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Abstract: Using prefecture-level panel data and social media data, this study investigates how
industrial agglomeration, environmental regulations, and technology affect the pollutant intensity
and spillover channels of pollutant emissions by integrating social and economic networks into a
Spatial Durbin Model. The results show that industrial agglomeration, environmental regulations,
and technological inputs facilitate the emissions intensity abatement. The outcomes also confirm
that these factors affect the intensity of pollutant emissions in neighboring regions through social,
economic, and spatial networks. Agglomeration has a negative spillover effect on the intensity
of pollutant emissions in surrounding cities via social and spatial networks, while environmental
regulations affect pollutant emissions intensity in related cities through social networks. Technology
can effectively lower pollutant emissions through economic networks. These findings highlight the
network linkages and spillover channels affecting the intensity of pollutant emissions.

Keywords: agglomeration; environmental regulation; pollutant emissions; spatial spillovers;
network analysis

1. Introduction

Given the rapid urbanization and economic development in China, environmental issues have
attracted increasing attention [1,2]. Since environmental issues and local government environmental
regulations vary across space, it is necessary to explore the mechanism of pollution emissions
by considering the spatial and social relationships among cities [3]. Previous studies [4–6] have
examined the mechanisms that influence pollutant emissions from the perspectives of regulations,
governance, technology, energy structure, and institutions, and have also explored the relationship
between industrial agglomeration and emissions [3,7,8]. Cheng [9] verified the spillover effects
across administrative boundaries, but most studies have rarely taken spatial spillover effects
into consideration.

Human activities are interdependent across various networks [10–12], and spatial social networks
and flows represent the most important features of social and economic life in our increasingly
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interconnected society [13,14]. However, the impact of social and economic networks on pollutant
emissions has yet to be fully considered [15]. Social media platforms have accumulated a large number
of geotagged messages reflecting social concerns about pollution-related issues [13,16,17], and these
data can be used to construct spatial social networks [15].

This study examines how industrial agglomeration, environmental regulations and technology
affect pollutant emissions intensity using panel data from 285 prefecture-level cities (including four
centrally administrated municipalities) during the period 2003–2016, and sheds light on how industrial
agglomeration and regulations contribute to the abatement of pollutant emissions. It identifies how
social and economic spillover effects occurred in the relationships between environmental regulations,
technological inputs and pollutant emissions by introducing social and economic networks into
our models.

Spatial Durbin models (SDMs) are applied to the municipal panel data to identify the spatial
spillover effects. Social media data from Weibo API and economic data are used to construct a Weibo
network and an economic network to represent urban linkages. Then, GIS methods are employed to
visualize the social and economic networks, and SDMs are introduced to analyze the spatial, social
and economic spillover effects of industry agglomeration, environmental regulations and technology
on pollutant emissions.

2. Literature Review

Previous studies have identified the determinants of pollution as economic development,
environmental regulations, political transparency, R&D inputs, and ownership [8,18,19].
Environmental regulations have received the most attention [20–22], and the effects of industrial
agglomeration and technological inputs have also been explored [3,7,8,23]. However, insufficient
attention has been paid to the spillover channels among various cities.

2.1. Industrial Agglomeration, Spatial Networks, and Pollutant Emissions Abatement

Industrial agglomeration leads to increasing returns and higher productivity [24]. Numerous
studies have investigated the relationship between manufacturing distribution and pollutant emissions,
but the results have been far from conclusive. For example, Lu et al. [8] found a positive relationship
between agglomeration and pollution, while Cheng et al. [9] reported an inverted U-shaped
relationship. He et al. [23] found a cubic relationship between the density and intensity of industrial
SO2/soot emission. These varied results have arisen from differences in the variables and samples
used [3,7,8,23].

Industrial agglomeration can affect pollutant discharge in several ways. Firstly, it can reduce the
unit cost of pollution by enabling the development of centralized recycling facilities [23]. Previous
studies such as Fujita and Tisse [25] and Andersson and Lööf [26] have confirmed that agglomeration
can increase firm productivity through increasing economies of scale using firm level data. This is
also true in relation to pollution mitigation [21] because processing costs are reduced when firms are
agglomerated to take advantage of centralized recycling systems. This is especially true for firms in
industrial parks or economic development zones that have been forced to establish sewage treatment
systems. China’s State Council released the Water Pollution Prevention Action Plan in 2015, whereby
development zones were required to establish centralized sewage treatment facilities and install
automatic online monitoring devices by 2017. Many industrial parks have responded to the plan
by improving their pollutant processing systems [27]. It is particularly efficient to combine waste
treatment and pollutant recycling, thereby creating a circular economy in industrial agglomerations [9].

Secondly, agglomeration can reduce the cost of compliance with environmental regulations
through centralized management by the government. It has been shown that enforcement of
environmental regulations becomes increasingly difficult as the number of firms increases [28].
Similarly, when enterprises are spatially dispersed, regulatory costs will inevitably increase.
The government can easily establish regulatory administrative branches in more densely populated
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areas, inhibiting enterprises from illegally discharging pollutants and facilitating punishments
for breaches.

Thirdly, agglomeration can promote mutual learning among enterprises in relation to
technological upgrading. Urban agglomeration is associated with intense knowledge flows [29–31],
and innovative activities are more concentrated and tend to diffuse faster within denser clusters [32–34].
Innovative environmental technologies can be developed and diffused more quickly in dense urban
regions, and thus enterprises located in agglomerated regions are more likely to adopt advanced
environmentally friendly technologies that are used within the cluster [35]. Flows of technically
qualified personnel and clean production technologies tend to be greater in agglomerated regions,
stimulating more rapid diffusion of green technology and reducing the levels of pollutants.

Agglomeration can also have a spillover effect on neighboring areas because pollution is
transboundary [36], that is, pollution in one location is easily spread to neighboring cities. Airborne
pollutants such as sulfur dioxide (SO2) and soot are particularly easy to disperse. Therefore,
we argue that spatial spillovers through geographically adjacent networks are an important aspect of
agglomeration and the resulting pollutant emissions [9]. Agglomeration in one city might affect the
intensity of pollutant emissions in neighboring cities in several ways. On one hand, it can promote
the intensity of pollutant emissions in other cities due to pollution diffusion. On the other hand,
it may reduce neighboring cities’ intensity of pollutant emissions through increased pollution process
efficiency or the establishment of a pollutant recycling system including neighboring cities in networks.
Whether such spillovers exist via social and economic networks needs further empirical tests.

2.2. Regulations, Social Networks, and Pollutant Emissions Abatement

Improvements in the environment are mainly based on people’s increasing environmental
awareness and the government’s increasingly stringent regulations in relation to economic
development [37]. Strengthened environmental controls may reduce enterprises’ sewage treatment
costs and reduce the intensity of industrial pollutant emissions [38,39] because enterprises are
forced to upgrade their technologies and switch to cleaner production equipment to reduce their
emissions [38,40].

The Chinese government is paying more attention to the environment than Western countries did
at a comparable stage of their economic development [41–43]. In China, environmental regulations are
mostly formulated at the central government level and enforced at the local government level [44].
However, in reality, China’s central government has limited capacity to supervise implementation
activities at the local level. It is local environmental bureaus that maintain responsibility for
environmental quality by supervising polluting enterprises and coordinating planning agencies [6].
The local governments provide annual budgets to local environmental agencies and take charge
of personnel allocations. On the other hand, local governments are responsible for developing the
economy within their jurisdictions. China’s local officials will be promoted when they are able to
maintain rapid economic growth in their jurisdictions [6]. Local governments with insufficient budgets
are often willing to pursue economic growth at the expense of the environment [45]. More developed
cities with less budget pressure, however, have more incentives to formulate and comply with stricter
environmental regulations. For example, Beijing has withdrawn 1992 polluting enterprises from
2013 to 2017, and will eliminate more than 1000 general manufacturing and polluting enterprises in
the future.

However, environmental regulations can have spillover effects on neighboring cities’ pollutant
emissions through different channels. It is known that strengthened environmental regulations may
lead polluting enterprises to relocate to other regions or states, as noted in the “pollution heaven
hypothesis” [6,46–49]. Social and economic networks provide an even closer connection between cities
through social or economic connections. Therefore, cities may also be influenced by the regulations
of other cities via social networks. Cities can experience both positive and negative environmental
effects from other cities. If a city’s local government enforces stringent environmental regulations,
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other cities that are connected via social or economic networks tend to follow that city’s lead and
introduce similar environmental regulation policies, which can lead to a reduction in emissions in those
cities [15]. On the other hand, economic activities that are impacted by environmental regulations may
be transferred to other cities via social networks. Such transfers might lead to a negative spillover effect
of environmental regulations on other cities in the network. Thus, cities with stringent environmental
regulations might develop at the expense of other cities’ environments. Therefore, a positive correlation
between environmental regulations and pollutant emissions in other cities that are connected through
social or economic networks is expected, with the net effect dependent on the balance between the two
kinds of effects.

2.3. Technology, Economic Networks, and Pollutant Emissions

Technological input, regardless of whether it is from the government or from private enterprise,
is undoubtedly a significant factor in reducing pollutant emissions [50–53]. New energy technology
and information technology can have a positive impact on the environment through improved energy
efficiency in production or through a shift in consumption from products to services [53]. China has
received a large quantity of international assistances in pollution prevention and clean manufacturing
techniques. Among them, Japan has provided the most help in improving China’s clean technologies.
Japan’s New Energy Development Organization has introduced various technologies to China,
including better coal cleaning, more efficient combustion and gas desulfurization [43]. China is paying
more attention to the growth driven by technology innovation. The 13th Five-Year Plan (2016–2020)
promises to support green innovative technology, promote environmentally-friendly products
and develop leading environmental technologies in equipment and service models. Local urban
governments have taken various measures to develop technology. However, their technical level
varies from city to city according to different stages of development and abilities in attracting talents,
which would have different impacts on the intensity of pollution emissions.

However, because new knowledge and technology can only be generated in a few districts,
the technology adopted by most cities is generated in other regions. Thus, technology spillovers are
important [39]. Previous studies such as Cheng et al. [9] have only examined spatial spillover channels
in relation to technology. However, technology is more likely to spread through social or economic
interactions among people in different regions. Economic benefits are particularly important in driving
technology diffusion, and thus we assume that social and economic networks are most important
in relation to the spread of clean technology and the subsequent reduction in pollution. Therefore,
social networks based on Weibo data and economic networks are integrated into the econometric
models to determine whether technology in other cities in a network affects the intensity of local
pollutant emissions through different channels, and negative relationships are expected.

2.4. Spatial Spillovers of Pollutant Emissions

Environmental pollution intensity may also be affected by pollutant emissions in neighboring
regions because in reality, polluted water and air in one area can readily diffuse to surrounding
areas [54]. Manufacturing plants that generate pollution can also be spatially correlated with
surrounding areas [55,56], and there is often spatial convergence in the adoption of waste treatment
facilities and cleaning technologies. Such spatial spillovers of pollutant emissions have been confirmed
by Cheng [3] and Cheng et al. [9]. Therefore, it is crucial to control the spatial correlations among
regions when considering the influential mechanisms underlying intensity of pollutant emissions.

In summary, the analytical framework can be presented as shown in Figure 1.
China’s rapid urbanization, comprehensive implementation of regulations and increasing

investment in new technology provide favorable conditions for such a study. Therefore, it is
important to investigate how manufacturing industry agglomeration, environmental regulations and
technological inputs in various regions affect pollutant emissions. More importantly, by integrating
social, economic and spatial networks, this study examines the spillover channels affecting the
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relationships between industrial agglomeration, environmental regulations and technology and
intensity of pollutant emissions using prefecture-level data from Chinese cities.
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3. Methodology

3.1. Definitions and Data Sources

To consider the spillover effects between cities, three different types of networks, a social network
derived from social media, an economic network, and a spatial network, were used to reflect cities’
relationships in terms of social media concerns, economic connections, and geographical location,
respectively. The social network is the most significant of the three types of network linkages.
Social media platforms such as Sina Weibo have become increasingly popular in China in recent years.
SINA WEIBO is a Chinese Twitter, and is mostly posted in Chinese. Since the Chinese government has
blocked Twitter, people in China have to resort to Weibo to express their opinions and comments [57].
It has over 40 million active users every month and is the most popular public social media in
China. Therefore, the big data obtained from Weibo is reliable to illustrate Chinese people’s opinions.
Environmental pollution issues are always hot topics on Weibo. Since social media data can be
used to represent the flow of information, and thus the extent of mutual concern between cities can
be used to represent intercity social networks in social science research [15]. Thus, social media
data were obtained and integrated with geo-information to construct a social network among cities,
and then these networks were used to analyze the intercity social network structure in relation to
the environment.

The data is gathered from Sina Weibo for constructing the Weibo social network, and a Web
crawler is used to obtain the keywords from Weibo posts. The keywords consisted of the most
frequently mentioned environmental topics, including smog, water pollution, air pollution, and
pollutant emissions (in Chinese). These keywords reflected people’s concerns about the environment.
Then, the Weibo ID and time of posting of every environment-related post were collected to provide
data on the identity, text, post time, and location of each post. By aggregating the locations of posts at
the city level, the total number of environment-related posts were calculated in each city from 2010
to 2016.
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Intercity linkages in relation to environmental issues is constructed using these data. Then,
a gravity model is used to construct the Weibo network as follows:

Lw
ij =

PiPj

d2
ij

where Lw
ij is the total number of Weibo network linkages between city i and city j, Pi and Pj are the

total numbers of Weibo posts that included keywords in city i and j, respectively, and dij is the distance
between the two cities.

An economic network is also constructed to represent the economic linkages between the two
cities as follows:

Le
ij =

EiEj

d2
ij

where Le
ij is the total number of economic network linkages between city i and city j, Ei and Ej are the

GDP of city i and j, respectively, and dij is the distance between the two cities.

3.2. Regression Analysis

The study aimed to investigate how industrial agglomeration, environmental regulations and
technological inputs affect water and air pollutant emissions intensity by introducing social and
economic networks to standard econometric models. The data were mainly collected from the China
City Statistical Yearbook and patent data collected from the website of National Intellectual Property
Administration of China. They are official authoritative data and have been used extensively in
Chinese urban studies. Industrial agglomeration, environmental regulations and technology variables
are introduced to test the predictions of the paper. Economic openness, urban economic development,
industrial structure, and energy intensity variables are also included as control variables, as has been
done in previous studies [19,36,39,58,59]. The municipality is used as the geographic unit, the time
span is 2003–2016, and the calculation is as follows:

lnPollutionit = β0 +β1lnVAit + β2Firmsit + β3lnRegulationit
+β3Treatrateit + β5Techinputit
+β6lnPatentit + β7FDIit

+β8lnGDPPCit + β9lnINDit + β10lnTERit + β11lnEnergyit + αi + γt
+εit

(1)

3.3. Dependent and Independent Variables

Pollution represents the intensity of pollutant emissions including wastewater pollutant emissions
intensity (Wastewater), sulfur dioxide emissions intensity (SulfurDioxide), and soot emissions intensity
(Soot). Emissions intensity is defined as the volume of pollutant emissions per industrial value
added [8]. Following Ciccone [60], the amount of industrial value added per unit of area in the city
(VA) is used to indicate the level of industrial agglomeration. The level of industrial output cannot
determine whether the high industrial value added is caused by one big company or a number of
small and medium enterprises. Therefore, the number of firms in a city with total sales of more than
5 million Yuan per unit of area (Firms) is introduced as a proxy for external agglomeration.

Regulation denotes the level of urban environmental regulations and is determined by dividing
total pollution processing fees by the total amount of pollutant emissions in the city. Since the units
used to measure the volume of pollutant emissions differ across the three types of pollutants, regulation
intensity is calculated by summing the standardized data relating to pollutant emissions and pollutant
processing fees before division. Following Zhou et al. [61], the treatment rate for the volume of sulfur
dioxide produced (Treatrate) is incorporated as a proxy for environmental regulations. Environmental
policies, such as the Air Pollution Prevention and Control Law designating an acid rain control zone
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and a sulfur dioxide pollution control zone, are often implemented at the national level. New firms
that could not use low-sulfur coal were required to install desulfurization facilities or to take other
measures to control SO2 emissions, and existing plants were encouraged to control SO2. Emission of
SO2 is the main cause of acid rain in China. - However, the enforcement of such policies varied across
cities. The percentage of industrial SO2 meeting the standard for emission in a city is thus a good
proxy of local governments’ attitude towards nation-wide environmental policies and the stringency
of environmental regulation at the local level. Both of these introduced variables are expected to have
a negative sign in relation to pollutant emissions.

New technology is expected to significantly reduce the volume of emissions, and thus finance
expenditure for science and technology of the city (Techinput) is incorporated as a proxy for local
technological input, which is expected to have a negative impact on pollutant emissions intensity.
Invention patents can be used to represent the cities’ level of innovation [62], and thus the cities’
numbers of invention patents per capita (Patent) is used as a proxy for the cities’ level of technology,
which is expected to have a negative sign in relation to emissions intensity.

Other control variables including economic development, economic openness, economic
structures, and energy intensity are also incorporated [6,9,42,56,61]. Foreign direct investment (FDI)
is used to represent the openness of a city and is defined as the FDI that is actually utilized in
a given year divided by GDP. GDPPC represents GDP per capita (units of 10,000), which reflects
the level of economic development. These figures were adjusted to 2003 constant prices to enable
comparisons across periods. IND and TER represent the numbers of secondary and tertiary industries
as a proportion of the total GDP of the municipalities, and represent the industrial structure’s influence
on the environment. Energy intensity might also affect emissions intensity, and thus we include the
energy consumption divided by GDP (Energy) of each city in the regression, which is expected to have
a positive impact on emissions intensity.

Since city-level data for pollutant processing expenses for the regulation variable are only available
until 2007, city-level data for the period 2003–2007 and provincial-level data for the period 2008–2016
are used to measure the regulation variable. In terms of variables, i is the municipal-level city, t is
the year, αi is the regional fixed effect, and εit is the error term. dummy variables for industry and
year are introduced. The logarithm of continuous variables is used to obtain elasticity results and
to reduce the influence of outliers and heteroscedasticity. The variables could be normalized so that
the effects of the factors could be compared. However, the panel data seems inappropriate to be
normalized as it is done for pooled data model, because it involves many years’ data and has to be
calculated within and between groups. Introducing one year’s normalized pool data into the regression
models was also considered, but such data could not reflect the whole picture of pollutant emission
variations. Therefore, the absolute value or logarithm form of variables were used in the regression.
The definitions and descriptions of the variables are shown in Table 1.

Table 1. Definitions and descriptions of variables used.

Variable Definition

Dependent
Variables

lnWastewater Wastewater pollutant intensity (logarithm)
lnSulfurDioxide Sulfur dioxide pollutant intensity (logarithm)

lnSoot Soot pollutant intensity (logarithm)

Agglomeration lnVA Industrial value added density per unit area of the city (logarithm)
lnFirms Number of firms (above 5 million Yuan sales value) per unit area of the city (logarithm)

Regulation Regulation Environmental regulation level
Treatmentrate Treatment rate of SO2 production

Technology lnTechinput Finance expenditure for science and technology of the city (logarithm)
lnPatent Number of patents for invention per capita

Control
variables

FDI The amount of foreign direct investment as a share of the city’s GDP
lnGDPPC Per capita GDP of the city at 2003 constant prices (logarithm)

IND The value of secondary industry outputs as a share of the city’s GDP
TER The value of tertiary industry outputs as a share of the city’s GDP

lnEnergy Energy intensity of the city
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3.4. Specification of Weight Matrix

As previously mentioned, the network spillover effect can be identified by integrating spatial
econometrics into the model. Since spatial dependency occurs not only among dependent variable, but
also among independent variables, SDM well addresses such a problem [63,64]. Therefore, an SDM is
used to analyze the spillover effects of agglomeration, environmental regulations, and technology, and
to introduce the spatial lag term for the explanatory variables to the above calculations as follows:

lnPollutionit = β0 +ρWlnpollutionit + β1lnVAit + β2Firmsit + β3lnRegulationit
+β3Treatrateit + β5Techinputit
+β6lnPatentit + W ∗ λ ∗ X + β7FDIit

+β8lnGDPPCit + β9lnINDit + β10lnTERit + β11lnEnergyit + αi + γt
+εit

(2)

where W is a weight matrix that denotes the network through which the spillover effect occurs
and reflects the interactions between connected cities. We employ three weight matrices to identify
the types of spillover channels that are occurring. X is a dependent variable denoting the level of
agglomeration, environmental regulation and technological input; ρ is the coefficient of the spatial lag of
the independent variables; and λ represents the coefficient of the spatial lag of the dependent variables.

Based on the above-mentioned Weibo data, economic data, and location information, three kinds
of networks are established to reflect the social relationships, economic relationships and geographical
relationships, respectively.

(1) Weibo Network Matrix Wweibo. This is used to illustrate the impact of social media on spillovers,
and the Weibo network is used to represent the degree of social media interaction between cities.
The element of matrix Wij is set as a row standardized to Lw

ij , Wij = Lw
ij / ∑j Lw

ij , where Lw
ij indicates

the linkage between city i and city j in the Weibo network.
(2) Economic Network Matrix Wecon. This is used to illustrate the economic linkages between cities.

The element of matrix Wij is set as a row standardized to Le
ij, Wij = Le

ij/ ∑j Le
ij, where Le

ij indicates
the economic linkage between city i and city j.

(3) Geographical Network Matrix Wdist. This specifies the square of inversed distance between city i
and j within 500 km. This means that the spillover effect only occurs for the sake of geographic
location: Wij =

1
d2

ij
/ ∑j

1
d2

ij
i f d2

ij < 500 km, 0 otherwise.

Some studies have used a binary adjacency matrix for W, where the element of the matrix is
assigned a value of 1 when two cities are adjacent to each other and 0 otherwise [15]. However, this
does not fully reflect the actual spatial relationship because urban areas vary [3]. Thus, the inverse
squared distance between two cities within a distance was assigned to the element of the spatial matrix,
and then was normalized to the rows of the matrix. Since it is difficult to estimate the scope of the
affected area with certainty, a bandwidth of 500 km is introduced and it is assumed that the spillovers
occurred within a radius of 500 km (We also tried other bandwidths such as 300 km and 400 km and
obtained similar results).

4. Results

4.1. Distribution of Pollutant Emissions

The polluted regions are distributed unevenly and are highly agglomerated in just a few regions.
Figure 2 shows the distribution of wastewater, sulfur dioxide and soot emissions across Chinese cities
in 2016. It can be seen that wastewater emissions are higher in the coastal regions than in the inland
regions. The regions around the Yangtze River Delta and the Beijing-Tianjin area are more affected
by wastewater pollutants than the inner regions. All of the most polluted regions have a higher
population and more industrial activity than other areas. However, the distributions of sulfur dioxide
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and soot pollutant emissions display different patterns. Areas with high levels of sulfur dioxide and
soot pollutants are mostly located in northern China, especially in Shanxi and Shaanxi provinces,
where there is a lot of coal mining activity and a high incidence of heavy industry that is a source of
high levels of pollutant emissions. The Chongqing municipality in southwest China is also a highly
polluted region as a result of the high incidence of heavy industry in this area.
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The spatial pattern of pollutant emissions intensity, which is calculated by dividing pollutant
emissions by the gross value of the industrial outputs of the city, displays a slightly different picture.
Figure 3 shows the pollutant emissions intensity distribution for prefectural-level cities across China
in 2016. Higher wastewater pollutant emissions intensity cities are mostly distributed in the south
and northwest of China, especially in cities in Guangxi province and Shaanxi province. These regions
have a greater number of pollutant industries, while the gross value added of these industries is lower
than that of industries in the eastern region. The high sulfur dioxide pollutant emissions intensity
areas are mostly distributed in the northeast, northwest and southwest of China. The high incidence of
heavy industry and the basin-like topography are the main reasons for the high levels of sulfur dioxide
pollutant emissions in Guangxi province in the southern part of China.
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Since 2000, the distribution of pollutants has tended to move toward the central regions of China,
following the trend of industries moving inland [65]. It can be seen from Table 2, that in 2003, the Gini
coefficients of the three kinds of pollutant emissions were between 0.5 and 0.55, while in 2016, the Gini
coefficients for wastewater and sulfur dioxide pollutants had fallen to 0.45 and 0.53, indicating that
pollutant emissions are diffusing, along with the industries responsible, into the middle and western
parts of China. However, the Gini coefficient for soot pollutant emissions rose a little during the same
period, indicating that soot pollutant emissions tended to remain agglomerated. This might be because
people have increasingly come to recognize the importance of environmental issues, and because soot
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pollutant emissions are a primary concern, they have been more stringently regulated in the more
prosperous areas in China in recent years.

The relationships between cities can be visualized using the networks in the GIS environment.
The social and economic linkages among cities as represented by the Weibo network and the economic
network, respectively, are shown in Figures 4 and 5. Only the strongest 10% of linkages are shown for
the sake of clarity. These figures reflect the structures of the Weibo network and economic network
among cities. The thickness of the lines indicates the strength of the linkage, while the darkness and
width of line means the magnitude of links. These networks show different linkage structures to
those identified through spatial locations. Regarding the social networks based on Weibo big data,
the cities with the strongest linkages are Beijing, Shanghai, Shenzhen, Wuhan, Hangzhou, and Nanjing,
while the most linked regions are distributed within or among the Beijing–Tianjin region, the Yangtze
River Delta region, and the Pearl River Delta region. People in these regions display the greatest
concern regarding environmental issues via social media. As for the economic networks, the cities with
the strongest linkages are Beijing, Shanghai, Chengdu, Shenzhen, and Guangzhou. The most linked
regions are located in the eastern part of China, while some of the regional centers in the western
and middle parts of China, such as Chengdu, Chongqing, Xian, Zhengzhou, Wuhan, and Changsha,
also have strong linkages with other cities.

Table 2. Gini coefficients of pollutant emissions distributions in 2003 and 2016.

Gini Waste Water Sulfur Dioxide Soot

2003 0.55 0.50 0.50
2016 0.51 0.45 0.53

Source: Author calculations using data collected from the China City Statistical Yearbook.
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4.2. Findings from Integrated Regression Models

The coefficients of lnGDPPC, lnVA, IND, and TER are all greater than 0.5 (see Appendix A
Table A1), so we dropped lnPGDP and TER to eliminate multicollinearity problems. The descriptions
of the variables are presented in Appendix A Table A2. The results of the estimations are shown in
Tables 3–5. Table 3 shows the results of introducing the social network to test the spillover effects
of agglomeration, environmental regulations and technological inputs on environmental pollution.
Table 4 shows the results of introducing the economic network to test the spillover effect of economic
speculation. Table 5 shows the results of introducing the spatial matrix based on geographic locations
to explore the spatial spillovers. In each table, columns 1, 2 and 3 show wastewater emissions intensity,
sulfur dioxide emissions intensity, and soot emissions intensity, respectively, as the dependent variable.

Table 3. Regression results with social network matrix integrated.

Variables Waste Water SO2 Soot

lnVA −0.174 ** −0.187 ** −0.286 **
lnFirms 0.095 0.022 −0.307

Regulation −0.250 *** −0.373 ** −0.376 ***
Treatrate −0.158 *** −0.607 *** −0.306 ***

Techinput −0.083 *** −0.133 *** −0.099 **
lnPatent 0.007 −0.019 0.032

Wweibo*lnVA −0.311 ** −0.309 ** −0.169
Wweibo*lnFirms 0.878 *** −0.474 ** −0.653 **

Wweibo*Regulation 0.175 *** 0.252 *** 0.248 ***
Wweibo*Treatrate 0.032 0.444 *** 0.333 ***

Wweibo*Techinput 0.010 0.083 ** 0.047
Wweibo*lnPatent −0.057 * 0.026 0.035

FDI 0.126 0.228 *** −0.215 ***
IND −0.015 *** −0.006 −0.012 **
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Table 3. Cont.

Variables Waste Water SO2 Soot

lnEnergy 0.476 *** 0.300 ** 0.242
ρ 0.387 *** 0.427 *** 0.451 ***

Constant 8.936 *** 8.402 *** 7.871 ***
Observations 3682 3682 3682

R2 0.547 0.567 0.568
R2_within 0.710 0.706 0.582

*** p < 0.01, ** p < 0.05, * p < 0.1.

Table 4. Regression results with economic network matrix integrated.

Variables Waste Water SO2 Soot

lnVA −0.151 ** −0.182 * −0.278 **
lnFirms −0.042 −0.023 −0.312

Regulation −0.254 *** −0.355 ** −0.357 ***
Treatrate −0.105 * −0.602 *** −0.301 ***

Techinput −0.101 *** −0.128 *** −0.089 **
lnPatent 0.008 −0.020 0.023

Wecon*lnVA −0.290 ** −0.178 −0.098
Wecon*lnFirms 1.619 *** −0.063 −0.368

Wecon*Regulation 0.076 0.175 0.013
Wecon*Treatrate −0.433 *** 0.195 0.089

Wecon*Techinput 0.074 0.094 0.055
Wecon*lnPatent −0.117 ** −0.053 ** −0.094 *

FDI 0.049 0.183 *** −0.199 **
IND −0.017 *** −0.005 −0.011 *

lnEnergy 0.493 *** 0.270 * 0.198
ρ 0.422 *** 0.529 *** 0.529 ***

Constant 7.849 *** 6.382 *** 6.406 ***
Observations 3682 3682 3682

R2 0.557 0.563 0.572
R2_within 0.713 0.702 0.577

*** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5. Regression results with spatial network matrix integrated.

Variables Waste Water SO2 Soot

lnVA −0.124 * −0.171 * −0.293 **
lnFirms −0.224 −0.073 −0.351

Regulation −0.256 *** −0.384 ** −0.382 ***
Treatrate −0.054 −0.534 *** −0.252 **

Techinput −0.100 *** −0.127 *** −0.082 *
lnPatent 0.008 −0.019 0.023

Wdist*lnVA −0.063 0.062 0.146
Wdist*lnFirms 3.113 *** −2.674 ** −4.628 ***

Wdist*Regulation −0.718 *** −0.099 −0.512
Wdist*Treatrate −0.684 *** 0.194 −0.173

Wdist*Techinput 0.146 0.139 0.091
Wdist*lnPatent −0.618 ** −0.431 0.542

FDI −0.170 ** 0.003 −0.147 *
IND −0.025 *** −0.013 ** −0.015 **

lnEnergy 0.582 *** 0.281 ** 0.251
ρ 0.767 *** 0.854 *** 0.836 ***

Constant 3.662 *** 2.798 *** 3.246 ***
Observations 3682 3682 3682

R2 0.555 0.539 0.548
R2_within 0.701 0.660 0.534

*** p < 0.01, ** p < 0.05, * p < 0.1.
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The results largely confirm our expectations, that is, industrial agglomeration can lead to a
significant reduction in pollutant emissions. The results presented in Table 3 show that the intensity of
wastewater, sulfur dioxide and soot pollutant emissions decrease by 1.7%, 1.9%, and 2.9%, respectively,
when industrial agglomeration increases by 10%. The coefficient for environmental regulations
is significantly negative for all three kinds of pollutant emissions, indicating that environmental
regulations can reduce the intensity of pollutant emissions, which is consistent with the findings of
previous studies [5,61,66,67]. The estimate effects are persistent across the specifications in Tables 3–5.
Financial support for R&D has a significant positive effect on pollutant emissions intensity in all three
cases, while the number of patents per capita has no impact on pollutant emissions. Similar results are
obtained when we introduce the social and economic networks, as shown in Tables 4 and 5 respectively.
Technological input from the government can be used to improve emissions processing equipment,
thereby quickly reducing emissions. However, patents cannot be used immediately by the local agent,
and thus are more likely to be used by people in related cities.

The other coefficients show the expected signs. Foreign investment does not have a significant
effect on wastewater emissions, but can significantly improve sulfur dioxide emissions, and reduced
the soot emissions, as shown in Tables 3 and 4. The share of secondary industry has a significant
negative effect on water and soot pollutant emissions intensity in all cases, possibly because of the
more efficient treatment of pollutant emissions in regions with a higher incidence of industry. Energy
intensity has a positive effect on wastewater and sulfur dioxide pollutant emissions intensity, which is
loosely consistent with a previous finding that higher energy intensity contributes to more pollutant
emissions [68].

Tables 3–5 show the regression results for the SDM under Wweibo, Wecon and Wdist, respectively.
The SDM recognizes the network spillover effects of agglomeration, environmental regulations
and technology through the coefficients of interactions between the three matrices and the
dependent variables.

Tables 3–5 shows the results of spillovers through social, economic, and spatial networks,
respectively. The ρ values denote the spillovers of pollutant emissions in other cities in the networks on
the pollutant emissions intensity of the target city. All of the ρ values in the three tables are significantly
positive, indicating positive spillovers through all three kinds of networks, although the results for the
spatial network, shown in Table 5, are significantly higher than those for the other two channels. This is
not surprising, given that pollutant emissions are mainly spread across geographical areas [3,69]. It can
also be seen from Tables 4 and 5 that the ρ values for sulfur dioxide and soot are higher than that for
wastewater, confirming that air pollution always spreads further than wastewater pollution.

The three kinds of network channels influence spillovers in different ways. Regarding the spillover
effect of industrial agglomeration on pollutant emissions intensity, we found that the coefficients of
Wweibo*lnVA are significantly negative in relation to wastewater and sulfur dioxide emissions, and those
of Wweibo*lnFirms shown in Table 3 are significantly negative in relation to SO2 and soot emissions.
This effect is barely evident in Table 4, which shows the results of introducing the economic network,
while the coefficients of Wdist*lnFirms in Table 5 show a significant reduction in sulfur dioxide and
soot emissions intensity. This suggests that social network-related industrial agglomeration of cities
tends to reduce the local city’s pollutant emissions, but such spillovers can hardly be prompted by
economic networks. Geographic location also plays a vital role in the effect of spillovers from industrial
agglomeration on pollutant emissions.

Regarding environmental regulations spillover to other cities, it can be seen that the coefficients
of Wweibo*Regulation and Wweibo*Treatrate shown in Table 3, which integrate the social network, have a
significant positive effect on pollutant emissions, while they are insignificant in the other two spillover
channels. This indicates that other social related cities’ environmental regulation in the social network
might worsen the environment of the local environment. It is known that environmental regulations
are mostly transferred through social networks, especially among cities with similar ideas regarding
environmental protection. However, the results show that such spillovers are increasing pollutant
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emissions in social media-linked cities. This indicates that more pollutant industries might transfer
to social media-linked cities, consistent with the “not-in-my-backyard” phenomenon, whereby local
governments toughen their environmental regulations to keep polluting firms from locating within
their jurisdictions [70]. Toughening their regulations will improve their own environment, but at the
price of increased environmental pollution in social media-related cities. It appears that the interactions
of spatial matrices and environmental regulations are significantly negative in relation to wastewater
emissions, as shown in Table 5, indicating that neighboring cities’ regulations might help to reduce a
city’s wastewater emissions, but have no effect on SO2 and soot emissions.

The technology spillover effect on pollutant emissions through networks is significantly negative
under Wecon*lnPatent, although the technology input’s (W*Techinput) spillovers have no effect.
These spillovers are not significant under Wweibo and Wdist, indicating that neither the existence
of a social network nor spatial proximity leads to the diffusion of clean technology. An economic
network is the only means by which clean technology can be diffused to other cities, thereby lowering
the pollutant emissions intensity in those cities.

In summary, the results show that the spillover channels differ for different variables. For spillover
effects of industrial agglomeration on pollutant emissions, social network and spatial proximity are
the most important channels. Industrial agglomeration not only reduces a city’s pollutant emissions,
but also reduces emissions in cities that are related through social and spatial networks. Environmental
regulations have a negative spillover effect on related cities’ environments through social networks.
Stringent regulations in one city can cause social media-linked cities to face increased environmental
pressure, but more pollutant emissions social media-linked cities are mainly caused by pollution
transfer. However, new technology can significantly reduce the pollutant emissions intensity of cities
in an economic network.

5. Discussion

Pollutant emissions abatement has attracted increasing attention from both governments and
researchers. Previous studies have stressed the importance of the effects of industrial agglomeration,
economic development, R&D, environmental regulations, and local economic structures on pollutant
emissions. However, less attention has been paid to the way in which different spillover channels
affect pollutant emissions reduction. Thus, this study aimed to identify the effects of industrial
agglomeration, environmental regulations and technology on pollutant emissions, as well as the
spillover channels related to these factors by integrating social and economic networks.

In this study, spatial econometric analysis and network analysis were used to investigate the
influential factors and their spillovers on the intensity of urban pollutant emissions. The results show
that industrial agglomeration, environmental regulations and technological inputs facilitate emissions
intensity abatement. The results also confirm that these factors affect the intensity of pollutant
emissions in neighboring regions through social, economic and spatial networks. These findings
highlight the network linkages and spillover channels affecting the intensity of pollutant emissions.

More specifically, it appears that spatial distributions and intensity distributions are different
in relation to different types of pollutant emissions. Coastal regions showed the highest levels of
wastewater pollutants, while the highest levels of sulfur dioxide and soot pollutant emissions were
located in provinces such as Shanxi, Shaanxi, Inner Mongolia, and Chongqing municipality that
have a high incidence of coal production. However, the distribution of pollutant emissions intensity
showed a different pattern. High wastewater pollutant emissions intensity was mainly located in
Guangxi province, high sulfur dioxide pollutant emissions intensity was located in the northwest and
southwest regions, and high soot pollutant emissions intensity was located in regions with abundant
coal resources such as Shanxi, Shaanxi and Heilongjiang provinces.

Using prefecture-level panel data from 2003 to 2016, how industrial agglomeration, environmental
regulations, and technological inputs affect pollution abatement and spillover channels were
investigated using SDMs. The results showed that industrial agglomeration, environmental regulations
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and technological inputs facilitate abatement of pollutant emissions intensity. These outcomes can be
attributed to the scale effect of pollution processing, the sharing of pollution treatment facilities and
the government’s centralized management of more agglomerated regions.

By introducing social, economic, and spatial networks, it can be found that there are significant
spillover effects of agglomeration, environmental regulations and technology on pollutant emissions
intensity through different channels. Spatial spillovers exist in pollutant emissions and agglomerations
on pollutant emissions. The pollutant emissions have significant positive spillover effects on the
neighboring regions, and the industrial agglomerations in one city could also raise the pollutant
intensity of the surrounding areas. We also found social and economic spillover channels through
which regulations and technology can have a significant impact on pollutant emissions in related cities
within networks. The environmental regulations in one city in a social network might improve the
other cities’ performance in terms of emissions. However, new technology might reduce emissions in
other cities in an economic network. The results also confirm that FDI, industrial structure and energy
intensity can have a significant impact on pollution emissions intensity.

The results have several implications. Cities should strive to strengthen industrial agglomeration
and promote environmental regulations and technology to reduce the intensity of pollutant emissions.
Local governments should strengthen industrial clusters or industrial parks to reduce pollution control
cost. More importantly, this study provides evidence that the intensity of pollutant emissions is
affected by spillover effects of other relevant cities in social, economic and spatial networks. Network
spillovers should be taken into consideration when considering pollutant abatement measures because
pollutant emissions and the influential factors are conveyed not only through spatial networks but
also through social and economic networks. The results show that a city might develop pollution
abatement measures at the cost of neighboring regions because of environmental regulations spillovers
through social networks. Since technology in one city can spillover to other cities through economic
networks, strengthening economic linkages with technology centers is an effective way to reduce
pollutant emissions. Therefore, pollutant emissions abatement should be seen as a systemic process
and should not be undertaken by a single local authority without considering other cities that are
connected through various types of networks. Higher levels of government should coordinate the
governance of the environment in networked cities.

This study provides a new perspective on sustainability research by integrating social
and economic networks into existing econometric models using social media data. However,
the mechanisms by which different channels affect pollutant emissions abatement require further
exploration. Further, we have not yet fully considered how the scale of operation affects the factors
influencing pollution reduction. Different spatial scales, that is, whether the pollution is at the city,
regional, or national level, will affect the results, and the policy implications will differ for various levels
of government. Moreover, the social and economic networks might differ at various scales. Therefore,
whether the results found in this study are applicable to different scales needs further exploration.
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Appendix A

Table A1. Pearson correlations among dependent variables.

lnVA lnFirms Regulation Treatrate Techinput lnPatent FDI lnGDPPC IND TER lnEnergy

lnVA 1.00
lnFirms 0.63 1.00

Regulation −0.11 0.06 1.00
Treatrate 0.40 0.08 −0.14 1.00

Techinput 0.60 0.38 −0.21 0.46 1.00
lnPatent 0.47 0.58 0.04 0.12 0.41 1.00

FDI −0.07 0.00 −0.07 −0.10 0.00 −0.02 1.00
lnGDPPC 0.65 0.45 −0.10 0.36 0.64 0.48 0.11 1.00

IND 0.45 0.16 −0.06 0.10 0.10 0.04 −0.03 0.46 1.00
TER 0.10 0.23 0.06 0.13 0.30 0.38 −0.03 0.23 −0.62 1.00

lnEnergy −0.02 0.04 0.07 −0.13 −0.28 0.06 0.00 −0.03 0.17 −0.01 1.00

Table A2. Descriptions of variables.

Variable Mean Stdard Deviation Min Max

lnWastewater 7.050 0.936 3.985 10.049
lnSulfurDioxide 6.922 1.123 1.498 10.506

lnSoot 6.084 1.398 1.188 9.863
lnVA 6.024 1.563 1.277 11.168

lnFirms 0.134 0.208 0.001 1.698
Regulation 0.148 0.256 0.000 3.828

Treatrate 0.263 0.221 0.001 0.996
Techinput 7.402 1.389 3.892 13.872
lnPatent 0.276 0.484 0.001 4.658

FDI 0.033 0.044 0.000 0.541
IND 48.063 10.743 15.685 85.921

lnEnergy 0.129 0.112 0.006 1.266
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