in a line. Based on this, Smithies [3] and Stevens [4] studied the problem more deeply 

by considering elastic demands in relation to competitors, who are free to move but are spatially 

separated. As the practical issues become more complex, how to select the locations from the 
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candidate positions for many facilities at the same time has attracted researchers’ interest. Under this 

situation, the models to solve continuous problems are no longer suitable. As a result, in 1964, Hakimi 

[5] proposed the p-median and p-center methods to solve the discrete multi-facility site selection 

problems in a network, which means that the research concerning site selection is becoming 

systematic. Nowadays, site selection has been applied in various fields, including the site selection of 

facilities, factories, warehouses, logistics centres and so on. Additionally, based on these basic single-

objective models, multiobjective models and hierarchical models have also been proposed, according 

to the objective or hierarchy types. We note that our study invokes the term “hierarchy” in a broader 

manner, differing slightly from its use in previous literature concerning location-allocation theory. 

Namely, different types of facilities and different decision makers can form various hierarchies. The 

classification of the models used to solve the site selection problem is shown in Table 1. 

Table 1. Classification of site selection models. 

Classification 

Standard 
Model Type 

Objective or 

hierarchy type 

Single-objective model: p-median, p-centre and covering models with a 

single objective, including shelter area, distance, etc.  

Multiobjective model: includes at least two objectives 

Hierarchical model: different types of facilities or different decision makers 

form various levels, and each level can be a single- or multiobjective model 

Type of 

optimization 

p-median model: minimizing the sum of the weighted distance from all 

demands to the facilities using P facilities 

p-centre model: minimizing the maximal distance from the demand points 

to facilities 

Covering 

model: 

Set covering model: minimizing costs to cover all 

demands 

Maximal covering model: covering as many demands as 

possible, with a fixed number of facilities  

Disaster type 

Typhoon/hurricane 

Flood 

Earthquake 

Along with the development of the economy and society, emergency events, which include 

natural disasters and human-made explosion events, traffic accidents, and terrorists that cause 

significant disruption and devastation to whole societies, have been in the spotlight [6]. These 

emergency events, especially natural disasters, have the characteristics of unpredictability, 

suddenness, catastrophic and timeliness [7,8]. In most cases, removing people from the affected area 

is in the best interest of their health and safety and exposes them to minimal risk [9], thus enhancing 

urban resilience [10]. A disaster emergency shelter is a safe place for people to live temporarily, when 

they cannot stay in their previous residence due to an emergency event, such as an earthquake. 

Therefore, deciding the mode of evacuation is one of the most important questions facing local 

emergency managers as they respond to natural disasters, such as how to quickly evacuate people, 

how to assign the affected people to shelters, and how to help affected people go to the hospital 

quickly. To solve these problems, a site selection model for natural disaster shelters can be modified 

and used to provide assistance to government decision makers. 

Despite the many published applications of site selection, a lack of a literature review that 

summarizes and discusses natural disaster shelter site selection has been observed. As constructing 

a sufficient number of natural disaster shelters is an important method for disaster emergency 

management [11], it is important to offer insights into how to use the site selection models, concerning 

natural disaster shelter selection and the affected people allocation, correctly. Therefore, the key aim 

of this paper is to review the study of natural disaster shelter location-allocation models to fill the 

gap in the research on site selection throughout the analysis of objectives, constraints, disaster types 
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and approaches to solutions. In this paper, we present a brief depiction of different types of location-

allocation models, according to the type of objectives and hierarchies. Then, the applications of these 

models in natural disasters, including hurricanes/typhoons, floods and earthquakes, are discussed. 

In addition, the approaches used to solve the models are analyzed and compared. 

2. Single-Objective Model 

Single-objective site selection problems are used to select or locate facilities, factories, 

warehouses, logistics centres, and shelters by determining the input parameters, such as the number 

of evacuees, the location, facility capacity, construction cost, and transportation cost, with the 

objective function being single and all parameters being certain and constant over time. This problem 

formed the basis for the multiobjective and hierarchical models. Single-objective site selection 

problems can be separated into three different types, depending on the objectives, namely, the p-

median problem, the p-center problem and the covering problem, and detail definitions can be found 

in the corresponding section. 

2.1. p-Median Model 

The p-median problem was first proposed by Hakimi [5] in 1964. The problem was described as 

follows. In a communication network, such as a telephone interconnection system, there are usually 

a number of switching centers. All traffic flows (messages) within the network must arrive at one of 

the switching centers and then be processed and sent to their proper destination. The problem is to 

find the optimum locations for switching centers, such that the total length of wires is the minimum 

[12]. Moreover, the problem for facility site selection is how to determine the location of facilities, 

with the number of p, to make the sum of the weighted distance from all demands to the facilities the 

minimum. The p-median problem can ensure global benefits that are fair to all demands, and it is 

used widely in the site selection of factories and public facilities.  

2.1.1. Basic Model 

The mathematical model of the p-median problem was further synthetically formulated by 

ReVelle and Swain [13], as shown below.  

min ij ij
i I j J

c x
 
  

(1)

s.t. 1,ij
j J

x i I


    (2)

, ,ij jx y i I j J     (3)

j
j J

y p


  (4)

{0,1}, {0,1}, ,ij jx y i I j J       (5)

where I is the set of demand points. J is the set of facilities. xij indicates if facility j is selected by 

demand point i (1 if selected, 0 if not selected). cij is the weighted distance from demand i to facility j. 

cij=widij, where wi is the weight of demand point i, and dij is the shortest distance from demand i to 

facility j. The objective of minimizing the sum weighted distance from all demands to the facilities is 

indicated by Equation (1). The constraint shown in Equation (2) indicates that one demand point can 

only be allocated to one facility. Equation (3) shows that facility j can provide service to demand point 

i only when it is opened. Equation (4) is the number constraint, which means the number of available 

facilities is p. 

2.1.2. Capacitated p-Median Problem 
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Considering the capacities and economic performances of facilities, the minimum capacity of a 

facility to be opened, and the maximum capacity of a facility, are added into the p-median model. 

Meanwhile, the number constraint of the p-median model is deleted. Consequently, the mathematical 

equations of the capacitated p-median problem are expressed below.  

min ij ij
i I j J

c x
 
  (6)

s.t. 1,ij
j J

x i I


    (7)

, ,ij jx y i I j J     (8)

, ji ij j j
i I

u x b y J


    (9)

,i ij j j
i I

u x B y j J


    (10)

|

, ,
ik ij

ik j
k J d d

x y i I j J
 

     (11)

{0,1}, {0,1}, ,ij jx y i I j J       (12)

where I is the set of demand points. J is the set of facilities. xij indicates if facility j is selected by 

demand point i (1 if selected, 0 if not selected). cij is the weighted distance from demand point i to 

facility j. cij=uidij, where ui is the population of demand i. bj and Bj are the minimal and maximal 

capacity of facility j to be opened. Compared with the p-median problem, the capacitated p-median 

problem mainly adds the constraints shown in Equations (9) and (10). Equation (11) is the closest-

assignment constraint, which mandates that demands are served by their closest sited facility. 

The p-median problem is one of the typical problems associated with minimizing the sum. 

According to the characters of the different site selections, there are various modifications of it. In 

addition to the capacitated p-median problem, stochastic models are used widely when selecting the 

locations of warehouses [14] and the assignment of relief vehicles and services [15]. It is used to solve 

the natural disaster shelter location problems, although it mainly considers disaster risk, and studies 

concerning natural disaster shelter location still mainly focus on deterministic models, with the 

objective of minimizing the sum of the distance or evacuation time. The p-median model is widely 

applied in the emergency shelter site selection of different types of disasters (Hurricanes/typhoons, 

floods, earthquakes, etc.), because evacuation distance/time is one of the most important factors for 

most disasters. In addition, the objective of the p-median model is global, which makes it suitable for 

most disasters, with a wide range of impacts after the disaster. Although this global objective ignores 

personal preferences, efficiency is prioritized, and it is relatively fair for all of the affected population. 

Hurricanes/typhoons are periodic and can be predicted according to its characteristics. Thus, 

quick and safe evacuation is very important before these disasters happen, and the p-median model, 

with the objective of minimizing the sum of the distance or evacuation time, is always selected as the 

basic model to solve these problems. Sherali et al. [16] proposed a p-median shelter location model 

combined with a network model, with the objective of minimizing the evacuation time of the affected 

people to hurricane shelters, which considers the characteristics of hurricanes and solves it to obtain 

the locations of shelters and reasonable evacuation paths using the heuristic algorithm. Typhoon 

disasters always attack the coastal counties of Southeastern China and cause enormous losses. 

Therefore, Pan [17] analyzed the distribution of the population and building density in the counties 

and surveyed the demands of residents when meeting with typhoons. Then, a model of constructing 

county typhoon shelters was proposed, based on the p-median problem, and solved using a genetic 

algorithm, which provided a theoretical method for typhoons disaster prevention and reduction in 

the coastal counties. Kocatepe et al. [18] proposed a GIS-based capacitated p-median optimization 
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model for hurricane shelter planning to maximize the accessibility and capacity of the existing 

shelters for 85+ populations with special needs (access and functional needs) or pets. Horner et al. 

[19] designed a GIS-based capacitated p-median model for the siting of special needs hurricane 

shelters to maximize accessibility for vulnerable populations, with a focus on the potential 

uncertainties in transportation network availability.  

Kongsomsaksakul et al. [20] proposed a bilevel model to solve the flood shelter location 

problem, considering the interests of decision makers and evacuees. The upper model is based on the 

p-median problem, with the objective of minimizing the evacuation time. Gama et al. [21] presented 

a multiperiod location-allocation approach based on the capacitated p-median model, which 

considers that the travel times vary over time, depending on the road conditions. The objective is to 

minimize the overall network distances that evacuees have to travel in order to reach the shelters 

during flood disasters. People’s reactions to the flood evolution are also considered to be dynamic. 

Moreover, a simulated annealing heuristic is proposed to solve the model. 

Earthquakes are difficult to predict, and a large one could always cause serious injuries to 

people, which means that emergency shelters that can provide a safe place for people after the 

disaster are important. Meanwhile, earthquakes are influenced by various factors and always cause 

secondary disasters, which make it difficult to determine the locations of shelters. Nowadays, studies 

are mainly about constructing shelters in cities, such as Bayram et al. [22], who researched earthquake 

shelter locations and evacuation paths in Istanbul, based on the p-median problem, and analyzed the 

influence of capacities and numbers. Huang et al. [23] applied the p-median problem to shelter 

constructions that served people affected by earthquakes. Zhou et al. [24] analyzed the factors of 

distance and evacuation paths and established models based on the capacitated p-median problem. 

2.2. p-Center Model 

Hakimi [5] proposed the p-center problem for finding the optimum locations of police stations 

(or hospitals). Consider a number of communities of different sizes that are interconnected by a 

highway system. The p-center problem attempts to find the locations of the police stations P, such 

that the maximum distance from P is the minimum. The problem has the objective of minimizing the 

maximal distance from the demand points to the facilities when applied to facility site selection, as 

shown below. 

min r (13)

s.t. 
ij ij

j J

d x r


  (14)

1,ij
j J

x i I


    
(15)

, ,ij jx y i I j J     (16)

j
j J

y p


  
(17)

{0,1}, {0,1}, ,ij jx y i I j J       (18)

where i and I are the index and set of demand points, respectively. j and J are the index and set of 

facilities, respectively. xij indicates if the facility j is selected by demand i (1 is selected, 0 is not 

selected). dij is the shortest distance from demand point i to facility j. r is the maximal one among the 

distances from all demands to the assigned facilities, which express fairness in meeting all demands. 

Equation (13) expresses the objective of minimizing the maximal distance from the demand points to 

the facilities. Equation (14) is the distance constraint. Equation (15) ensures that one demand point 

can only be allocated to one facility. Equation (16) ensures that demand points can only be allocated 

to the opened facilities. Equation (17) ensures the number of facilities is p. 
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Elzinga and Hearn proposed a geometrical method to solve the problem for some minimax 

location problems in 1972, namely, the Elzinga–Hearn algorithm [25]. The application of the p-center 

model for emergency shelter site selection is not as popular as the p-median and covering models, as 

only one used it in the literature that we analyzed. It is Kilci et al. [26] who proposed a temporary 

shelter location model to select the best shelter locations from a set of criteria, with the objective of 

maximizing the minimum weight of open shelter areas. The model determines shelter locations and 

matches demands with the nearest open shelter while taking shelter area utilizations into account. 

The objective of the p-center model ignores global efficiency, and it is not suitable for most disasters 

with a wide range of impacts after the disaster. Thus, its applications are mainly focused on the site 

selection of fire stations, hospitals and so on to deal with local or individual events.  

2.3. Covering Model 

Although the p-median problem is widely used, there are some facilities that provide emergency 

services (fire stations, emergency centers, etc.) for which the p-median model is not suitable due to 

incomplete coverage of the demands. In addition, the p-median and p-center problems are concerned 

about the evacuation distance or time. However, the ignored factors, such as investment costs and 

the safety of people, are also important. To solve these problems, the covering model was proposed, 

which includes the set covering model and maximum covering model.  

2.3.1. Set Covering Model 

Toregas et al. [27] proposed the set covering problem, which determines the locations of facilities 

with minimum costs to cover all demands, in 1971. The model is described in Equations (19)–(21).  

min j j
j J

c x

  (19)

s.t. 
1

1,
n

ij j
j

a x i I


    (20)

{0,1},jx j J    (21)

where i is the index of demands. j is the index of facilities. xj indicates if the facility j is selected (1 if 

selected, 0 if not selected). cj is the total costs for facility j to be opened. aij indicates if the distance 

from demand i to facility j is not more than S (1 if is, 0 if is not). Equation (19) expresses the objective 

of minimizing the total cost, and Equation (20) ensures that each demand can be served by one facility 

at least.  

2.3.2. Maximal Covering Model 

To cover all demands described in the set covering model, more facilities are needed, which 

requires more resources and investments. However, sometimes, there are not enough resources and 

investments to cover all demands. As such, Church and Revell [28] proposed the maximal covering 

model, which meets as many demands as possible, with a fixed number of facilities. The 

mathematical Equations (22)–(27) show how the model works.  

max i i
i I

w y

  (22)

s.t. 
j

j J

x p


  (23)

,i ij j
j J

y a x i I


    
(24)

{0,1},jx j J    (25)
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{0,1},iy i I    (26)

1,

0,

ij

ij

ij

d S
a

d S


 


 (27)

where i and I are index and set of demands, respectively. j and J are the index and set of facilities, 

respectively. wi indicates the population or requirements of the demand points. S is the maximal 

service distances of the facilities. dij is the shortest distance from demand i to facility j. yi indicates if 

demand i is covered (1 if covered, 0 if not covered). xj indicates if the facility is opened (1 if opened, 

0 if not opened). aij indicates if the distance from demand i to facility j is not greater than S (1 if not 

greater than, 0 if greater than). Equation (22) expresses the objective of maximizing the number of 

demand points covered by facilities. Equation (23) ensures that the number of opened facilities is p, 

and Equation (24) ensures that demand point i is assigned to a selected facility within the given 

service distance limit. 

2.3.3. Generalized Maximal Covering Location 

For the maximal covering model, coverage is a binary that is not realistic for some applications. 

As a result, Berman and Krass [29] proposed the generalised maximal covering location problem, in 

which the demands are covered at different levels. It is formulated as follows:  

( , )

max (S)
k

l
i i

i 1 i N S l

h w a
 

   (28)

s.t. 
j

j J

x p


  (29)

,i ij j
j J

y a x i I


    (30)

{0,1},jx j J    (31)

{0,1},iy i I    (32)

1,

0,

ij

ij

ij

d S
a

d S


 


 (33)

where i and I are the index and set of demand points, respectively. j and J are the index and set of 

facilities, respectively. wi indicates the population number or requirements of demand points, and S 

is the maximal service distances of facilities. dij is the shortest distance from demand i to facility j. yi 

indicates if demand i is covered (1 if covered, 0 if not covered). xj indicates if the facility is opened (1 

if opened, 0 if not opened). aij indicates if the distance from demand i to facility j is not greater than S 

(1 if not greater than, 0 if greater than). In the objective of Equation (28), ali is the coverage level, which 

means that the demand points can be covered at different levels, according to the distance from the 

demand points to the facilities.  

It can be seen from the definition and characteristics of the covering model that it is applicable 

to the disaster shelter site selection problem, and many multiobjective models and hierarchical 

models are built on it. The applications of the single-objective covering site selection model in 

emergency shelters for different types of disasters are as follows: 

Dalal et al. [30] analyzed typhoon shelters based on the set covering model, with the objective of 

minimizing the number of shelters covering all villages and the constraints of capacity and distance. 

Then, it was solved using the cluster method. Pan et al. [31] added a capacity factor to the maximal 

covering model and applied it to the typhoon shelter location problem. 
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Gama et al. [32] proposed a dynamic maximal covering model based on the modified maximal 

model proposed by Berman and Krass [29], considering other rescue facilities, path conditions and 

the depth and speed of flood water. In their study, the evacuation time and covered demands varied 

over time, depending on the road conditions and the flood dynamics. Thus, they calculated the 

locations and number of opened shelters and the allocation of evacuees in the different periods using 

the model.  

Ye et al. [33] assigned the service radius of the earthquake shelters, with objective of maximizing 

the coverage of the population demand, analyzing the capacity and allocation situation of current 

earthquake shelters in the Lujiazui street of Shanghai in China. Zhou and Jian [34] added a new factor, 

named the second distance, into the maximal covering model and established the location selection 

model to help provide other choices when the expected shelters could not be used in Taizhong city, 

Taiwan, China. Additionally, Zhao et al. [35] applied a model that is based on the capacitated set 

covering model for the earthquake shelter setting in Huangpu District of Shanghai in China and 

analyzed the change of the number of evacuees with the change of the time of the earthquake 

occurrence. Hu et al. [36] proposed a set covering model, with the objective of minimizing the number 

of shelters, while satisfying the capacity constraint and distance constraint, and applied it to the 

earthquake shelter location-allocation problem in Zhuguang Block in the south of the Yuexiu District 

of Guangzhou, China after solving it with the modified particle swarm optimization (PSO) algorithm. 

Ma et al. [37] developed a capacitated set covering single-objective model and a bilevel model and 

compared the allocation results of residents to the earthquake shelters, with the case study of 

Rongcheng of Shandong province, China.  

2.4. Summary of the Single-Objective Model 

From the examination of the single-objective site selection problems, the classification of the site 

selection problems, objectives, constraints, methods for solutions and targeted hazards associated 

with the natural disaster shelter location-allocation optimization model were summarized (Table 2).  

As shown in Table 2, the p-median model, with the objective of minimizing the sum of distance 

or evacuation time, is widely applied in the emergency shelter site selection of different types of 

disasters (all Hurricanes, half of the others), because evacuation distance/time is one of the most 

important factors for most disasters. In addition, the objective of the p-median model is global, which 

makes it suitable for most disasters with a wide range of impacts after the disaster. Although this 

global objective ignores personal preferences, efficiency is prioritized, and it is relatively fair to all of 

the affected population.  

There are very few applications of the p-center model for emergency shelter site selection. This 

is because the objective of the p-center model ignores global efficiency, and it is not suitable for most 

disasters with a wide range of impacts after the disaster. Its applications mainly focus on the site 

selection of fire stations, hospitals and so on to deal with local or individual events.  

The covering model is applicable to the disaster shelter site selection problem, especially for 

some emergency service facilities, including emergency shelters, fire stations and emergency centers 

that need cover all of the demands, due to its characteristics and definition. Thus, its applications for 

different targeted hazards occupied almost half of the listed literature. 
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Table 2. Classification of the objectives, constraints, methods for solutions and targeted hazards of the single-objective model for the shelter location and allocation. 

Authors 

Classification of 

Site Selection 

Models 

Objective Constraint Method for Solutions or 

Optimization Software 

Package 

Targeted 

Hazard 
Minimum Maximin Maximal 

Capacity Distance Number 
Distance Time Risk Cost Number Weight Cover 

Sherali et al. [16] p-median  √      √   

Heuristic and an exact 

implicit enumeration 

algorithm based on the 

generalized Benders’ 

decomposition method 

Hurricane 

Widener [38], Widener and 

Horner [39] 
p-median √       √ √  CPLEX Hurricane 

Kocatepe et al. [18] p-median    √    √  √ GIS-based method Hurricane 

Horner et al. [19] p-median    √    √  √ GIS-based method Hurricane 

Dalal et al. [30] Set covering     √   √ √  Elzinga–Hearn algorithm  Typhoon 

Pan [17] p-median √       √   Genetic algorithm (GA) Typhoon 

Pan [31] 
Maximal 

covering 
      √   √ Exact algorithm Typhoon 

Kongsomsaksakul et al. [20] p-median  √      √   GA Flood 

Gama et al. [32] 
Maximal 

covering 
      √ √ √ √ CPLEX 12.5 Flood 

Gama et al. [21] p-median √       √  √ 
Simulated annealing 

algorithm (SA) 
Flood 

Zhou and Jian [34] 
Maximal 

covering 
      √ √ √ √ Exact algorithm Earthquake 

Huang et al. [23] p-median √         √ GA Earthquake 

Zhou et al. [24] p-median √       √  √ Exact algorithm Earthquake 

Hu et al. [36] Set coving     √   √ √  
Modified particle swarm 

optimization (PSO) 
Earthquake 

Ye et al. [33] 
Maximal 

covering 
      √ √   Spatial analysis 

techniques of GIS 
Earthquake 

Zhao et al. [35] Set coving    √    √   CPLEX 12.4 Earthquake 

Bayram et al. [22] p-median  √      √ √ √ 
Second order cone 

programming approach 
Earthquake 

Kılcı et al. [26] p-center      √  √   
Network Analyst 

extension of ESRI ArcGIS 

Desktop 

Earthquake 

Ma et al. [37] Set coving √       √ √  Modified PSO Earthquake 

Berman and Krass [29] 
Maximal 

covering 
      √   √ 

Greedy heuristic, special-

purpose IP algorithms 
General 

Li [40] p-median  √      √ √  Interactive method General 

Bozorgi-Amiri et al. [41] Set coving    √    √   Modified PSO General 

Yuan et al. [42] 
Maximal 

covering 
      √   √ Modified GA General 

Du [43] p-median √          
Ant colony optimisation 

algorithm (ACO) 
General 
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3. Multiobjective Model 

A single-objective model is too simplistic to effectively address the location-allocation problem 

for emergency shelters, because it often ignores important objectives [44]. To solve the more complex 

problems, multiobjective models, based on the p-median problem, the p-center problem, the covering 

problem, and so on, are developed. For example, Barzinpour and Esmaeili [45] developed the 

multiobjective mixed-integer linear programming model, with the objectives of maximizing the 

population coverage and minimizing the construction costs and traffic costs by using a virtual zoning 

approach to achieve humanitarian and financial goals. From the examination of the multiobjective 

site selection problems, the objectives, constraints, disaster types and methods for solutions 

associated with the natural disaster shelter location-allocation optimization model were summarized 

(Table 3). Moreover, the applications of the multiobjective site selection model for emergency shelters 

for different types of disasters are as follows: 

Alçada-Almeida et al. [46] selected four objectives: Minimizing the total distance from the 

demand points to the shelters; minimizing the total risk of the evacuation paths unconnected to a 

hospital; minimizing the fire risk in the shelters; and minimizing the total time from the shelters to 

the University Hospital. They then proposed a model based on the p-median model for evacuation 

during major fires and solved it using the framework of a web-based decision support system. There 

were two objectives in this: Minimizing the total travel distance for backup paths and minimizing the 

total number of shelters, which were also considered in the multiobjective model in their following 

work [47].  

Doerner et al. [48] proposed a tsunami disaster shelter location model, with the objectives of 

minimizing the weighted average of the minimal and maximal distance, the risk of hurricanes and 

costs. They developed a heuristic solution technique, based on the Nondominated Sorting Genetic 

Algorithm II (NSGA-II), to solve the multiobjective optimization of facility location decisions, taking 

tsunami hazards into account. 

Yushimito et al. [49] were looking to maximize the coverage of the affected regions, while 

minimizing human suffering, through the use of a deprivation function based on distance, as a proxy 

of social cost, to create an uncapacitated nonlinear optimization model. They provided an application 

example using data from Hurricane Katrina. Additionally, they presented an algorithm to find the 

best Voronoi diagram, and within the algorithm, they proposed the use of the Nelder–Mead-based 

solution for nonlinear subproblems along with the proportional sampling technique to find the initial 

points for the heuristic. 

Based on the scenarios, Rodríguez-Espíndola and Gaytán [49] checked the flood areas by using 

GIS and proposed a model, with the objective of minimizing distance and costs, and solved it using 

CPLEX 11.0 with the weighted-sum method. To cover both earthquake and flood risks, Nolz et al. 

[50] developed a multiobjective optimization model. The three objective functions were the measures 

of risk, coverage, and total travel time. Additionally, a memetic algorithm based on the NSGA-II was 

proposed as the approach for solutions.  

Wu and Wong [51] set up an earthquake shelter location model, with the objectives of 

minimizing the evacuation distance, minimizing the maximal utility rate of shelters and minimizing 

the number of shelters. Hu et al. [52] developed an earthquake shelter location-allocation model, with 

the objectives of minimizing the total distance from communities to shelters and the total cost, and 

solved it using a genetic algorithm. Zhao et al. [53,54] introduced an earthquake shelter allocation 

model, with the objectives of minimizing the total weighted evacuation time and the total area of 

shelters, and solved it using a modified PSO algorithm combined with the SA algorithm. Zhou et al. 

[55] proposed a multiobjective urban shelter location planning model, which comprehensively 

considered the principles of fairness and efficiency in the location selection by integrating the 

maximum coverage model and the p-median model. The modeling was solved in the optimization 

software, Linear Interactive and General Optimizer (LINGO), and the model was applied in the 

Tianjin earthquake shelter location planning. Ma et al. [56] developed a multiobjective model for the 

allocation of residents to earthquake shelters using Wenchang of Hainan province, China as a case 
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study. The two objectives of the multiobjective model were to minimize the total evacuation distance 

and to minimize the total area of all shelters, with the constraints of shelter capacity and service 

radius. The modified PSO algorithm was used to solve the model.  
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Table 3. Objectives, constraints, methods for solutions and targeted hazards of the multiobjective model for shelter location and allocation. 

Authors 

Objective Constraint 

Method for Solutions or Optimization 

Software Package 

Targeted 

Hazard 

Minimum 
Maxi

min 

Mini

max 
Maximal 

C
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p

a
ci

ty
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ry
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e
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d
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ti
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T
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R
is

k
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st
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u
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b

er
 

V
io

la
ti

o
n

 

W
e

ig
h

t 

W
e

ig
h

t 

S
u

it
a
b

il
it

y
 

C
o

v
e
r 

Alçada-Almeida et al. [46] √ √ √        √     √ GIS-based decision support system Fire 

Coutinho-Rodrigues et al. [47] √ √ √  √      √      GIS-based decision support system Fire 

Doerner et al. [48] √  √ √       √ √     NSGA-II Tsunami 

Yushimito et al. [57]    √      √       Voronoi-based heuristic algorithm Hurricane 

Rodríguez-Espíndola and 

Gaytán [49] 
√   √       √  √    CPLEX 11.0 Flood 

Nolz et al. [50]  √ √       √ √ √     Memetic algorithm based on NSGA-II 
Flood and 

earthquake 

Tzeng et al. [58]  √  √   √    √      Fuzzy multiobjective programming Earthquake 

Wu and Wong [51] √    √   √   √ √     GIS-based decision support system Earthquake 

Hu et al. [52] √   √       √      NSGA-II Earthquake 

Zhao et al. [53] 

Zhao et al. [54] 
 √  √       √ √     Modified PSO Earthquake 

Xu et al. [44] √   √       √ √     Modified PSO Earthquake 

Xu et al. [59] √ √  √ √      √ √     Modified PSO Earthquake 

Zhou et al. [55] √       √  √      √ LINGO Earthquake 

Ma et al. [56] √   √       √ √     Modified PSO Earthquake 

Zhao and Chen [60] 

Zhao et al. [61] 
√       √  √  √    √ NSGA-II 

Urban 

environmenta

l disasters 

Saadatseresht et al. [62]      √  √    √     NSGA-II General 

Bozorgi-Amiri et al. [63]    √    √   √      Lp-metrics technique General 

Zhang et al. [64]    √    √         
Stochastic diffusion search based intelligent 

algorithm 
General 

Barzinpour and Esmaeili [45]    √      √ √      LINGO 9.0 based on virtual zoning approach General 

Jalali et al. [65]    √      √ √ √     
Multiobjective biogeography-based 

optimization algorithm (MOBBO) 
General 

Trivedi and Singh [66] √  √  √    √ √ √  √ √ √  Fuzzy AHP and goal programming General 

Haghi et al. [67]    √    √   √   √   Combination of GA and SA General 
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4. Hierarchical Model 

There are two main types of hierarchical model. One works according to the functions of the 

facilities at different levels (called the general hierarchical model). The other one is the bilevel model 

whose upper level works to select the locations of shelters and lower level works to assign the 

evacuation paths.  

4.1. General Hierarchical Model 

Beginning as early as 1979 in a work by Narula and Ogbu [68] on location-allocation problems, 

hierarchical facilities traditionally refer to an interrelated structure of facility classifications, wherein 

only the lowest level of facilities services demands, the next higher level of facilities supports the 

lowest level of facilities, and so forth. A hierarchical capacitated-median location model, based on the 

temporal hierarchy of shelters, can be formulated as follows: 

min ij ijs
i I j J s S

c x
  
  (34)

s.t. 1, ,ijs
j J

x i I s S


      (35)

, , ,ijs jt
t S t s

x y i I j J s S
 

        (36)

1,js
s S

y j J


    (37)

,it ijt is ijs
t S t s i I s S i I

u x u x j J
    

      
(38)

, ,is ijs js js
i I

u x b y j J s S


      (39)

, ,is ijs js js
i I

u x B y j J s S


      (40)

|

, , , ,
ik ij

iks jt
k J d d

x y i I j J s S t S t s
 

         
(41)

   0,1 , 0,1 , ,ijs jsx y i I j J      (42)

where I is the set of demand points. J is the set of facilities. xijs indicates if a type-s facility j is selected 

by demand point i (1 if selected, 0 if not selected). cij is the weighted distance from demand point i to 

facility j. cij=uisdij, where uis is the population number of demand i for a type-s facility. bjs and Bjs are the 

minimal and maximal capacity of a type-s facility j to be opened. The constraint (Equation (36)) 

assures that the demand of level s is served by a facility of level s or higher. The constraint (Equation 

[37]) keeps any two facilities of the same type or different types from being assigned to the same 

location, preventing facility co-location. Equation (38) helps to ensure that all affected people will be 

served by facilities of different levels at each evacuation phase. The minimum and maximum levels 

of capacity restriction for different facility types are constrained by Equations (39) and (40). Equation 

(41) is the closest assignment constraint, which mandates that demand nodes are served by their 

closest facility.  

General hierarchical models have been widely studied in the field of health-care systems, solid 

waste management systems, production–distribution systems, education systems, emergency 

medical service systems, and telecommunications networks [69], as well as express delivery services, 

fire protection, and area planning [70]. However, they are rarely involved in disaster shelter site 
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selections. To the best of our knowledge, the applications of the general hierarchical site selection 

model for emergency shelters for different types of disasters are as follows:  

Widener [38,39] divided the relief shelters in Leon County, Florida, USA, into different levels. 

The basic supplies are provided by the shelters at the lowest level, and the specialised supplies are 

provided by the highest level. Then, the hierarchical capacity model was developed, with the 

objective of minimizing the distance from all demand points to facilities and applied to solve the 

location-allocation problem of hurricane disasters.  

Chen et al. [71–73] proposed a three-level hierarchical model, based on the shelter functions at 

different evacuation phases, for solving earthquake shelter location problems. Li [74] developed a 

hierarchical location-allocation model, based on the set covering model for earthquake emergency 

shelters. However, the model did not consider the capacity constraints of shelters, and as a result, the 

complexity of the problem was greatly reduced. Therefore, the GIS technology was used to solve the 

relatively simple location-allocation optimization problem. Li et al. [75] established a three-level 

location-allocation model for immediate, short-term and long-term shelters, considering the 

hierarchical characteristics of evacuation demand and shelter system. A p-median model, with the 

objective of minimizing the evacuation distance, was developed for the immediate and short-term 

evacuation phase. A maximal covering model was built for the long-term evacuation phase to cover 

the maximum demand. The three-level hierarchical model considered distance and capacity 

constraints to solve the optimization problem of Yanjiao Town in Hebei Province, China using 

LINGO software. Li et al. [76] considered hierarchical emergency shelter planning for earthquake 

disasters in urban areas, taking into consideration the estimation of time-varying refuge demand. 

Then, they formulated an integrated location-allocation model that was used sequentially: an 

emergency shelter location model to satisfy the time-varying shelter demand, with the objective of 

minimizing the total setup cost of locating the shelters, and an allocation model that allocated the 

evacuees to shelters, with the objective of minimizing their total evacuation distance [10]. Most 

recently, Ma et al.[77] adopted a multi-level coverage and supplemental site selection concept to 

establish a hierarchical supplemental location-allocation model for preparedness and response 

phases that can minimize the total number and cost for the facility location problem and the total 

distance at all levels for the supply allocation problem. 

4.2. Bilevel Model 

Bilevel programming is a two-level hierarchical optimization problem, where one problem is 

nested within another [78]. The first formulation of bilevel programming problems, by H.v. 

Stackelberg [79] on the market economy, dates back to 1934. The Stackelberg leader-follower games 

are a classic example of bilevel programming problems [80]. The upper level problem is referred to 

as the leader problem, while the lower level is referred to as the follower problem [81]. Bilevel 

programming problems were introduced to the optimization community in the seventies of the 20th 

century [82–84]. After that moment, a rapid development and intensive investigation of bilevel 

optimization began, both in theoretical and in application-oriented directions. Contributions to its 

investigation have been delivered by mathematicians, economists and engineers, and the number of 

papers within this field is ever growing rapidly. For example, Fisk [85] highlighted the relation 

between the Stackelberg game and transportation system modelling for the first time in 1984 and 

presented the typical formulation of a bilevel optimization problem as follows:  

1(P ) min ( ( , ))
u

F u v u  (43)

    ( , ) 0s.t. G x y   (44)

where υ solves 

2(P ) min ,  ( )
v

f u v  (45)
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    ( , ) 0s.t. g u v   (46)

where F is the objective function of the upper level problem P1 (Equation (43)); and u and G are the 

decision vector and the constraint set of the upper level problem (Equation (44)), respectively. f is the 

objective function of the lower level problem P2 (Equation (45)); and v and g are the decision vector 

and the constraint set of the lower level problem (Equation (46)), respectively. The upper level 

problem models the decision of the leader in the game, while the lower level problem models the 

decision of the follower. In the bilevel location-allocation model, the leader cannot control the 

behavior of the follower, but can influence the behavior of the follower by choosing the number and 

location of shelters. The respective levels communicate information to one another, and they 

influence each other’s result sets. This reflects the bilevel nature of the formulation. 

The vast majority of the existing site section models assume that people will follow the system 

optimal routes prescribed to them (cooperative behavior), although recent research has shown that 

this may not be realistic, because people tend to prioritize self-interest (non-cooperative behavior) 

during large evacuations [44,86,87]. To simulate the sequential nature of evacuation processes 

(central planner determines the shelter assignment, after which evacuees are free to choose their own 

routes based on the shelter they are assigned to), the bilevel model was presented, which balances 

the planner’s objective and residents’ behavior, incorporating both system and user optimal elements. 

As an example of the typical bilevel model for location and allocation problems, several bilevel 

models, simulating the strackelberg game theory, were set up [20,88,89], in which the leader’s upper-

level program is the shelter location selection made by decision makers, and the follower’s lower-

level program is the evacuation path choices made by evacuees.  

A large amount of research has been conducted on bilevel optimization problems, both in the 

realm of algorithms for different optimization problems (linear or non-linear; convex or non-convex; 

continuous or discontinuous) and applications, especially in the fields of mathematical programming 

and evolutionary computing. However, the multiobjective extensions of bilevel programming have 

received relatively little attention from researchers, especially the application of a real-world 

optimization problem, which contains a large number of parameters and several objective functions. 

Multiobjective optimization and bilevel programming have been combined as multiobjective bilevel 

optimization in some works. Particularly, there are three different ways to integrate both techniques: 

(i) models with the multiobjective optimization in the upper level problem [90–92]; (ii) models with 

the multiobjective optimization in the lower-level problem [93–97]; and (iii) models with the 

multiobjective optimization both in the upper-level and lower-level problems [98–104]. 

Bilevel models are applied mostly to deal with evacuation before disasters, such as hurricanes 

and floods, rather than other disasters, and are often combined with traffic network models [20,105–

107]. The applications of the bilevel site selection model in emergency shelters for different types of 

disasters are as follows: 

Ng et al. [105] presented a hybrid bilevel model (in the upper level, shelter assignment occurs in 

a system optimal fashion, whereas evacuees are free to choose how to reach their assigned shelters in 

the lower level) under hurricane conditions, hence providing a model that was more consistent with 

the current state of knowledge of human behavior during disasters. The proposed model was solved 

using a simulated annealing algorithm. Li et al. [107] developed a stochastic bilevel model based on 

scenarios. The upper level is a stochastic model with two stages, in which the shelter locations are 

determined in the first stage and the opened shelters are selected in the second stage, according to 

the hurricane situation. Then, on the lower level, evacuees respond according to the result of the 

upper level to select the evacuation paths. Additionally, Li et al. [106] developed a stochastic bilevel 

model with a preparation stage and response stage, according to the disaster scenarios, and solved it 

by using an L-shaped algorithm to solve the hurricane shelter location problem in America. 

Kongsomsaksakul et al. [20] proposed a bilevel model to solve the flood shelter location 

problem, in consideration of the interests of decision makers and evacuees. The upper model is based 

on the p-median problem with the objective of minimizing the evacuation time, the evacuees in the 

lower model try to travel to safe shelters with the least travel time. 
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Xu et al. [44] developed a scenario-based hybrid bilevel model that addresses the concerns 

related to high-dimensional complexity and provided a higher degree of realism by incorporating 

the uncertainties of the population dynamics and earthquake damage scenarios into location-

allocation problems for earthquake emergency shelters. A modified PSO algorithm, combined with 

an SA algorithm, was applied to derive solutions using the hybrid bilevel model and a conventional 

multiobjective model, and the solutions obtained using the two models were then compared.  

4.3. Summary of the Hierarchical Model 

From the examination of the hierarchical site selection problems, the objectives, constraints, 

disaster types and methods for solutions associated with the natural disaster shelter location-

allocation optimization model were summarized (Table 4).  

In recent years, general hierarchical models have been widely studied in the field of health-care 

systems, solid waste management systems, production–distribution systems, education systems, 

emergency medical service systems, and telecommunications networks [69], as well as express 

delivery services, fire protection, and area planning [70]. However, they are relatively less involved 

in disaster shelter site selections. Among them, most of the researches focus on earthquake disasters, 

and research on floods, typhoons and other disasters is lacking.  

The bilevel model is a two-level hierarchical optimization model, where one problem is nested 

within another, and it performs well in solving complex, high-dimensional problems, providing a 

higher degree of realism [44]. It balances the planner’s objective and residents’ behavior to 

incorporate both system and user optimal elements. Bilevel models are applied mostly to deal with 

evacuation before disasters, such as hurricanes and floods, rather than other disasters, and are often 

combined with traffic network models [20,105–107]. They are rarely involved in earthquake disaster 

shelter site selections, and the application research on different disaster types, especially using 

multiobjective bilevel model, would be one of the main directions of future research on disaster 

shelter location-allocation problems. 
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Table 4. Objectives, constraints, methods for solutions and targeted hazards of the hierarchical model for shelter location and allocation. 

Author 

Classification of 

Site Selection 

Models 

Objective Constraint 

Method for Solutions or Optimization 

Software Package 
Targeted Hazard 

Minimum Maximal 

C
a
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ty
 

D
is
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D
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N
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Distance Time Risk Cost Number Cover 

Widener [38], Widener 

and Horner [39] 
General hierarchical √      √ √    CPLEX Hurricane 

Chen et al. [71,72] 

Chen et al. [73] 
General hierarchical √      √  √   GIS context Earthquake 

Li et al. [76] General hierarchical √   √   √ √    Hybrid cross-entropy method Earthquake 

Zhao et al. [10] General hierarchical √   √   √ √    Cross-entropy with a local search 

mechanism 
Earthquake 

Li [74] General hierarchical    √    √    GIS Earthquake 

Li [75] General hierarchical √     √ √ √    LINGO Earthquake 

Paul et al. [108] General hierarchical    √  √  √   √ CPLEX 12.6 General 

Ma et al. [77] General hierarchical √   √ √   √    Modified PSO General 

Ng et al. [105] Bilevel  √     √     SA Hurricane 

Li et al. [106] Bilevel    √   √    √ L-shaped algorithm Hurricane 

Li et al. [107] Bilevel  √    √ √    √ Lagrangian relaxation algorithm Hurricane 

Kongsomsaksakul et al. 

[20] 
Bilevel  √     √     GA Flood 

Xu et al. [44] Bilevel √      √ √    Modified PSO Earthquake 

Karoonsoontawong and 

Waller [88] 
Bilevel  √     √ √ √   Exact algorithm; SA, GA and random search General 

Kulshrestha et al. [89] Bilevel    √   √ √  √  Cutting plane algorithm General 

Chen et al. [109] Bilevel √    √  √ √    LINGO 11.0 General 
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5. Discussion 

This review has highlighted the extensive range of disaster shelter location-allocation models 

that have been developed since the 1990s by surveying the site selection model types, objectives, 

constraints, methods for solutions, targeted disaster types, and applications. Disaster shelter location-

allocation models usually have the objectives of minimizing the evacuation time or distance, shelter 

construction cost or number, the risk during the evacuation, along with maximizing the demand 

points covered within the service radius and the capacity of shelters. New objectives could be 

developed by integrally considering more stakeholders (e.g., shelter planners, policy makers, shelter 

evacuees, and non-shelter evacuees). New constraints could also be added by considering the 

temporal dynamics of evacuees and the ages of evacuees. Further, the capacity constraints could be 

soft, indicating that they could be violated due to the extreme shortage of the shelter capacity in the 

real situation.  

To solve the disaster shelter location-allocation model, different approaches are used. Table 5 

compares the different methods by pointing out their respective advantages and disadvantages. For 

the simple problems, such as linear integer problems, exact methods, such as enumeration, brand 

and bound, the cutting plane algorithm, etc., are used. For the complex problems, such as NP-hard 

problems, approximation algorithms, such as mathematical programming methods (e.g., Lagrangian 

relaxation algorithm), and heuristic algorithms (e.g., GA, PSO, SA, ACO), are used, and the latter are 

the most frequently used. However, no one algorithm can be seen as the best for solving the problem.  

Table 5. Different methods for solving the disaster shelter location-allocation problem. 

Methods Advantages Disadvantages Authors 

GIS spatial analysis 

technology 

Easy to 

solve and 

fast 

Cannot solve 

complex 

problems 

Kocatepe et al. [18]; Horner et al. [19]; Alçada-

Almeida et al. [46]; Gall [110]; Shi [111]; Sanyal and Lu 

[112]; Ye et al. [33]; Kilci et al. [26]; Wu and Wong [51]; 

Coutinho-Rodrigues et al. [47]; Chen et al. [71,72]; 

Chen et al. [73]; Li [74] 

Optimum 

algorithm 

Exact 

algorithm 

Can find 

the best 

solution 

Difficult to solve 

complex 

problems within 

a reasonable time 

Widener [38]; Widener and Horner [39]; Dalal et al. 

[30]; Pan [31]; Gama et al. [32]; Zhou and Jian [34]; 

Zhou et al. [24]; Zhao et al. [35]; Li et al. [40]; 

Rodríguez-Espíndola and Gaytán [49]; Bozorgi-Amiri 

et al. [63]; Kulshrestha et al. [89]; Paul et al. [108] 

Approximation 

algorithm 

Can solve 

complex 

problems 

Difficult to find 

the best solution 

Sherali et al. [16]; Pan [17]; Kongsomsaksakul et al. 

[20]; Gama et al. [21]; Huang et al. [23]; Hu et al. [36]; 

Ma et al. [37]; Berman and Krass [29]; Bozorgi-Amiri 

et al. [41]; Yuan et al. [42]; Du [43];  

Doerner et al. [48]; Yushimito et al. [57]; Nolz et al. 

[50]; Hu et al. [52]; Zhao et al. [53,54]; Zhou et al. [55]; 

Ma et al. [56]; Xu et al. [59]; Zhao and Chen [60]; Zhao 

et al. [61]; Saadatseresht et al. [62]; Zhang et al. [64]; 

Barzinpour and Esmaeili [45]; Jalali et al. [65]; Haghi 

et al. [67];  

Li [75]; Li et al. [76]; Zhao et al. [10]; Ma et al. [77]; Ng 

et al. [105]; Li et al. [106]; Li et al. [107]; 

Kongsomsaksakul et al. [20]; Xu et al. [44]; 

Karoonsoontawong and Waller [88]; Chen et al. [109] 

As discussed, the aspects of future development directions for the site selection model for 

natural disaster shelters mainly include: 

The disaster characteristics should be considered when setting the models. The capacity is one 

of the important factors [113], as they are very important for affected people to live for a long time 

after the disaster. However, the evacuation paths are more important, as the evacuation time is vital 

for people before the arrival of the disaster. Additionally, the risk of building collapse, road damage 

and secondary disasters, such as slides and debris flows, should be considered when using the 

models. Further, different disasters have different characteristics that need to be considered when 
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selecting the locations of shelters. Nowadays, researchers always put the focus on single disasters, 

which have an extreme cost of lands, especially when they are out of use. How to solve the shelter 

location-allocation problem by considering multiple disaster scenarios in a city, such as a city that 

meets with a high risk of floods and earthquakes, is another direction of study.  

The designated shelter locations are fixed. However, other things, such as the number of 

evacuees (demand), disaster occurrence time and location (hazard), evacuation behavior 

(psychology), etc., are dynamic. How to consider these uncertainty factors or how to construct 

shelters that are not significant to these factors is another difficulty.  

The existing optimization algorithms have generally been used to solve small illustrative 

examples of site selection problems. In the case of complex, high-dimensional problems related to 

large areas, the current algorithms can take an excessive amount of time and computing power and 

have difficulty in finding the global optimal solution [44]. Consequently, some studies continue to 

develop advanced algorithms [114] or divide the large-scale regions into several subregions to easily 

solve the above problem using current optimization software, such as LINGO or CPLEX [45]. 

Modifying the existing models using the dimension reduction approach is another alternative way 

to improve the solution quality and is one of the main directions of future research on disaster shelter 

location-allocation problems.  

During the planning of natural disaster shelters, it is usually necessary to prioritize the 

designated shelters to avoid wasting resources. However, in previous research initiatives, special 

attention has been paid to the general location-allocation model, based on the planning of newly built 

shelters. Consequently, a new resource-saving supplemental location-allocation model is recognized 

as a major gap in scientific researches and practical applications that should be further studied going 

forward. 

6. Conclusions 

This paper reviewed site selection optimization models for location-allocation problems 

associated with natural disaster shelters, according to the type of objectives and hierarchies. Three 

main models were investigated: single-objective, multiobjective, and hierarchical (Figure 1). The 

single-objective model addressed the site selection problems for minisum problems (p-median), 

minimax problems (p-center), or covering problems, and consequently formed the basis for the 

multiobjective and hierarchical models. The p-median model and covering model are more suitable 

for disaster shelter site selection than the p-center model, so there are more relevant applications 

using the first two models. The multiobjective model is developed by comparing different single-

objective models and combining them. However, in the case of complex, high-dimensional problems 

related to large areas, it can take an excessive amount of time and computing power and has difficulty 

finding the global optimal solution [44]. In recent years, the hierarchical models have been widely 

studied in many fields, and there have been a number of review papers on general hierarchical facility 

problems [69,70]. Among them, the bilevel model is a two-level hierarchical optimization model, 

where one problem is nested within another, which performs well in solving complex, high-

dimensional problems. However, they are rarely involved in disaster shelter site selections, and the 

application researches are quite uneven among different disaster types.  
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Figure 1. Three main models: single-objective, multiobjective, and hierarchical model for disaster 

shelter location-allocation. 

Owing to the prevalence of hurricanes, floods, and earthquakes in the world, these were the 

main focus of natural disaster shelter location-allocation research. This review attempted to survey 

the site selection model types, objectives, constraints, methods for solutions, targeted disaster types 

and applications. The main objective of the facility location optimization model for emergency 

humanitarian logistics was found to be focused on responsiveness, cost-efficiency and risk [115]. 

Similarly, the above three are also the major criteria of natural disaster shelter site selection problems, 

with most models aiming to minimize the evacuation distance or time, shelter construction costs or 

number, transportation costs (distance or time), and risk during the evacuation, as well as 

maximizing the demand points covered within the service radius and the capacity of shelters. In 

addition, the capacity constraint and distance constraint are two widely used constraints in the shelter 

location-allocation problem. The exact algorithms were found to be efficiency techniques for simple 

problems, but approximation algorithms were found to be more effective for complex problems. 

Finally, research gaps and future works were identified to improve the efficiency of disaster 

reduction and emergency responses.  
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