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Abstract: Residual problems are one of the greatest challenges in developing new decomposition
techniques, especially when combined with the Cobb–Douglas (C-D) production function and the
Logarithmic Mean Divisia Index (LMDI) method. Although this combination technique can quantify
more effects than LMDI alone, its decomposition result has residual value. We propose a new
approach that can achieve non-residual decomposition by calculating the actual values of three key
parameters. To test the proposed approach, we decomposed the carbon emissions in the United
States to six driving factors: the labor input effect, the investment effect, the carbon coefficient effect,
the energy structure effect, the energy intensity effect, and the technology state effect. The results
illustrate that the sum of these factors is equivalent to the CO2 emissions changes from t to t-1,
thereby proving non-residual decomposition. Given that the proposed approach can achieve perfect
decomposition, the proposed approach can be used more widely to investigate the effects of labor
input, investment, and technology state on changes in energy and emission.

Keywords: combined decomposition technique; perfect decomposition; labor input; fixed asset
investment

1. Introduction

When exploring the factors affecting energy consumption or carbon emissions, it is the pursuit
of more scholars to decompose more factors. However, the factors that can be decomposed by using
a single decomposition method are limited. In order to explore more drivers, many scholars have
adopted a way to combine decomposition models with other economic models. To quantify the effects
of fixed asset investment and labor input on changes in energy consumption and carbon emissions,
Wang et al. [1] combined the Cobb–Douglas (C-D) production function and the Logarithmic Mean
Divisia Index (LMDI) econometric method. This combined technique can quantify more effects than
can LMDI alone. However, the results of the decomposition using this technique have residual
problems, which means that the technique cannot solve the zero-value problem or implement perfect
decomposition. In a recent study, Dong et al. [2] confessed that the combination technique could
not implement complete decomposition, but nevertheless, was still applied, because this technique
was able to quantify the effects of labor force input and fixed asset investment on changes in
carbon emissions. However, the combined decomposition technique with residuals will result in
inaccurate results, which will reduce the credibility of the conclusions. Therefore, the purpose of
this paper is to solve the residual problem and achieve perfect decomposition of the combination
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technique and to conduct empirical analysis based on US carbon emissions. Guided by applied
intermediate macroeconomics [3], this paper reports a new approach to solving the zero-value problem
and exploring one more factor, which is the technology state factor. In this way, the combined
decomposition technique can be better used in studying the effects of fixed asset investment, labor
force input and technology state on energy consumption changes and carbon emissions changes.

The remainder of this paper is structured as follows. Section 2 is a literature review of
decomposition techniques. Section 3 presents the proposed approach to using the combined
decomposition technique to achieve perfect decomposition. Section 4 describes the testing of the
proposed approach by decomposing CO2 emissions in the United States. Finally, Section 5 concludes
this paper.

2. Literature Review

Generally, there are two primary categories of the decomposition method: structural
decomposition analysis (SDA) and index decomposition analysis (IDA) [1,4]. The SDA method,
which is based upon the input–output tables, is widely used to analyze the influencing factors driving
the energy consumption and energy-related emissions changes [5–10]. For CO2 emissions in Spain,
José M. Cansino et al. used SDA to decompose the changes into six effects [11]. Bin Su et al. [12] and
Jing Wei et al. [13] also employed SDA to analyze the influencing factors of CO2 emission changes in
Singapore and Beijing. Zhu et al. utilized an input–output framework and SDA method to explore the
driving forces for the changes in India’s total emissions and intensity [14]. However, input–output
tables are not always readily available, thereby limiting the widespread use of SDA [5,15]. Wang
et al. compared the application of the SDA method and IDA method in energy consumption and
energy-related emissions research from the viewpoints of methodology and application [16]. Xu and
Ang reviewed and summarized 80 papers that applied the IDA method on emission studies during
1991 to 2012, and the results revealed that IDA is more widely used than SDA when decomposed CO2

emissions change [17]; and then, they employed the IDA method to decompose the residential energy
consumption in Singapore [18]. The IDA method can be separated into two approaches: the Laspeyres
Index approach and the Divisia Index approach [19–21]. The Laspeyres Index approach has rarely
been used to analyze carbon emissions due to the residual problem [22]. The Divisia Index approach
was first proposed by Boyd and included the Arithmetic Mean Divisia Index (AMDI) and Logarithmic
Mean Divisia Index (LMDI) methods. LMDI is more extensively utilized because AMDI results in
incomplete decomposition and zero-value problems [23,24]. Based on the expansion and improvement
of the Divisia Index method by previous research [25–29], LMDI has become the preferred method for
decomposing CO2 emissions [23,30]. To solve zero-value problems, Ang and Liu have put forward
eight strategies [31]. Moreover, Ang summarized the basic formulas for the eight LMDI models and
made comparisons between these models, and then developed model selection guidelines for potential
users [32].

LMDI has been adopted by many academics to investigate the decomposition of CO2 emissions at
national levels [33,34], provincial levels [35–37] and the levels of specific industries [16,38] such as the
chemical industry [22], construction industry [39,40], manufacturing industry [41], heavy industry [42],
logistics Industry [43], and power industry [9], as well as at the levels of the whole of industry [44].
Akbostanci et al. applied LMDI to decompose the CO2 emissions of the Turkish manufacturing
industry into five influencing factors: overall activity, economy structure, sectoral energy intensity,
sectoral energy structure, and CO2 emission coefficient [45]. Babak Mousavi et al. analyzed the
influencing factors driving Iran’s CO2 emission changes [46]. Jeong et al. decomposed the CO2

emissions from South Korean industrial manufacturing into five influencing factors: economic activity,
economic structure, energy intensity, energy-mix, and emission-factor [47]. Achour et al. calculated
the contributions of the transportation intensity, energy intensity, economic output, population scale
effect, and transportation structure effect of the Tunisian transportation sector [48]. Zhao et al. used
LMDI method to decompose CO2 emissions in Guangdong Province from a sector perspective, and the
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results showed that the energy intensity effect and economic output effect were the critical factors
for carbon emissions in Guangdong Province [37]. Wang et al. used the LMDI model and Tapio
decoupling model to study the influencing factors of decoupling status between CO2 emissions and
economy from the city level, and the results showed that the economic effect and population effect
inhibited the decoupling and energy intensity accelerated the decoupling [16]. It can be concluded that
the research objects have been divided very carefully in the above research using LMDI to explore the
decomposition of CO2 emissions, but there is seldom innovation in the driving factors. To explore the
contributions of the fixed asset investment and labor factors to China’s energy consumption changes,
Wang et al. proposed a decomposition technique combining the C-D production function and LMDI [1].
The results illustrated that the factors of fixed asset investment and labor were critical to influencing
energy consumption. Moreover, Dong et al. used the combined decomposition technique to analyze
energy consumption in Liaoning Province and showed that the fixed asset investment effect played a
negative role while the labor effect played a very weak role in the phenomenon of decoupling [2].

By reviewing the development of the decomposition method, it can be seen that the combination
of the C-D production function and LMDI can decompose the effects of labor force input and fixed
asset investment on changes in energy consumption and carbon emissions. However, this combined
decomposition technique caused incomplete decomposition and had residuals in its results. Moreover,
the combined decomposition technique ignored the effect of the technology state. In this paper,
the proposed approach is aimed at solving the residual value of the combined decomposition technique.

3. Proposed Approach to Achieve Complete Decomposition

When applying the LMDI method, the total CO2 emissions can always be expressed in the
traditional decomposition form [49,50]. The traditional influencing factors include the carbon
coefficient, energy structure, energy intensity, and economic outputs. The function is as follows:

Ct =
3

∑
i=1

Cit
Eit

×Eit
Et

× Et

GDPt
×GDPt (1)

=
3

∑
i=1

Fit×Sit×It×GDPt (2)

where t denotes the time in years; i denotes energy type; Ct and Cit denote, respectively, the total CO2

emissions and the CO2 emissions of the i-th energy type in t year; Et and Eit denote, respectively, the
total energy consumption and the consumption of the ith energy in year t; GDPt denotes the gross
domestic product in year t; Fit =

Cit
Eit

denotes the carbon coefficient of the i-th energy in year t; Sit =
Eit
Et

denotes the energy structure of the i-th energy in year t; and It =
Et
Qt

denotes energy intensity in year t.
The above analysis shows that the traditional decomposition form cannot reflect the impacts of

fixed asset investment and labor on carbon emissions. Building on previous research and economic
theory, Wang et al. [1] combined the C-D production function and LMDI to formulate the proposed
combined decomposition technique. The C-D production function is a particularly useful one in many
mathematical functions, because it has the production function properties that we expect and has
been extended to the field of economics by Paul Douglas and Charles Cobb. In particular, the C-D
production function describes how the real economy transforms fixed asset investment and labor into
GDP. So, we can use the C-D production function, which is shown below, to describe GDP:

GDPt = A(Lt)
α(Kt)

β (3)

Putting Equation (3) into the GDP on the right-hand side of Equation (2), a new form of
decomposition can be obtained:
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Ct =
3

∑
i=1

Fit×Sit×It×A×(Lt)
α×(Kt)

β (4)

where A is a positive constant that can be treated as a target of the state of technology; α and β are
unknown constant parameters while α + β = 1; and Lt and Kt denote the amount of labor input and
fixed asset investment, respectively, in year t.

According to Ang, by using the additive form, the change in CO2 emissions (∆Ct) between a base
year 0 and a target year t can be decomposed into the six influencing factors: the carbon coefficient
effect (∆CFt), the energy structure effect (∆CSt), the energy intensity effect (∆CIt), the technology
state effect (∆CAt), the labor input effect (∆CLt), and the investment effect (∆CKt). The function is
shown below:

∆Ct = Ct−C0 = ∆CFt + ∆CSt + ∆CIt + ∆CAt + ∆CLt + ∆CKt (5)

According to LMDI, each effect can be computed as follows:

∆CFt =
3

∑
i=1

(
Cit − Ci0

lnCit − lnCi0
× ln

Fit
Fi0

)

∆CSt =
3

∑
i=1

(
Cit − Ci0

lnCit − lnCi0
× ln

Sit
Si0

)

∆CIt =
3

∑
i=1

(
Cit − Ci0

lnCit − lnCi0
× ln

It

I0
)

∆CAt =
3

∑
i=1

(
Cit − Ci0

lnCit − lnCi0
× ln

At

A0
)

∆CLt =
3

∑
i=1

(
Cit − Ci0

lnCit − lnCi0
× ln

(Lt)
α

(L0)
α )

∆CKt =
3

∑
i=1

(
Cit − Ci0

lnCit − lnCi0
× ln

(Kt)
β

(K0)
β
)

The combined decomposition technique ignored the actual values of A, α and β and treated
them as unknown constants for computational convenience. Thus, ln(At/A0) = 0 and ∆CAt = 0 [1,2].
In conclusion, the combined decomposition technique not only has residuals in its results but also
ignores the effect of the technology state. In this paper, the actual values of A, α and β are calculated
according to Kevin D. Hoover’s applied intermediate macroeconomics [3]. Thus, non-residual
decomposition is realized and the technology state factor is quantified. The calculation steps are
as follows:

According to Equation (3) and α + β = 1, the C-D production function can be written as:

Y = A(L)α(K)1−α (6)

Calculating the derivatives of K and L for Y, we obtain the marginal product of labor input (mpL)
and the marginal product of physical capital (mpK), respectively. The function is shown below:

mpL = α×A×
(

K
L

)1−α

= α×Y
L

(7)

mpK = (1−α)×A×
(

L
K

)α

= (1−α)× Y
K

(8)
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In economics, real labor income (YL) is the product of the real wage rate (ω/p) and the number
of hours worked (L):

YL = (ω/p)×L (9)

where ω is the wage rate and p is the market price.

L−share =

(
YL

Y

)
=

(
ω

p

)
×L

Y
(10)

where L−share is the labor share; and YL and Y denote the real labor income and the total income,
respectively.

Similarly, the real capital income (YK) and the capital share (K−share) are defined as follows:

Yk = (ν/p)×K (11)

K−share =

(
YK

Y

)
= (ν/p)×K

Y
(12)

where ν is the rental rate; p is the market price; (ν/p) is the real rental rate; and K is the amount of
fixed asset investment.

To further explain these definitions, we apply the assumption that the economy is close to perfect
competition. Under this assumption, we can use the profit maximization rules, which state that each
real factor price is equivalent to the corresponding marginal product. The functions are shown below:

mpL =
∆Y
∆L

= ω/p (13)

mpK =
∆Y
∆K

= ν/p (14)

Replacing the factor prices with the marginal products in Equations (10) and (12):

L−share =

(
YL

Y

)
= (mpL)×L

Y
(15)

K−share =

(
YL

K

)
= (mpK)×K

Y
(16)

We can replace mpL and mpK in Equations (15) and (16) with the specific forms in Equations (7)
and (8). The functions are shown below:

L−share =

(
YL

Y

)
=

(
α×Y

L

)
×L

Y
= α (17)

K−share =

(
YL

K

)
=

(
(1−α)× Y

K

)
×K

Y
= 1−α (18)

From the above analysis, we can draw the conclusion that the indexes of L and K in the C-D
production function (α, β) are equal to the labor and capital shares, respectively. So, we can calculate
the actual value of α by calculating the labor share with the following function:

α = L−share =
compensation of employees

total income
(19)

β = K−share = 1−α (20)

where total income includes the compensation of employees, rental income of persons, corporate
profits, net interest, miscellaneous payments, and depreciation value.
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When the actual value of α was calculated and the data of the labor force and capital were
obtained, the current year’s technology state index (A) can be calculated using the following formula:

A =
Y

(L)α(K)1−α
(21)

4. Empirical Analysis

To test if the proposed approach implements non-residual decomposition, the carbon emissions
in the United States have been selected for empirical analysis. To clearly demonstrate the issue
of perfect decomposition, we conducted a comparative analysis of the traditional approach and
proposed approach.

4.1. Data Collection

The data about energy consumption and emissions were derived from the US Energy Information
Administration (EIA) [51]. The labor force data was from the US Bureau of Labor Statistics (BLS) [52].
The GDP and real net stock of fixed assets, which have been converted to 2009 constant dollars,
were from the US Bureau of Economic Analysis (BEA) [53]. The research period started from 2000 and
ended in 2016.

4.2. Traditional Approach

According to the traditional approach [1,2], A, α and β are unknown constant parameters, so
ln(At/A0) = 0 and ∆CAt = 0. It can be concluded that the constant A has no influence on the USA’s
carbon emissions.

Using Equations (1)–(5), the effects of the five influencing factors can be obtained. The results of
the decomposition using the combined decomposition technique are shown in Table 1. The comparison
of the actual values to the decomposition values is shown in Figure 1. As shown in Table 1, the critical
factors that impacted CO2 emissions in the United States was the energy intensity effect and the
investment effect, which were the largest inhibitor and contributor. In terms of cumulative effects,
the investment effect has contributed to the growth of 1752.33 million metric tons of CO2 emissions,
while the energy intensity effect has inhibited the growth of 2027.52 million tons of CO2 emissions.
The investment effect and the labor input effect always played a positive role in the growth of CO2

emissions during 2000–2016, and the effect of the carbon coefficient, the energy structure and the energy
intensity on the growth of CO2 emissions changed over time. From the perspective of cumulative
effects, the energy structure effect was the second inhibitor for the growth of CO2 emissions, which
has inhibited the growth of 289.39 million tons of CO2 emissions; while the labor input effect was the
second contributor, which has contributed to the growth of 628.71 million metric tons of CO2 emissions.
As for the carbon coefficient effect, its role is very weak.

However, by comparing the total effects of decomposition and the actual values, it can be found
that there were residuals in this decomposition mode. As shown in Figure 1, the total effects of
decomposition were not much different from the actual values in 2003–2004 and 2010–2015, but they
were not completely equal. In 2001–2003, 2004–2010 and 2015–2016, the difference between the total
effects and the actual values was very large. It is worth noting that in 2000–2001 and 2005–2006, the US
carbon dioxide emissions showed a downward trend, while the total effects of decomposition were
positive. It can be concluded that there were residuals in the decomposition results resulting from the
fact that the actual values of A, α and β were neglected. Furthermore, the decomposition method with
residuals will reduce the credibility of the conclusion and result in inaccurate analysis, which are not
conducive to the effectiveness of policy implementation.
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Table 1. Decomposition results under the traditional approach (unit: Million Metric Tons).

Year ∆CFt ∆CSt ∆CIt ∆CKt ∆CLt ∆Ctot ∆Cactual

2000–2001 15,893 1.003 −180,539 177,222 46,659 60,238 −107,315
2001–2002 1.411 −13,073 −49,302 157,527 45,149 141,713 41,232
2002–2003 9.477 19,956 −140,047 159,936 65,754 115,076 50,378
2003–2004 5.263 −4.827 −102,687 167,982 35,771 101,502 116,974
2004–2005 5.170 14,480 −193,020 162,028 77,223 65,880 23,053
2005–2006 −1.941 −1.020 −236,972 165,472 83,268 8.806 −83,605
2006–2007 8.886 −15.262 −7.676 143,823 66,192 195,964 90,714
2007–2008 1.813 −0.945 −175,539 99,006 44,581 −31,083 −191,848
2008–2009 −16,475 −55,218 −194,149 37,848 −5.248 −233,242 −422,989
2009–2010 −7.334 8.974 58,076 42,451 −8.988 93,179 196,535
2010–2011 −2.434 −35,095 −187,356 53,242 −9.732 −181,375 −137,469
2011–2012 −1.947 −77,848 −250,248 64,174 46,858 −219,012 −212,956
2012–2013 −10,620 5.944 45,741 71,518 14,098 126,680 128,982
2013–2014 3.009 −10,542 −83,002 82,173 18,394 10,033 45,733
2014–2015 −2.531 −83,132 −210,671 86,779 41,047 −168,509 −146,286
2015–2016 −0.101 −42,790 −120,131 81,144 67,689 −14,189 −86,274
2000–2016 7.537 −289.39 −2027.522 1752.33 628,716 71,662 −695,141

Figure 1. The total effect of the decomposition and actual values.

4.3. The Proposed Approach

According to the proposed approach, the actual values of A, α and β can be calculated using
Equations (16)–(18). As shown in Figure 2, the labor share and capital share change about a mean
that is nearly constant from year to year and is regarded as an estimate of α, so α = 0.68 and β = 0.32.
The index of the technology state (A) is shown in Figure 3. It can be seen that the technology state in
the USA has an upward trend in volatility from 2000 to 2016, but there was a decline from 2007 to 2009.
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Figure 2. The labor and capital shares in the USA.

Figure 3. The index of the technology state.

After calculating the value of each parameter, the USA’s emissions can be decomposed into six
influencing factors: the carbon coefficient effect (∆CFt), the energy structure effect (∆CSt), the energy
intensity effect (∆CIt), the technology state effect (∆CAt), the labor input effect (∆CLt), and the
investment effect (∆CKt) by using Equation (5). The contributions of the different factors to the changes
in the USA’s CO2 emissions are shown in Table 2. The emissions were completely decomposed by using
the perfect decomposition of the combined decomposition technique, and there were non-residuals in
the results.

As shown in Table 2, the emissions showed a fluctuating state between 2000 and 2007, after
which there was a sharp decreasing trend from 5,988.80 million metric tons in 2007 to 5162.23 million
metric tons in 2016. The cumulative effect, the technology state effect, the labor input effect, and the
investment effect were the primary factors contributing to the increased emissions during 2000–2016,
while the cumulative effects of energy structure and energy intensity are the critical factors that
inhibiting the increase in emissions during 2000–2016. By comparing Tables 1 and 2, it can be seen that
the effects of the carbon coefficient effect, the energy structure effect and the energy intensity effect
decomposed by the traditional decomposition method and the proposed decomposition method were
the same for the US CO2 emissions. The energy intensity effect played a positive role in reducing
the CO2 emissions during 2009–2010 and 2012–2013, resulting from the drop of energy intensity.
The second influencing factor to curb carbon emissions is the energy structure effect, which played
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a negative role in most years. The impact of the carbon coefficient effect on emissions is very week.
However, the investment effect and the labor input effect were different between the traditional
methods and the proposed methods. The direction of investment effect and labor input effect on US
CO2 emissions has not changed, but the effect of investment and labor input under the proposed
method has a much smaller effect on US CO2 emissions than the traditional method. Furthermore,
the proposed method can measure the effect of the technology state on CO2 emissions in the United
States, while the traditional method results in a technology state effect of 0 due to the neglect of the
constant A.

Table 2. Decomposition results under the proposed approach (unit: Million Metric Tons).

Year ∆CFt ∆CSt ∆CIt ∆CKt ∆CLt ∆CAt ∆Ctot ∆Cactual

2000–2001 15,893 1.003 −180,539 56,711 31,728 −32,111 −107,315 −107,315
2001–2002 1.411 −13.073 −49,302 50,409 30,702 21,085 41,232 41,232
2002–2003 9.477 19,956 −140,047 51,179 44,713 65,099 50,378 50,378
2003–2004 5.263 −4.827 −102,687 53,754 24,325 141,147 116,974 116,974
2004–2005 5.170 14,480 −193,020 51,849 52,511 92,063 23,053 23,053
2005–2006 −1.941 −1.020 −236,972 52,951 56,622 46,755 −83,605 −83,605
2006–2007 8.886 −15,262 −7.676 46,023 45,011 13,731 90,714 90,714
2007–2008 1.813 −0.945 −175,539 31,682 30,315 −79,174 −191,848 −191,848
2008–2009 −16,475 −55,218 −194,149 12,112 −3.569 −165,690 −422,989 −422,989
2009–2010 −7.334 8.974 58,076 13,584 −6.112 129,346 196,535 196,535
2010–2011 −2.434 −35,095 −187,356 17,037 −6.618 76,997 −137,469 −137,469
2011–2012 −1.947 −77,848 −250,248 20,536 31,864 64,689 −212,956 −212,956
2012–2013 −10,620 5.944 45,741 22,886 9.586 55,445 128,982 128,982
2013–2014 3.009 −10,542 −83,002 26,295 12,508 97,464 45,733 45.733
2014–2015 −2.531 −83,132 −210,671 27,769 27,912 94,368 −146,286 −146,286
2015–2016 −0.101 −42,790 −120,131 25,966 46,029 4.753 −86,274 −86,274
2000–2016 7.537 −289,394 −2027.522 560,744 427,527 625,967 −695,141 −695,141

4.4. Discussion

In exploring the factors affecting energy consumption or carbon emissions, the decomposition
of more factors has been a widespread concern of scholars. We reviewed and compiled 22 papers
on factorization from 2011 to 2019, as shown in Table 3. It can be seen that most scholars do not
quantify the impact of investment, labor and technology status on energy consumption and carbon
emissions, and combining the LMDI method with the C-D function can provide more factors for
decomposition analysis.

However, with reference to the previous combination method, since the three constants of
A, α, and β are neglected, the technical state effect is zero, and the decomposition result has a residual.
This reduces the reliability of the combined decomposition method results. The combination proposed
in this paper achieves no residual decomposition and quantifies the impact of the technological state
effects on US carbon emissions, which can provide reference for future decomposition analysis.
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Table 3. Representative literature for decomposition during 2011–2019.

Author Year Journal Research Object Decomposition Method Influencing Factors

Akbostanci
et al. [45] 2011 Applied Energy CO2 emissions in Turkish

manufacturing industry LMDI method
economy activity, economy structure, sectoral energy

intensity, sectoral energy structure and carbon
emission coefficient.

Andreoni V
et al. [54] 2012 Energy CO2 emissions in European

transport
decomposition method

developed by Sun
emissions intensity, energy intensity, structural

changes and economy activity.

Andreoni V
et al. [55] 2012 Energy CO2 emissions of Italy decomposition method

developed by Sun
CO2 intensity, energy intensity, structural changes

and economic activity.

Hammond
et al. [56] 2012 Energy CO2 emissions of UK

manufacturing LMDI method economy output, industrial structure, energy intensity,
fuel structure and electricity emission factor.

Wang et al.
[57] 2013 Energy Policy CO2 emissions of Beijing IO-SDA method

urban trades, urban residential consumption,
government consumption, and fixed capital

formation, emission intensity, final demand activities
and production structure.

Jeong et al.
[47] 2013 Energy Policy CO2 emissions of Korean

manufacturing sector LMDI method activity effect, structure effect, intensity effect,
energy-mix effect and emission-factor effect.

Brizga J et al.
[58] 2014 Ecological Economics greenhouse gas emissions in the

Baltic States SDA method the final demand, emission intensity, consumption
patterns and per capita GDP.

Kang J et al.
[59] 2014 Energy greenhouse gas emissions of

Tianjin multi-sectoral LMDI method economic growth, energy efficiency, energy mix and
emission coefficient.

Fan et al. [60] 2015 Journal of Cleaner
Production CO2 emissions of Beijing a multivariate generalized Fisher

index decomposition model
economic growth, population size, energy intensity

and energy structure.

Lu et al. [35] 2015 Energy Jiangsu’s ICE LMDI method industrial scale, industrial structure, energy intensity,
energy structure and emission factor.

Zhang et al.
[61] 2015 Renewable & Sustainable

Energy Reviews CO2 emissions of China LMDI method the economic growth, final energy consumption
structure, energy intensity, industrial structure.

Cansino J M
et al. [62] 2015 Renewable & Sustainable

Energy Reviews Spain’s CO2 emissions LMDI method carbon intensity, energy intensity, economy structure,
population, economic activity.

José M.
Cansino et al.

[11]
2016 Energy Policy CO2 emissions of Spanish SDA method carbonization, energy intensity, technology, structural

demand, consumption pattern and scale.

Lu et al. [39] 2016 Building & Environment
CO2 emissions of China’s
building and construction

industry
LMDI method

carbon dioxide emission factor, energy structure,
energy intensity, unit cost, automation level,

machinery efficiency.
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Table 3. Cont.

Author Year Journal Research Object Decomposition Method Influencing Factors

Wang et al.
[44] 2016 Sustainability CO2 emissions of China’s

industry sector LMDI method energy structure, energy intensity, per capita wealth
effect, and population.

Bin Su et al.
[12] 2017 Energy Policy CO2 emissions of Singapore SDA method the per capita final demand, the per capita energy

consumption, population.

Mousavi B
et al. [46] 2017 Applied Energy CO2 emissions of Iran LMDI method

population, economy, per capita GDP, economic
structure, energy intensity, carbon intensity, fraction

of locally generated electricity

Lin et al. [42] 2017 Sustainability CO2 emissions of China’s Heavy
Industry LMDI method labor productivity, energy intensity, industry scale,

energy structure, carbon intensity.

Hu et al. [6] 2017 Applied Energy GHG emissions of Chongqing SDA method intensity, input-output structure, final demand.

Du et al. [63] 2018 Journal of Cleaner
Production

CO2 emissions in six high-energy
intensive industries of China LMDI method industrial scale, industrial structure, energy intensity,

energy structure, carbon coefficient.

Chen et al. [64] 2018
Renewable and

Sustainable Energy
Reviews

GHG emissions in Macao LMDI method economic scale, industry structure, energy intensity
and energy structure.

Wang et al.
[16] 2019 Journal of Cleaner

Production
carbon emissions from sector at

city-level LMDI method
emission intensity, intermediate demand,

consumption structure, consumption level,
population size.
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5. Conclusions

Non-residual decomposition is very important for developing new decomposition techniques.
Combining LMDI and the C-D production function can quantify more effects, especially for fixed
assets investment and labor forces, than can LMDI alone. However, the results of this combined
decomposition technique have residuals and the technique ignores the technology state factor. After
many trials, we found that the root cause of the residual problem was three key parameters: A, α and
β. Guided by the classical Kevin D. Hoover’s applied intermediate macroeconomics, we calculated
the actual values of A, α and β to achieve complete decomposition and quantify the technology state
factor. To test our proposed approach, we selected carbon emissions in the USA as a case study.

The traditional approach can decompose the US carbon emissions changes into the carbon
coefficient effect, the energy structure effect, the energy intensity effect, the labor input effect, and
the investment effect, and the proposed method added the technology state effect to these factors.
According to the decomposition results, it can be seen that the carbon coefficient effect, the energy
structure effect and the energy intensity effect under the two decomposition methods were the same,
and the labor input effect and the investment effect under the proposed approach are smaller than the
decomposition results of the traditional approach.

Furthermore, compared to the traditional approach (ignoring A, α and β), the results of the
decomposition of US carbon emissions showed that our proposed approach can achieve non-residual
results. Using the proposed approach achieved perfect decomposition, and so, more researchers would
be able to put it to use to quantify the effects of fixed investment, labor forces and technology state on
changes in energy consumption and carbon emissions.
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