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Abstract: Constructing natural disaster shelters is important for disaster emergency management,
and site selection models provide a feasible technique and method. This paper presents site
selection models for natural disaster shelters. A synthesis of the types, objectives, constraints,
methods of solutions, targeted disasters and applications of different site selection models for
natural disaster shelters is investigated. Shelter location models can be classified as single-objective
models, multiobjective models and hierarchical models, according to the objective and hierarchy type.
Minimizing the evacuation distance or time, shelter construction cost or number, and the total risk
are the general objectives of the models. Intelligent optimization algorithms are widely used to solve
the models, instead of the Geographic Information System (GIS) method, due to the complexity of
the problem. The results indicate that the following should be the main focuses of future works: How
to set a model that can be applied for determining the shelter locations of multiple disasters; how to
consider the uncertainty in the models; how to improve the existing algorithms or models to solve
large-scale location-allocation problems; and how to develop a new resource-saving model that is
consistent with the concept of sustainable development, as advocated by shelter planners and policy
makers, which can be applied in real situations. This study allows those undertaking shelter location
research to situate their work within the context of shelter planning.

Keywords: natural disaster; shelters; site selection problem; optimization model

1. Introduction

Site selection is always an interestingly new problem, although it was proposed in 1909 by
Weber [1], who focused on the selection of a warehouse that is nearest to all customers. It is vital to
social development and is involved in many fields, such as economics, mathematics, politics, natural
science, and so on. At the beginning, the study concerning site selection is not systematic, but is mainly
about solving the problems associated with living and produce, and most of them are continuous
problems, such as selecting a position for a facility location in a continuous space. Hotelling [2] studied
another situation, that of determining the positions of two competitive corporations in a line. Based on
this, Smithies [3] and Stevens [4] studied the problem more deeply by considering elastic demands
in relation to competitors, who are free to move but are spatially separated. As the practical issues
become more complex, how to select the locations from the candidate positions for many facilities at
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the same time has attracted researchers’ interest. Under this situation, the models to solve continuous
problems are no longer suitable. As a result, in 1964, Hakimi [5] proposed the p-median and p-center
methods to solve the discrete multi-facility site selection problems in a network, which means that the
research concerning site selection is becoming systematic. Nowadays, site selection has been applied
in various fields, including the site selection of facilities, factories, warehouses, logistics centres and so
on. Additionally, based on these basic single-objective models, multiobjective models and hierarchical
models have also been proposed, according to the objective or hierarchy types. We note that our
study invokes the term “hierarchy” in a broader manner, differing slightly from its use in previous
literature concerning location-allocation theory. Namely, different types of facilities and different
decision makers can form various hierarchies. The classification of the models used to solve the site
selection problem is shown in Table 1.

Table 1. Classification of site selection models.

Classification Standard Model Type

Objective or
hierarchy type

Single-objective model: p-median, p-centre and covering models with a single
objective, including shelter area, distance, etc.

Multiobjective model: includes at least two objectives

Hierarchical model: different types of facilities or different decision makers
form various levels, and each level can be a single- or multiobjective model

Type of optimization

p-median model: minimizing the sum of the weighted distance from all
demands to the facilities using P facilities

p-centre model: minimizing the maximal distance from the demand points
to facilities

Covering model: Set covering model: minimizing costs to cover all demands

Maximal covering model: covering as many demands as
possible, with a fixed number of facilities

Disaster type

Typhoon/hurricane

Flood

Earthquake

Along with the development of the economy and society, emergency events, which include natural
disasters and human-made explosion events, traffic accidents, and terrorists that cause significant
disruption and devastation to whole societies, have been in the spotlight [6]. These emergency events,
especially natural disasters, have the characteristics of unpredictability, suddenness, catastrophic
and timeliness [7,8]. In most cases, removing people from the affected area is in the best interest of
their health and safety and exposes them to minimal risk [9], thus enhancing urban resilience [10].
A disaster emergency shelter is a safe place for people to live temporarily, when they cannot stay in
their previous residence due to an emergency event, such as an earthquake. Therefore, deciding the
mode of evacuation is one of the most important questions facing local emergency managers as they
respond to natural disasters, such as how to quickly evacuate people, how to assign the affected people
to shelters, and how to help affected people go to the hospital quickly. To solve these problems, a
site selection model for natural disaster shelters can be modified and used to provide assistance to
government decision makers.

Despite the many published applications of site selection, a lack of a literature review that
summarizes and discusses natural disaster shelter site selection has been observed. As constructing
a sufficient number of natural disaster shelters is an important method for disaster emergency
management [11], it is important to offer insights into how to use the site selection models, concerning
natural disaster shelter selection and the affected people allocation, correctly. Therefore, the key aim
of this paper is to review the study of natural disaster shelter location-allocation models to fill the gap
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in the research on site selection throughout the analysis of objectives, constraints, disaster types and
approaches to solutions. In this paper, we present a brief depiction of different types of location-allocation
models, according to the type of objectives and hierarchies. Then, the applications of these models in
natural disasters, including hurricanes/typhoons, floods and earthquakes, are discussed. In addition,
the approaches used to solve the models are analyzed and compared.

2. Single-Objective Model

Single-objective site selection problems are used to select or locate facilities, factories, warehouses,
logistics centres, and shelters by determining the input parameters, such as the number of evacuees,
the location, facility capacity, construction cost, and transportation cost, with the objective function
being single and all parameters being certain and constant over time. This problem formed the basis for
the multiobjective and hierarchical models. Single-objective site selection problems can be separated
into three different types, depending on the objectives, namely, the p-median problem, the p-center
problem and the covering problem, and detail definitions can be found in the corresponding section.

2.1. p-Median Model

The p-median problem was first proposed by Hakimi [5] in 1964. The problem was described as
follows. In a communication network, such as a telephone interconnection system, there are usually a
number of switching centers. All traffic flows (messages) within the network must arrive at one of the
switching centers and then be processed and sent to their proper destination. The problem is to find
the optimum locations for switching centers, such that the total length of wires is the minimum [12].
Moreover, the problem for facility site selection is how to determine the location of facilities, with the
number of p, to make the sum of the weighted distance from all demands to the facilities the minimum.
The p-median problem can ensure global benefits that are fair to all demands, and it is used widely in
the site selection of factories and public facilities.

2.1.1. Basic Model

The mathematical model of the p-median problem was further synthetically formulated by ReVelle
and Swain [13], as shown below.

min∑
i∈I

∑
j∈J

cijxij (1)

s.t. ∑
j∈J

xij = 1, ∀i ∈ I (2)

xij ≤ yj, ∀i ∈ I, j ∈ J (3)

∑
j∈J

yj = p (4)

xij ∈ {0, 1}, yj ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (5)

where I is the set of demand points. J is the set of facilities. xij indicates if facility j is selected by
demand point i (1 if selected, 0 if not selected). cij is the weighted distance from demand i to facility j.
cij=widij, where wi is the weight of demand point i, and dij is the shortest distance from demand i to
facility j. The objective of minimizing the sum weighted distance from all demands to the facilities is
indicated by Equation (1). The constraint shown in Equation (2) indicates that one demand point can
only be allocated to one facility. Equation (3) shows that facility j can provide service to demand point
i only when it is opened. Equation (4) is the number constraint, which means the number of available
facilities is p.
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2.1.2. Capacitated p-Median Problem

Considering the capacities and economic performances of facilities, the minimum capacity of
a facility to be opened, and the maximum capacity of a facility, are added into the p-median model.
Meanwhile, the number constraint of the p-median model is deleted. Consequently, the mathematical
equations of the capacitated p-median problem are expressed below.

min∑
i∈I

∑
j∈J

cijxij (6)

s.t. ∑
j∈J

xij = 1, ∀i ∈ I (7)

xij ≤ yj, ∀i ∈ I, j ∈ J (8)

∑
i∈I

uixij ≥ bjyj, ∀j ∈ J (9)

∑
i∈I

uixij ≤ Bjyj, ∀j ∈ J (10)

∑
k∈J|dik≤dij

xik ≤ yj, ∀i ∈ I, j ∈ J (11)

xij ∈ {0, 1}, yj ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (12)

where I is the set of demand points. J is the set of facilities. xij indicates if facility j is selected by demand
point i (1 if selected, 0 if not selected). cij is the weighted distance from demand point i to facility j.
cij = uidij, where ui is the population of demand i. bj and Bj are the minimal and maximal capacity
of facility j to be opened. Compared with the p-median problem, the capacitated p-median problem
mainly adds the constraints shown in Equations (9) and (10). Equation (11) is the closest-assignment
constraint, which mandates that demands are served by their closest sited facility.

The p-median problem is one of the typical problems associated with minimizing the sum.
According to the characters of the different site selections, there are various modifications of it.
In addition to the capacitated p-median problem, stochastic models are used widely when selecting the
locations of warehouses [14] and the assignment of relief vehicles and services [15]. It is used to solve
the natural disaster shelter location problems, although it mainly considers disaster risk, and studies
concerning natural disaster shelter location still mainly focus on deterministic models, with the
objective of minimizing the sum of the distance or evacuation time. The p-median model is widely
applied in the emergency shelter site selection of different types of disasters (Hurricanes/typhoons,
floods, earthquakes, etc.), because evacuation distance/time is one of the most important factors for
most disasters. In addition, the objective of the p-median model is global, which makes it suitable for
most disasters, with a wide range of impacts after the disaster. Although this global objective ignores
personal preferences, efficiency is prioritized, and it is relatively fair for all of the affected population.

Hurricanes/typhoons are periodic and can be predicted according to its characteristics. Thus,
quick and safe evacuation is very important before these disasters happen, and the p-median model,
with the objective of minimizing the sum of the distance or evacuation time, is always selected as
the basic model to solve these problems. Sherali et al. [16] proposed a p-median shelter location
model combined with a network model, with the objective of minimizing the evacuation time of the
affected people to hurricane shelters, which considers the characteristics of hurricanes and solves
it to obtain the locations of shelters and reasonable evacuation paths using the heuristic algorithm.
Typhoon disasters always attack the coastal counties of Southeastern China and cause enormous losses.
Therefore, Pan [17] analyzed the distribution of the population and building density in the counties
and surveyed the demands of residents when meeting with typhoons. Then, a model of constructing
county typhoon shelters was proposed, based on the p-median problem, and solved using a genetic
algorithm, which provided a theoretical method for typhoons disaster prevention and reduction in the
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coastal counties. Kocatepe et al. [18] proposed a GIS-based capacitated p-median optimization model
for hurricane shelter planning to maximize the accessibility and capacity of the existing shelters for
85+ populations with special needs (access and functional needs) or pets. Horner et al. [19] designed a
GIS-based capacitated p-median model for the siting of special needs hurricane shelters to maximize
accessibility for vulnerable populations, with a focus on the potential uncertainties in transportation
network availability.

Kongsomsaksakul et al. [20] proposed a bilevel model to solve the flood shelter location problem,
considering the interests of decision makers and evacuees. The upper model is based on the p-median
problem, with the objective of minimizing the evacuation time. Gama et al. [21] presented a multiperiod
location-allocation approach based on the capacitated p-median model, which considers that the travel
times vary over time, depending on the road conditions. The objective is to minimize the overall
network distances that evacuees have to travel in order to reach the shelters during flood disasters.
People’s reactions to the flood evolution are also considered to be dynamic. Moreover, a simulated
annealing heuristic is proposed to solve the model.

Earthquakes are difficult to predict, and a large one could always cause serious injuries to people,
which means that emergency shelters that can provide a safe place for people after the disaster are
important. Meanwhile, earthquakes are influenced by various factors and always cause secondary
disasters, which make it difficult to determine the locations of shelters. Nowadays, studies are mainly
about constructing shelters in cities, such as Bayram et al. [22], who researched earthquake shelter
locations and evacuation paths in Istanbul, based on the p-median problem, and analyzed the influence
of capacities and numbers. Huang et al. [23] applied the p-median problem to shelter constructions that
served people affected by earthquakes. Zhou et al. [24] analyzed the factors of distance and evacuation
paths and established models based on the capacitated p-median problem.

2.2. p-Center Model

Hakimi [5] proposed the p-center problem for finding the optimum locations of police stations (or
hospitals). Consider a number of communities of different sizes that are interconnected by a highway
system. The p-center problem attempts to find the locations of the police stations P, such that the
maximum distance from P is the minimum. The problem has the objective of minimizing the maximal
distance from the demand points to the facilities when applied to facility site selection, as shown below.

min r (13)

s.t. ∑
j∈J

dijxij ≤ r (14)

∑
j∈J

xij = 1, ∀i ∈ I (15)

xij ≤ yj, ∀i ∈ I, j ∈ J (16)

∑
j∈J

yj = p (17)

xij ∈ {0, 1}, yj ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (18)

where i and I are the index and set of demand points, respectively. j and J are the index and set
of facilities, respectively. xij indicates if the facility j is selected by demand i (1 is selected, 0 is not
selected). dij is the shortest distance from demand point i to facility j. r is the maximal one among the
distances from all demands to the assigned facilities, which express fairness in meeting all demands.
Equation (13) expresses the objective of minimizing the maximal distance from the demand points to
the facilities. Equation (14) is the distance constraint. Equation (15) ensures that one demand point can
only be allocated to one facility. Equation (16) ensures that demand points can only be allocated to the
opened facilities. Equation (17) ensures the number of facilities is p.
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Elzinga and Hearn proposed a geometrical method to solve the problem for some minimax
location problems in 1972, namely, the Elzinga–Hearn algorithm [25]. The application of the p-center
model for emergency shelter site selection is not as popular as the p-median and covering models,
as only one used it in the literature that we analyzed. It is Kilci et al. [26] who proposed a temporary
shelter location model to select the best shelter locations from a set of criteria, with the objective of
maximizing the minimum weight of open shelter areas. The model determines shelter locations and
matches demands with the nearest open shelter while taking shelter area utilizations into account.
The objective of the p-center model ignores global efficiency, and it is not suitable for most disasters
with a wide range of impacts after the disaster. Thus, its applications are mainly focused on the site
selection of fire stations, hospitals and so on to deal with local or individual events.

2.3. Covering Model

Although the p-median problem is widely used, there are some facilities that provide emergency
services (fire stations, emergency centers, etc.) for which the p-median model is not suitable due to
incomplete coverage of the demands. In addition, the p-median and p-center problems are concerned
about the evacuation distance or time. However, the ignored factors, such as investment costs and
the safety of people, are also important. To solve these problems, the covering model was proposed,
which includes the set covering model and maximum covering model.

2.3.1. Set Covering Model

Toregas et al. [27] proposed the set covering problem, which determines the locations of facilities
with minimum costs to cover all demands, in 1971. The model is described in Equations (19)–(21).

min ∑
j∈J

cjxj (19)

s.t.
n

∑
j=1

aijxj ≥ 1, ∀i ∈ I (20)

xj ∈ {0, 1}, ∀j ∈ J (21)

where i is the index of demands. j is the index of facilities. xj indicates if the facility j is selected (1 if selected,
0 if not selected). cj is the total costs for facility j to be opened. aij indicates if the distance from demand i to
facility j is not more than S (1 if is, 0 if is not). Equation (19) expresses the objective of minimizing the total
cost, and Equation (20) ensures that each demand can be served by one facility at least.

2.3.2. Maximal Covering Model

To cover all demands described in the set covering model, more facilities are needed,
which requires more resources and investments. However, sometimes, there are not enough resources
and investments to cover all demands. As such, Church and Revell [28] proposed the maximal covering
model, which meets as many demands as possible, with a fixed number of facilities. The mathematical
Equations (22)–(27) show how the model works.

max ∑
i∈I

wiyi (22)

s.t. ∑
j∈J

xj = p (23)

yi ≤ ∑
j∈J

aijxj, ∀i ∈ I (24)

xj ∈ {0, 1}, ∀j ∈ J (25)
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yi ∈ {0, 1}, ∀i ∈ I (26)

aij =

{
1, dij ≤ S
0, dij > S

(27)

where i and I are index and set of demands, respectively. j and J are the index and set of facilities,
respectively. wi indicates the population or requirements of the demand points. S is the maximal
service distances of the facilities. dij is the shortest distance from demand i to facility j. yi indicates if
demand i is covered (1 if covered, 0 if not covered). xj indicates if the facility is opened (1 if opened,
0 if not opened). aij indicates if the distance from demand i to facility j is not greater than S (1 if not
greater than, 0 if greater than). Equation (22) expresses the objective of maximizing the number of
demand points covered by facilities. Equation (23) ensures that the number of opened facilities is p,
and Equation (24) ensures that demand point i is assigned to a selected facility within the given service
distance limit.

2.3.3. Generalized Maximal Covering Location

For the maximal covering model, coverage is a binary that is not realistic for some applications.
As a result, Berman and Krass [29] proposed the generalised maximal covering location problem,
in which the demands are covered at different levels. It is formulated as follows:

maxh(S) =
k

∑
i=1

∑
i∈N(S,l)

wial
i (28)

s.t. ∑
j∈J

xj = p (29)

yi ≤ ∑
j∈J

aijxj, ∀i ∈ I (30)

xj ∈ {0, 1}, ∀j ∈ J (31)

yi ∈ {0, 1}, ∀i ∈ I (32)

aij =

{
1, dij ≤ S
0, dij > S

(33)

where i and I are the index and set of demand points, respectively. j and J are the index and set of
facilities, respectively. wi indicates the population number or requirements of demand points, and S is
the maximal service distances of facilities. dij is the shortest distance from demand i to facility j. yi
indicates if demand i is covered (1 if covered, 0 if not covered). xj indicates if the facility is opened (1 if
opened, 0 if not opened). aij indicates if the distance from demand i to facility j is not greater than S
(1 if not greater than, 0 if greater than). In the objective of Equation (28), al

i is the coverage level, which
means that the demand points can be covered at different levels, according to the distance from the
demand points to the facilities.

It can be seen from the definition and characteristics of the covering model that it is applicable to
the disaster shelter site selection problem, and many multiobjective models and hierarchical models
are built on it. The applications of the single-objective covering site selection model in emergency
shelters for different types of disasters are as follows:

Dalal et al. [30] analyzed typhoon shelters based on the set covering model, with the objective of
minimizing the number of shelters covering all villages and the constraints of capacity and distance.
Then, it was solved using the cluster method. Pan et al. [31] added a capacity factor to the maximal
covering model and applied it to the typhoon shelter location problem.
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Gama et al. [32] proposed a dynamic maximal covering model based on the modified maximal
model proposed by Berman and Krass [29], considering other rescue facilities, path conditions and the
depth and speed of flood water. In their study, the evacuation time and covered demands varied over
time, depending on the road conditions and the flood dynamics. Thus, they calculated the locations
and number of opened shelters and the allocation of evacuees in the different periods using the model.

Ye et al. [33] assigned the service radius of the earthquake shelters, with objective of maximizing
the coverage of the population demand, analyzing the capacity and allocation situation of current
earthquake shelters in the Lujiazui street of Shanghai in China. Zhou and Jian [34] added a new
factor, named the second distance, into the maximal covering model and established the location
selection model to help provide other choices when the expected shelters could not be used in Taizhong
city, Taiwan, China. Additionally, Zhao et al. [35] applied a model that is based on the capacitated
set covering model for the earthquake shelter setting in Huangpu District of Shanghai in China
and analyzed the change of the number of evacuees with the change of the time of the earthquake
occurrence. Hu et al. [36] proposed a set covering model, with the objective of minimizing the
number of shelters, while satisfying the capacity constraint and distance constraint, and applied it
to the earthquake shelter location-allocation problem in Zhuguang Block in the south of the Yuexiu
District of Guangzhou, China after solving it with the modified particle swarm optimization (PSO)
algorithm. Ma et al. [37] developed a capacitated set covering single-objective model and a bilevel
model and compared the allocation results of residents to the earthquake shelters, with the case study
of Rongcheng of Shandong province, China.

2.4. Summary of the Single-Objective Model

From the examination of the single-objective site selection problems, the classification of the site
selection problems, objectives, constraints, methods for solutions and targeted hazards associated with
the natural disaster shelter location-allocation optimization model were summarized (Table 2).

As shown in Table 2, the p-median model, with the objective of minimizing the sum of distance or
evacuation time, is widely applied in the emergency shelter site selection of different types of disasters
(all Hurricanes, half of the others), because evacuation distance/time is one of the most important
factors for most disasters. In addition, the objective of the p-median model is global, which makes
it suitable for most disasters with a wide range of impacts after the disaster. Although this global
objective ignores personal preferences, efficiency is prioritized, and it is relatively fair to all of the
affected population.

There are very few applications of the p-center model for emergency shelter site selection. This is
because the objective of the p-center model ignores global efficiency, and it is not suitable for most
disasters with a wide range of impacts after the disaster. Its applications mainly focus on the site
selection of fire stations, hospitals and so on to deal with local or individual events.

The covering model is applicable to the disaster shelter site selection problem, especially for some
emergency service facilities, including emergency shelters, fire stations and emergency centers that
need cover all of the demands, due to its characteristics and definition. Thus, its applications for
different targeted hazards occupied almost half of the listed literature.
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Table 2. Classification of the objectives, constraints, methods for solutions and targeted hazards of the single-objective model for the shelter location and allocation.

Authors
Classification of

Site Selection
Models

Objective Constraint
Method for Solutions or Optimization

Software Package
Targeted
Hazard

Minimum Maximin Maximal Capacity Distance Number
Distance Time Risk Cost Number Weight Cover

Sherali et al. [16] p-median
√ √ Heuristic and an exact implicit enumeration

algorithm based on the generalized Benders’
decomposition method

Hurricane

Widener [38], Widener
and Horner [39] p-median

√ √ √
CPLEX Hurricane

Kocatepe et al. [18] p-median
√ √ √

GIS-based method Hurricane
Horner et al. [19] p-median

√ √ √
GIS-based method Hurricane

Dalal et al. [30] Set covering
√ √ √

Elzinga–Hearn algorithm Typhoon
Pan [17] p-median

√ √
Genetic algorithm (GA) Typhoon

Pan [31] Maximal
covering

√ √
Exact algorithm Typhoon

Kongsomsaksakul et al.
[20] p-median

√ √
GA Flood

Gama et al. [32] Maximal
covering

√ √ √ √
CPLEX 12.5 Flood

Gama et al. [21] p-median
√ √ √

Simulated annealing algorithm (SA) Flood

Zhou and Jian [34] Maximal
covering

√ √ √ √
Exact algorithm Earthquake

Huang et al. [23] p-median
√ √

GA Earthquake
Zhou et al. [24] p-median

√ √ √
Exact algorithm Earthquake

Hu et al. [36] Set coving
√ √ √

Modified particle swarm optimization (PSO) Earthquake

Ye et al. [33] Maximal
covering

√ √
Spatial analysis techniques of GIS Earthquake

Zhao et al. [35] Set coving
√ √

CPLEX 12.4 Earthquake
Bayram et al. [22] p-median

√ √ √ √
Second order cone programming approach Earthquake

Kılcı et al. [26] p-center
√ √ Network Analyst extension of ESRI ArcGIS

Desktop Earthquake

Ma et al. [37] Set coving
√ √ √

Modified PSO Earthquake

Berman and Krass [29] Maximal
covering

√ √ Greedy heuristic, special-purpose IP
algorithms General

Li [40] p-median
√ √ √

Interactive method General
Bozorgi-Amiri et al. [41] Set coving

√ √
Modified PSO General

Yuan et al. [42] Maximal
covering

√ √
Modified GA General

Du [43] p-median
√

Ant colony optimisation algorithm (ACO) General
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3. Multiobjective Model

A single-objective model is too simplistic to effectively address the location-allocation problem
for emergency shelters, because it often ignores important objectives [44]. To solve the more complex
problems, multiobjective models, based on the p-median problem, the p-center problem, the covering
problem, and so on, are developed. For example, Barzinpour and Esmaeili [45] developed the
multiobjective mixed-integer linear programming model, with the objectives of maximizing the
population coverage and minimizing the construction costs and traffic costs by using a virtual zoning
approach to achieve humanitarian and financial goals. From the examination of the multiobjective site
selection problems, the objectives, constraints, disaster types and methods for solutions associated
with the natural disaster shelter location-allocation optimization model were summarized (Table 3).
Moreover, the applications of the multiobjective site selection model for emergency shelters for different
types of disasters are as follows:

Alçada-Almeida et al. [46] selected four objectives: Minimizing the total distance from the demand
points to the shelters; minimizing the total risk of the evacuation paths unconnected to a hospital;
minimizing the fire risk in the shelters; and minimizing the total time from the shelters to the University
Hospital. They then proposed a model based on the p-median model for evacuation during major fires
and solved it using the framework of a web-based decision support system. There were two objectives
in this: Minimizing the total travel distance for backup paths and minimizing the total number of
shelters, which were also considered in the multiobjective model in their following work [47].

Doerner et al. [48] proposed a tsunami disaster shelter location model, with the objectives of
minimizing the weighted average of the minimal and maximal distance, the risk of hurricanes and costs.
They developed a heuristic solution technique, based on the Nondominated Sorting Genetic Algorithm
II (NSGA-II), to solve the multiobjective optimization of facility location decisions, taking tsunami
hazards into account.

Yushimito et al. [49] were looking to maximize the coverage of the affected regions, while minimizing
human suffering, through the use of a deprivation function based on distance, as a proxy of social cost,
to create an uncapacitated nonlinear optimization model. They provided an application example using
data from Hurricane Katrina. Additionally, they presented an algorithm to find the best Voronoi diagram,
and within the algorithm, they proposed the use of the Nelder–Mead-based solution for nonlinear
subproblems along with the proportional sampling technique to find the initial points for the heuristic.

Based on the scenarios, Rodríguez-Espíndola and Gaytán [49] checked the flood areas by using
GIS and proposed a model, with the objective of minimizing distance and costs, and solved it using
CPLEX 11.0 with the weighted-sum method. To cover both earthquake and flood risks, Nolz et al. [50]
developed a multiobjective optimization model. The three objective functions were the measures of
risk, coverage, and total travel time. Additionally, a memetic algorithm based on the NSGA-II was
proposed as the approach for solutions.

Wu and Wong [51] set up an earthquake shelter location model, with the objectives of minimizing
the evacuation distance, minimizing the maximal utility rate of shelters and minimizing the number of
shelters. Hu et al. [52] developed an earthquake shelter location-allocation model, with the objectives
of minimizing the total distance from communities to shelters and the total cost, and solved it
using a genetic algorithm. Zhao et al. [53,54] introduced an earthquake shelter allocation model,
with the objectives of minimizing the total weighted evacuation time and the total area of shelters,
and solved it using a modified PSO algorithm combined with the SA algorithm. Zhou et al. [55]
proposed a multiobjective urban shelter location planning model, which comprehensively considered
the principles of fairness and efficiency in the location selection by integrating the maximum coverage
model and the p-median model. The modeling was solved in the optimization software, Linear
Interactive and General Optimizer (LINGO), and the model was applied in the Tianjin earthquake
shelter location planning. Ma et al. [56] developed a multiobjective model for the allocation of residents
to earthquake shelters using Wenchang of Hainan province, China as a case study.
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Table 3. Objectives, constraints, methods for solutions and targeted hazards of the multiobjective model for shelter location and allocation.

Authors

Objective Constraint

Method for Solutions or Optimization
Software Package Targeted Hazard

Minimum Maximin Minimax Maximal

C
ap

ac
it

y

D
is

ta
nc

e

B
ud

ge
ta

ry

D
em

an
d

U
ti

li
sa

ti
on

N
um

be
r

D
is

ta
nc

e

Ti
m

e

R
is

k

C
os

t

N
um

be
r

V
io

la
ti

on

W
ei

gh
t

W
ei

gh
t

Su
it

ab
il

it
y

C
ov

er

Alçada-Almeida et al. [46]
√ √ √ √ √

GIS-based decision support system Fire
Coutinho-Rodrigues et al. [47]

√ √ √ √ √
GIS-based decision support system Fire

Doerner et al. [48]
√ √ √ √ √

NSGA-II Tsunami
Yushimito et al. [57]

√ √
Voronoi-based heuristic algorithm Hurricane

Rodríguez-Espíndola and
Gaytán [49]

√ √ √ √
CPLEX 11.0 Flood

Nolz et al. [50]
√ √ √ √ √

Memetic algorithm based on NSGA-II Flood and
earthquake

Tzeng et al. [58]
√ √ √ √

Fuzzy multiobjective programming Earthquake
Wu and Wong [51]

√ √ √ √ √
GIS-based decision support system Earthquake

Hu et al. [52]
√ √ √

NSGA-II Earthquake
Zhao et al. [53]
Zhao et al. [54]

√ √ √ √
Modified PSO Earthquake

Xu et al. [44]
√ √ √ √

Modified PSO Earthquake
Xu et al. [59]

√ √ √ √ √ √
Modified PSO Earthquake

Zhou et al. [55]
√ √ √ √

LINGO Earthquake
Ma et al. [56]

√ √ √ √
Modified PSO Earthquake

Zhao and Chen [60]
Zhao et al. [61]

√ √ √ √ √
NSGA-II

Urban
environmental

disasters
Saadatseresht et al. [62]

√ √ √
NSGA-II General

Bozorgi-Amiri et al. [63]
√ √ √

Lp-metrics technique General

Zhang et al. [64]
√ √ Stochastic diffusion search based intelligent

algorithm General

Barzinpour and Esmaeili [45]
√ √ √

LINGO 9.0 based on virtual zoning approach General

Jalali et al. [65]
√ √ √ √ Multiobjective biogeography-based optimization

algorithm (MOBBO) General

Trivedi and Singh [66]
√ √ √ √ √ √ √ √ √

Fuzzy AHP and goal programming General
Haghi et al. [67]

√ √ √ √
Combination of GA and SA General
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The two objectives of the multiobjective model were to minimize the total evacuation distance
and to minimize the total area of all shelters, with the constraints of shelter capacity and service radius.
The modified PSO algorithm was used to solve the model.

4. Hierarchical Model

There are two main types of hierarchical model. One works according to the functions of the
facilities at different levels (called the general hierarchical model). The other one is the bilevel model
whose upper level works to select the locations of shelters and lower level works to assign the
evacuation paths.

4.1. General Hierarchical Model

Beginning as early as 1979 in a work by Narula and Ogbu [68] on location-allocation problems,
hierarchical facilities traditionally refer to an interrelated structure of facility classifications, wherein
only the lowest level of facilities services demands, the next higher level of facilities supports the
lowest level of facilities, and so forth. A hierarchical capacitated-median location model, based on the
temporal hierarchy of shelters, can be formulated as follows:

min∑
i∈I

∑
j∈J

∑
s∈S

cijxijs (34)

s.t. ∑
j∈J

xijs = 1, ∀i ∈ I, ∀s ∈ S (35)

xijs ≤ ∑
t∈S|t≥s

yjt, ∀i ∈ I, ∀j ∈ J, ∀s ∈ S (36)

∑
s∈S

yjs ≤ 1, ∀j ∈ J (37)

∑
t∈S|t≥s

∑
i∈I

uitxijt = ∑
s∈S

∑
i∈I

uisxijs, ∀j ∈ J (38)

∑
i∈I

uisxijs ≥ bjsyjs, ∀j ∈ J, ∀s ∈ S (39)

∑
i∈I

uisxijs ≤ Bjsyjs, ∀j ∈ J, ∀s ∈ S (40)

∑
k∈J|dik≤dij

xiks ≥ yjt, ∀i ∈ I, j ∈ J, s ∈ S, ∀t ∈ S|t ≥ s (41)

xijs ∈ {0, 1}, yjs ∈ {0, 1}, ∀i ∈ I, j ∈ J (42)

where I is the set of demand points. J is the set of facilities. xijs indicates if a type-s facility j is selected
by demand point i (1 if selected, 0 if not selected). cij is the weighted distance from demand point i to
facility j. cij=uisdij, where uis is the population number of demand i for a type-s facility. bjs and Bjs are the
minimal and maximal capacity of a type-s facility j to be opened. The constraint (Equation (36)) assures
that the demand of level s is served by a facility of level s or higher. The constraint (Equation (37))
keeps any two facilities of the same type or different types from being assigned to the same location,
preventing facility co-location. Equation (38) helps to ensure that all affected people will be served by
facilities of different levels at each evacuation phase. The minimum and maximum levels of capacity
restriction for different facility types are constrained by Equations (39) and (40). Equation (41) is the
closest assignment constraint, which mandates that demand nodes are served by their closest facility.
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General hierarchical models have been widely studied in the field of health-care systems,
solid waste management systems, production–distribution systems, education systems, emergency
medical service systems, and telecommunications networks [69], as well as express delivery services,
fire protection, and area planning [70]. However, they are rarely involved in disaster shelter site
selections. To the best of our knowledge, the applications of the general hierarchical site selection
model for emergency shelters for different types of disasters are as follows:

Widener [38,39] divided the relief shelters in Leon County, Florida, USA, into different levels.
The basic supplies are provided by the shelters at the lowest level, and the specialised supplies are
provided by the highest level. Then, the hierarchical capacity model was developed, with the objective of
minimizing the distance from all demand points to facilities and applied to solve the location-allocation
problem of hurricane disasters.

Chen et al. [71–73] proposed a three-level hierarchical model, based on the shelter functions at
different evacuation phases, for solving earthquake shelter location problems. Li [74] developed a
hierarchical location-allocation model, based on the set covering model for earthquake emergency
shelters. However, the model did not consider the capacity constraints of shelters, and as a result,
the complexity of the problem was greatly reduced. Therefore, the GIS technology was used to solve
the relatively simple location-allocation optimization problem. Li et al. [75] established a three-level
location-allocation model for immediate, short-term and long-term shelters, considering the hierarchical
characteristics of evacuation demand and shelter system. A p-median model, with the objective of
minimizing the evacuation distance, was developed for the immediate and short-term evacuation phase.
A maximal covering model was built for the long-term evacuation phase to cover the maximum demand.
The three-level hierarchical model considered distance and capacity constraints to solve the optimization
problem of Yanjiao Town in Hebei Province, China using LINGO software. Li et al. [76] considered
hierarchical emergency shelter planning for earthquake disasters in urban areas, taking into consideration
the estimation of time-varying refuge demand. Then, they formulated an integrated location-allocation
model that was used sequentially: an emergency shelter location model to satisfy the time-varying
shelter demand, with the objective of minimizing the total setup cost of locating the shelters, and an
allocation model that allocated the evacuees to shelters, with the objective of minimizing their total
evacuation distance [10]. Most recently, Ma et al. [77] adopted a multi-level coverage and supplemental
site selection concept to establish a hierarchical supplemental location-allocation model for preparedness
and response phases that can minimize the total number and cost for the facility location problem and
the total distance at all levels for the supply allocation problem.

4.2. Bilevel Model

Bilevel programming is a two-level hierarchical optimization problem, where one problem
is nested within another [78]. The first formulation of bilevel programming problems, by H.v.
Stackelberg [79] on the market economy, dates back to 1934. The Stackelberg leader-follower games are
a classic example of bilevel programming problems [80]. The upper level problem is referred to as the
leader problem, while the lower level is referred to as the follower problem [81]. Bilevel programming
problems were introduced to the optimization community in the seventies of the 20th century [82–84].
After that moment, a rapid development and intensive investigation of bilevel optimization began,
both in theoretical and in application-oriented directions. Contributions to its investigation have been
delivered by mathematicians, economists and engineers, and the number of papers within this field is
ever growing rapidly. For example, Fisk [85] highlighted the relation between the Stackelberg game
and transportation system modelling for the first time in 1984 and presented the typical formulation of
a bilevel optimization problem as follows:

(P1)min
u

F(u, v(u)) (43)

s.t.G(x, y) ≤ 0 (44)
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where υ solves
(P2)min

v
f (u, v) (45)

s.t.g(u, v) ≤ 0 (46)

where F is the objective function of the upper level problem P1 (Equation (43)); and u and G are the
decision vector and the constraint set of the upper level problem (Equation (44)), respectively. f is
the objective function of the lower level problem P2 (Equation (45)); and v and g are the decision
vector and the constraint set of the lower level problem (Equation (46)), respectively. The upper level
problem models the decision of the leader in the game, while the lower level problem models the
decision of the follower. In the bilevel location-allocation model, the leader cannot control the behavior
of the follower, but can influence the behavior of the follower by choosing the number and location
of shelters. The respective levels communicate information to one another, and they influence each
other’s result sets. This reflects the bilevel nature of the formulation.

The vast majority of the existing site section models assume that people will follow the system
optimal routes prescribed to them (cooperative behavior), although recent research has shown that this
may not be realistic, because people tend to prioritize self-interest (non-cooperative behavior) during
large evacuations [44,86,87]. To simulate the sequential nature of evacuation processes (central planner
determines the shelter assignment, after which evacuees are free to choose their own routes based
on the shelter they are assigned to), the bilevel model was presented, which balances the planner’s
objective and residents’ behavior, incorporating both system and user optimal elements. As an example
of the typical bilevel model for location and allocation problems, several bilevel models, simulating
the strackelberg game theory, were set up [20,88,89], in which the leader’s upper-level program is
the shelter location selection made by decision makers, and the follower’s lower-level program is the
evacuation path choices made by evacuees.

A large amount of research has been conducted on bilevel optimization problems, both in the
realm of algorithms for different optimization problems (linear or non-linear; convex or non-convex;
continuous or discontinuous) and applications, especially in the fields of mathematical programming
and evolutionary computing. However, the multiobjective extensions of bilevel programming
have received relatively little attention from researchers, especially the application of a real-world
optimization problem, which contains a large number of parameters and several objective functions.
Multiobjective optimization and bilevel programming have been combined as multiobjective bilevel
optimization in some works. Particularly, there are three different ways to integrate both techniques:
(i) models with the multiobjective optimization in the upper level problem [90–92]; (ii) models with the
multiobjective optimization in the lower-level problem [93–97]; and (iii) models with the multiobjective
optimization both in the upper-level and lower-level problems [98–104].

Bilevel models are applied mostly to deal with evacuation before disasters, such as hurricanes and
floods, rather than other disasters, and are often combined with traffic network models [20,105–107].
The applications of the bilevel site selection model in emergency shelters for different types of disasters
are as follows:

Ng et al. [105] presented a hybrid bilevel model (in the upper level, shelter assignment occurs in a
system optimal fashion, whereas evacuees are free to choose how to reach their assigned shelters in
the lower level) under hurricane conditions, hence providing a model that was more consistent with
the current state of knowledge of human behavior during disasters. The proposed model was solved
using a simulated annealing algorithm. Li et al. [107] developed a stochastic bilevel model based on
scenarios. The upper level is a stochastic model with two stages, in which the shelter locations are
determined in the first stage and the opened shelters are selected in the second stage, according to the
hurricane situation. Then, on the lower level, evacuees respond according to the result of the upper
level to select the evacuation paths. Additionally, Li et al. [106] developed a stochastic bilevel model
with a preparation stage and response stage, according to the disaster scenarios, and solved it by using
an L-shaped algorithm to solve the hurricane shelter location problem in America.
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Kongsomsaksakul et al. [20] proposed a bilevel model to solve the flood shelter location problem,
in consideration of the interests of decision makers and evacuees. The upper model is based on the
p-median problem with the objective of minimizing the evacuation time, the evacuees in the lower
model try to travel to safe shelters with the least travel time.

Xu et al. [44] developed a scenario-based hybrid bilevel model that addresses the concerns
related to high-dimensional complexity and provided a higher degree of realism by incorporating the
uncertainties of the population dynamics and earthquake damage scenarios into location-allocation
problems for earthquake emergency shelters. A modified PSO algorithm, combined with an SA
algorithm, was applied to derive solutions using the hybrid bilevel model and a conventional
multiobjective model, and the solutions obtained using the two models were then compared.

4.3. Summary of the Hierarchical Model

From the examination of the hierarchical site selection problems, the objectives, constraints,
disaster types and methods for solutions associated with the natural disaster shelter location-allocation
optimization model were summarized (Table 4).

In recent years, general hierarchical models have been widely studied in the field of health-care
systems, solid waste management systems, production–distribution systems, education systems,
emergency medical service systems, and telecommunications networks [69], as well as express delivery
services, fire protection, and area planning [70]. However, they are relatively less involved in disaster
shelter site selections. Among them, most of the researches focus on earthquake disasters, and research
on floods, typhoons and other disasters is lacking.

The bilevel model is a two-level hierarchical optimization model, where one problem is nested
within another, and it performs well in solving complex, high-dimensional problems, providing a higher
degree of realism [44]. It balances the planner’s objective and residents’ behavior to incorporate both
system and user optimal elements. Bilevel models are applied mostly to deal with evacuation before
disasters, such as hurricanes and floods, rather than other disasters, and are often combined with traffic
network models [20,105–107]. They are rarely involved in earthquake disaster shelter site selections,
and the application research on different disaster types, especially using multiobjective bilevel model,
would be one of the main directions of future research on disaster shelter location-allocation problems.
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Table 4. Objectives, constraints, methods for solutions and targeted hazards of the hierarchical model for shelter location and allocation.

Author

Classification
of Site

Selection
Models

Objective Constraint
Method for Solutions or

Optimization Software Package
Targeted
Hazard

Minimum Maximal Capacity Distance Budgetary Demand Number
Distance Time Risk Cost Number Cover

Widener [38], Widener
and Horner [39]

General
hierarchical

√ √ √
CPLEX Hurricane

Chen et al. [71,72]
Chen et al. [73]

General
hierarchical

√ √ √
GIS context Earthquake

Li et al. [76] General
hierarchical

√ √ √ √
Hybrid cross-entropy method Earthquake

Zhao et al. [10] General
hierarchical

√ √ √ √ Cross-entropy with a local search
mechanism Earthquake

Li [74] General
hierarchical

√ √
GIS Earthquake

Li [75] General
hierarchical

√ √ √ √
LINGO Earthquake

Paul et al. [108] General
hierarchical

√ √ √ √
CPLEX 12.6 General

Ma et al. [77] General
hierarchical

√ √ √ √
Modified PSO General

Ng et al. [105] Bilevel
√ √

SA Hurricane
Li et al. [106] Bilevel

√ √ √
L-shaped algorithm Hurricane

Li et al. [107] Bilevel
√ √ √ √

Lagrangian relaxation algorithm Hurricane
Kongsomsaksakul et al.

[20] Bilevel
√ √

GA Flood

Xu et al. [44] Bilevel
√ √ √

Modified PSO Earthquake
Karoonsoontawong

and Waller [88] Bilevel
√ √ √ √ Exact algorithm; SA, GA and

random search General

Kulshrestha et al. [89] Bilevel
√ √ √ √

Cutting plane algorithm General
Chen et al. [109] Bilevel

√ √ √ √
LINGO 11.0 General
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5. Discussion

This review has highlighted the extensive range of disaster shelter location-allocation models that
have been developed since the 1990s by surveying the site selection model types, objectives, constraints,
methods for solutions, targeted disaster types, and applications. Disaster shelter location-allocation
models usually have the objectives of minimizing the evacuation time or distance, shelter construction
cost or number, the risk during the evacuation, along with maximizing the demand points covered
within the service radius and the capacity of shelters. New objectives could be developed by integrally
considering more stakeholders (e.g., shelter planners, policy makers, shelter evacuees, and non-shelter
evacuees). New constraints could also be added by considering the temporal dynamics of evacuees
and the ages of evacuees. Further, the capacity constraints could be soft, indicating that they could be
violated due to the extreme shortage of the shelter capacity in the real situation.

To solve the disaster shelter location-allocation model, different approaches are used. Table 5
compares the different methods by pointing out their respective advantages and disadvantages. For the
simple problems, such as linear integer problems, exact methods, such as enumeration, brand and
bound, the cutting plane algorithm, etc., are used. For the complex problems, such as NP-hard
problems, approximation algorithms, such as mathematical programming methods (e.g., Lagrangian
relaxation algorithm), and heuristic algorithms (e.g., GA, PSO, SA, ACO), are used, and the latter are
the most frequently used. However, no one algorithm can be seen as the best for solving the problem.

Table 5. Different methods for solving the disaster shelter location-allocation problem.

Methods Advantages Disadvantages Authors

GIS spatial analysis technology Easy to solve
and fast

Cannot solve
complex problems

Kocatepe et al. [18]; Horner et al. [19];
Alçada-Almeida et al. [46]; Gall [110];

Shi [111]; Sanyal and Lu [112]; Ye et al. [33];
Kilci et al. [26]; Wu and Wong [51];

Coutinho-Rodrigues et al. [47];
Chen et al. [71,72]; Chen et al. [73]; Li [74]

Optimum
algorithm

Exact algorithm Can find the
best solution

Difficult to solve
complex problems
within a reasonable

time

Widener [38]; Widener and Horner [39];
Dalal et al. [30]; Pan [31]; Gama et al. [32];

Zhou and Jian [34]; Zhou et al. [24];
Zhao et al. [35]; Li et al. [40];

Rodríguez-Espíndola and Gaytán [49];
Bozorgi-Amiri et al. [63];

Kulshrestha et al. [89]; Paul et al. [108]

Approximation
algorithm

Can solve
complex
problems

Difficult to find the
best solution

Sherali et al. [16]; Pan [17];
Kongsomsaksakul et al. [20];

Gama et al. [21]; Huang et al. [23];
Hu et al. [36]; Ma et al. [37]; Berman and

Krass [29]; Bozorgi-Amiri et al. [41];
Yuan et al. [42]; Du [43];

Doerner et al. [48]; Yushimito et al. [57];
Nolz et al. [50]; Hu et al. [52];

Zhao et al. [53,54]; Zhou et al. [55];
Ma et al. [56]; Xu et al. [59];

Zhao and Chen [60]; Zhao et al. [61];
Saadatseresht et al. [62]; Zhang et al. [64];

Barzinpour and Esmaeili [45];
Jalali et al. [65]; Haghi et al. [67];

Li [75]; Li et al. [76]; Zhao et al. [10];
Ma et al. [77]; Ng et al. [105]; Li et al. [106];
Li et al. [107]; Kongsomsaksakul et al. [20];

Xu et al. [44]; Karoonsoontawong and
Waller [88]; Chen et al. [109]
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As discussed, the aspects of future development directions for the site selection model for natural
disaster shelters mainly include:

The disaster characteristics should be considered when setting the models. The capacity is one of
the important factors [113], as they are very important for affected people to live for a long time after
the disaster. However, the evacuation paths are more important, as the evacuation time is vital for
people before the arrival of the disaster. Additionally, the risk of building collapse, road damage and
secondary disasters, such as slides and debris flows, should be considered when using the models.
Further, different disasters have different characteristics that need to be considered when selecting the
locations of shelters. Nowadays, researchers always put the focus on single disasters, which have an
extreme cost of lands, especially when they are out of use. How to solve the shelter location-allocation
problem by considering multiple disaster scenarios in a city, such as a city that meets with a high risk
of floods and earthquakes, is another direction of study.

The designated shelter locations are fixed. However, other things, such as the number of evacuees
(demand), disaster occurrence time and location (hazard), evacuation behavior (psychology), etc., are
dynamic. How to consider these uncertainty factors or how to construct shelters that are not significant
to these factors is another difficulty.

The existing optimization algorithms have generally been used to solve small illustrative examples
of site selection problems. In the case of complex, high-dimensional problems related to large areas,
the current algorithms can take an excessive amount of time and computing power and have difficulty
in finding the global optimal solution [44]. Consequently, some studies continue to develop advanced
algorithms [114] or divide the large-scale regions into several subregions to easily solve the above problem
using current optimization software, such as LINGO or CPLEX [45]. Modifying the existing models
using the dimension reduction approach is another alternative way to improve the solution quality and
is one of the main directions of future research on disaster shelter location-allocation problems.

During the planning of natural disaster shelters, it is usually necessary to prioritize the designated
shelters to avoid wasting resources. However, in previous research initiatives, special attention has
been paid to the general location-allocation model, based on the planning of newly built shelters.
Consequently, a new resource-saving supplemental location-allocation model is recognized as a major
gap in scientific researches and practical applications that should be further studied going forward.

6. Conclusions

This paper reviewed site selection optimization models for location-allocation problems associated
with natural disaster shelters, according to the type of objectives and hierarchies. Three main models
were investigated: single-objective, multiobjective, and hierarchical (Figure 1). The single-objective
model addressed the site selection problems for minisum problems (p-median), minimax problems
(p-center), or covering problems, and consequently formed the basis for the multiobjective and
hierarchical models. The p-median model and covering model are more suitable for disaster shelter
site selection than the p-center model, so there are more relevant applications using the first two
models. The multiobjective model is developed by comparing different single-objective models and
combining them. However, in the case of complex, high-dimensional problems related to large areas,
it can take an excessive amount of time and computing power and has difficulty finding the global
optimal solution [44]. In recent years, the hierarchical models have been widely studied in many
fields, and there have been a number of review papers on general hierarchical facility problems [69,70].
Among them, the bilevel model is a two-level hierarchical optimization model, where one problem is
nested within another, which performs well in solving complex, high-dimensional problems. However,
they are rarely involved in disaster shelter site selections, and the application researches are quite
uneven among different disaster types.
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Owing to the prevalence of hurricanes, floods, and earthquakes in the world, these were the 
main focus of natural disaster shelter location-allocation research. This review attempted to survey 
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and applications. The main objective of the facility location optimization model for emergency 
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Similarly, the above three are also the major criteria of natural disaster shelter site selection problems, 
with most models aiming to minimize the evacuation distance or time, shelter construction costs or 
number, transportation costs (distance or time), and risk during the evacuation, as well as 
maximizing the demand points covered within the service radius and the capacity of shelters. In 
addition, the capacity constraint and distance constraint are two widely used constraints in the shelter 
location-allocation problem. The exact algorithms were found to be efficiency techniques for simple 
problems, but approximation algorithms were found to be more effective for complex problems. 
Finally, research gaps and future works were identified to improve the efficiency of disaster 
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shelter location-allocation.

Owing to the prevalence of hurricanes, floods, and earthquakes in the world, these were the
main focus of natural disaster shelter location-allocation research. This review attempted to survey
the site selection model types, objectives, constraints, methods for solutions, targeted disaster types
and applications. The main objective of the facility location optimization model for emergency
humanitarian logistics was found to be focused on responsiveness, cost-efficiency and risk [115].
Similarly, the above three are also the major criteria of natural disaster shelter site selection problems,
with most models aiming to minimize the evacuation distance or time, shelter construction costs
or number, transportation costs (distance or time), and risk during the evacuation, as well as
maximizing the demand points covered within the service radius and the capacity of shelters.
In addition, the capacity constraint and distance constraint are two widely used constraints in the
shelter location-allocation problem. The exact algorithms were found to be efficiency techniques for
simple problems, but approximation algorithms were found to be more effective for complex problems.
Finally, research gaps and future works were identified to improve the efficiency of disaster reduction
and emergency responses.
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