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Abstract: This paper comprehensively analyzed the price integration of the U.S. natural gas futures
market and its physical markets. The analyses were conducted in the form of graphics using the
ensemble empirical mode decomposition (EEMD) method and minimum spanning trees with various
horizons. Our findings indicated that the network structures of the minimum spanning trees of the gas
futures and physical markets are the same on different time scales. The citygate returns were always
the core of the physical gas markets. In addition, the gas futures and physical markets were highly
integrated on different time scales. Moreover, our findings showed that at the original data level,
unidirectional linear and nonlinear causalities from gas futures to physical returns exist. Specifically,
the relationships between futures and physical gas returns were not constant across various time
scales. In the long term, futures gas returns had only a linear causality with the citygate, commercial,
and industry gas returns, and a unidirectional, nonlinear causality with residential gas returns.

Keywords: natural gas market; multiscale analysis; ensemble empirical mode decomposition;
minimum spanning tree; nonlinear Granger causality test

1. Introduction

The integration of the natural gas futures market and the wholesale and end-use gas markets
(gas physical markets), and the complex linkage mechanisms between them, have often been the
focus of energy policy makers and market participants [1]. Market participants take part in natural
gas market activities, and market information is conveyed through the various types of natural gas
markets. Changes in the gas futures market could cause changes in the gas physical markets, and
price information from the natural gas physical markets could also be fed back to the gas futures
market. In addition, price movements in the physical natural gas markets would present price risks
for market participants. However, market participants can trade in the natural gas futures market in
order to mitigate price risks. Thus, by using this type of information transmission to manage market
risk, market participants can create optimal natural gas production or storage plans. Furthermore, by
gaining a better understanding of the complex linkage mechanism between the natural gas futures
market and the physical markets, related energy policy makers can create effective supply and demand
adjustment strategies and long-term policies for the natural gas physical markets.

In this study, a novel approach—the minimum spanning tree model—was used to analyze
the integration of natural gas futures and the physical markets. First, the synchronous correlation
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coefficients of natural gas physical and futures returns were computed. Next, the minimum spanning
tree for the natural gas market integration was constructed. To measure the tightness of the minimum
spanning trees, the normalized length of the minimum spanning trees was calculated. Thus, the
integration between natural gas futures and physical markets could be captured directly in the form of
graphics. In particular, the status and the importance of transmitting information about gas futures
and physical prices in the network can be identified, thereby providing useful information for related
energy policy makers, producers, and dealers.

In addition, as segments in the natural gas markets, the gas futures prices and the upstream
and downstream physical gas prices are also impacted by hurricanes, global financial crises, and
other significant extreme events related to the crude oil market [2–6]. Moreover, since 2006, the North
American shale gas revolution has caused the country’s domestic natural gas production to increase
quickly [7,8], which may also change the linkage mechanism between the futures and physical gas
markets. The impact of all of these significant shocks on the market may cause the energy markets to
undergo structural changes [9–11], which also shows that different natural gas markets with different
attributes exhibit nonlinear characteristics. Therefore, the nonlinear features of the relationship between
the futures and physical markets should be considered. However, previous studies have mainly used
a linear model to investigate these issues, making it difficult to capture nonlinear features. Unlike
previous studies, this research used the nonlinear Granger test to analyze the nonlinear features of the
natural gas markets.

Furthermore, time scales have also been the focus of numerous market participants. The different
segments of the natural gas markets with their different attributes are complex systems that have
various time scale characteristics [12–14]. Consequently, time scales strongly influence the inherent
connection mechanisms between natural gas futures and physical markets. For example, differences in
the price information transmission mechanisms between the natural gas futures and physical markets
may present themselves depending on the time scales considered [15]. Depending on the time scale,
the market tactics of market investors, gas producers, suppliers, and consumers will differ. Therefore,
the ensemble empirical mode decomposition (EEMD) model proposed by Wu and Huang [16] was
employed to construct a new multiscale analysis framework to clarify the integration and complicated
relationship between the natural gas physical and futures markets when different time scales are
considered. Such information will be beneficial for market participants in developing effective market
portfolios and risk aversion strategies on various horizons; in addition, it will help energy policy
makers make short-term adjustment strategies or long-term policies.

In the current study, the U.S. natural gas market was chosen as the analysis sample to explore the
above issues, due to its maturity. The U.S. natural gas futures market started in 1992, and due to the
rapid development of the natural gas futures market, buyers are better able to hedge their options
in this market [17]. In the U.S., the natural gas upstream and downstream physical markets have
also undergone a series of reforms that started in the 1980s, leading to the gradual liberalization of
natural gas physical markets. Unlike previous studies, this study mainly made the following three
contributions. First, using a novel approach—the minimum spanning trees—the integration of natural
gas futures and physical markets have been directly presented in a graphical form. Second, the
nonlinear linkage mechanism between gas futures and physical markets was further tested, providing
direct evidence of the differences and similarities with the linear findings. Finally, a multiscale analysis
approach was explored to comprehensively analyze the integration and nonlinear relationship between
futures and physical gas markets on different time horizons from a new perspective.

The structure of the current paper is organized as follows. The second section reviews the related
literature. The third section mainly describes the EEMD model, the minimal spanning tree model, and
the linear and nonlinear Granger causality tests and data sources. The fourth section contains the
empirical results and the discussion. The last section comprises the conclusion and policy implications.
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2. Literature Review

Some scholars have analyzed the integration of the natural gas markets. Siliverstovs et al. [18]
investigated the degree of integration between the European, North American, and Japanese natural
gas markets between the early 1990s and 2004 and found high integration between the European
and Japanese markets, but the European and Japanese markets and the North American markets
were still distinct. Renou-Maissant [19] found a strong level of integration between the natural gas
markets in continental Europe, while continental European markets and the UK market were not
integrated. Dieckhöner et al. [20] found that the increased demand for natural gas developments and
major import pipeline commissions had a significant impact on the integration level of the European
physical market. Barnes and Bosworth [21] used a gravity model to test whether the liquefied natural
gas trade had increased the integration of the global natural gas market, and found that it had played
an important role.

Furthermore, some scholars have analyzed the integration and relationship between different
market segments in the natural gas markets. Arano and Velikova [22] suggested that there was a
long-term co-integration relationship between the natural gas citygate and residential prices in 90%
of the U.S. after the FERC636 provisions in 1992. Arano and Velikova [23] studied the integration
degree between natural gas citygate and residential gas prices, and the results showed an equilibrium
co-integration relationship between these two prices in the long run. Mohammadi [24] analyzed the
natural gas upstream and downstream price behavior in the U.S. natural gas industry. Their results
showed that supply–demand shock plays an important role in short-term price behavior, and the
long-term changes in well prices are mainly because of the impact of changes in residential and power
gas prices. Apergis et al. [25] analyzed the co-integration relationship between natural gas citygate
and residential retail prices in all U.S. states from January 1989 to December 2012, and revealed a
bidirectional linear Granger causality between the citygate and residential retail prices in the short
and long term for all states after 1995, further indicating an increase in the integration degree of the
natural gas downstream market. Using monthly data from June 1990 to December 2014, Ghoddusi [26]
analyzed the relationship between the natural gas futures and physical markets, and showed that a
unidirectional Granger causality from natural gas futures to all of natural gas physical prices exists.
Ghoddusi and Emamzadehfard [27] analyzed the hedging effect between natural gas futures prices
and six different natural gas physical prices for different contract periods. They found that the hedging
effect between the natural gas futures and downstream markets was much weaker relative to the
natural gas upstream market, and, at the same time, the hedging effect tended to increase as the
contract periods rose.

Based on the above literature review, the conclusions that have been drawn regarding the linkage
between the natural gas futures and physical gas markets are mixed. Previous literature has analyzed
their integration using co-integration methods, and most have also neglected that nonlinear features of
natural gas markets exist. Furthermore, most of the previous literature investigated the integration and
relationship at the original data level only. To clarify the complex integration and linkage mechanisms
between the natural gas futures and physical markets, this study used a novel approach—minimum
spanning tree—to intuitively exhibit the integration degree of the gas futures and physical markets.
The advantage of the minimum spanning tree is that it can easily unveil the status and the importance
of transmitting information about gas futures and physical markets in the network. In addition,
this study captured the nonlinear feature of natural gas markets by using nonlinear Granger tests.
Furthermore, this study also constructed a new multiscale analysis framework to comprehensively
investigate the linkage mechanisms on different time horizons.

3. Methodology and Data Sources

The integration and causalities of the U.S. physical and futures markets have different characteristics
on different time scales. Therefore, we constructed a new multi-scale analysis framework. Firstly, the
EEMD method was employed to decompose the returns of natural gas futures and physical markets
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into different time-frequency series. Through the decomposition of the EEMD approach, the high
frequency, low frequency, and long trend term decomposed timeseries were obtained, which have
different economic implications. Using the decomposition series, the minimal spanning tree model was
then employed to construct the minimal spanning tree graphs of natural gas markets on different time
scales, in order to explore the integration of natural gas futures and physical markets across the time
horizons. Furthermore, using the decomposition series, the linear and nonlinear Granger causality test
was used to comprehensively investigate the linear and nonlinear linkages between the natural gas
futures and physical markets in the short, medium, and long term.

3.1. EEMD Model

The EEMD method effectively decomposed the price returns of natural gas futures and physical
markets into different orthogonal time scale series. Before the decomposition, the returns of the futures
and physical markets were calculated for further analysis. If ri represents the natural gas market
return series, then ri = ln(Pi(t)) − ln(Pi(t− 1)) where Pi(t) is the price of the natural gas market i at t.
By decomposing the original return series x(t), a series of orthogonal intrinsic mode function (IMF)
components can be obtained: c1, c2, ..., cn, and r1 − c2 = r2, r2 − c3 = r3, ..., rn−1 − cn = rn. The original
target time series x(t) can be represented by the IMFs and one residual term as follows [28]:

x(t) =
n∑

i=1

ci + rn (1)

where ci represents the IMF, n is the number of IMFs, and rn represents the residual term of the original
target time series x(t).

3.2. Minimal Spanning Tree Model

To investigate the integration of the U.S. physical and futures markets with various horizons, this
study used graph theory to construct minimum spanning tree models on multiple time scales. The
advantage of the minimum spanning tree approach is that it can overcome the curse of dimensionality
based on the pairwise correlation, while other network models, such as connectedness network, are
heavily limited by the number of variables [29–33].

First, the synchronous correlation coefficients of natural gas physical and futures returns on
multi-time scales were computed as follows [34]:

ρi j =
rir j − rir j√

(r2
i − ri

2)(r2
j − r j

2)

(2)

where ρi j is the correlation coefficient, and ri and r j correspond to the decomposition time series of
the monthly returns for natural gas markets i and j, respectively. ri is the average of ri for the whole
period; T is the sample length. Thus, the 6× 6 matrix of correlation coefficients C can be computed for
all pairs i j. C is symmetric with ρi j = 1 when i = j.

The minimum spanning tree models for the natural gas market integration was then constructed.
However, the correlation coefficient ρi j could not be used as a distance di j because it did not fulfil
the three criteria of Euclidean distance [35]: (1) di j = 0 if and only if i = j, (2) di j = d ji, and (3)
di j ≤ dik + dkj. Therefore, the correlation matrix C was transformed into the distance matrix D using
the following formula:

di j =
√

2(1− ρi j) (3)

where di j represents the distance between the monthly gas returns. This distance matrix corresponded
to the fully connected graph. If the value of the distance is small, it shows that the degree of integration
of the two groups of natural gas markets is high. The minimum spanning tree models of the physical
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and futures natural gas markets on different time scales were constructed using the algorithm by
Kruskal [36].

To measure the tightness of the minimum spanning trees on different time scales, the normalized
length of the minimum spanning trees was calculated as follows:

L =
1

N − 1

∑
(i, j)∈MST

di j (4)

where di j denotes the distance between i and j. N − 1 indicates the number of edges, MST represents
the minimum spanning tree, and L represents the normalized length of the minimum spanning tree. If
the value of L is small, it shows that the integration degree of the natural gas markets is high.

3.3. Linear Granger Test

First, the stationary characteristics of the original and decomposition series were examined using
the unit root test. If all of these characteristics are stationary, the vector autoregressive (VAR) model
proposed by Sims [37] can be used to analyze the linear Granger causality between the natural gas
futures and physical markets. The bivariate VAR model was constructed as follows:

∆Yt = a1 +
m∑

i=1

b1i∆Xt−i +
m∑

j=1

c1 j∆Yt− j + ε1t (5)

∆Xt = a2 +
m∑

i=1

b2i∆Xt−i +
m∑

j=1

c2 j∆Yt− j + ε2t (6)

where a1 and a2 represent the intercept terms, and b and c represent the estimated coefficients. m
represents the optimal lag order of the model, which is determined using the Akaike information
criterion (AIC). The null hypothesis is that X cannot Granger cause Y in Equation (5), and Y cannot
Granger cause X in Equation (6); that is, b1i = 0 and c2i = 0 (i = 1, 2, ..., m).

3.4. Nonlinear Granger Test from the GARCH (1,1) Model

First, the GARCH (1,1) model was used to filter the natural gas futures and the physical original
and decomposition series to obtain the residual series (considering that the natural gas market returns
may have a GARCH effect, this study introduced the GARCH model to capture this dynamic effect) [38].
The standard GARCH (1,1) model was constructed as follows [39]:

yt = x′tγ+ ut, ut ∼ N(0, σ2
t ) (7)

σ2
t = a0 + a1u2

t−1 + β1σ
2
t−1 (8)

where xt = (x1t, x2t, · · · , xkt)
′ is the explanation variable vector, and γ = (γ1,γ2, · · ·γk)

′ is the
coefficient vector.

The nonlinear Granger causality test proposed by Diks and Panchenko [40] was then performed
to uncover the nonlinear causality between the natural gas futures and physical markets by using the
GARCH (1,1) filtered residual series, which effectively overcame the over-rejection problem of the
method proposed by Hiemstra and Jones [41].

3.5. Data Sources

The natural gas futures (contract 1) and physical prices were derived from the U.S. Energy
Information Administration website were obtained from https://www.eia.gov/dnav/ng/NG_PRI_FUT_
S1_D.htm; the physical gas prices were obtained from https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_
nus_m.htm). Because of the availability of the data, the monthly prices of natural gas futures, citygate,

https://www.eia.gov/dnav/ng/NG_PRI_FUT_S1_D.htm
https://www.eia.gov/dnav/ng/NG_PRI_FUT_S1_D.htm
https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm
https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm
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commercial, residential, industrial, and natural power were collected for the period from January
2002 to March 2017. The citygate price of natural gas is the price paid by natural gas retailers when
they receive the natural gas through pipelines; the prices of commercial, residential, industrial, and
natural power natural gas are the prices paid by service companies, residents, factories, and power
companies for using natural gas, respectively. All of the data were adjusted for inflation over the
examined period. To construct real oil prices and real gas prices, the nominal prices were deflated
by the monthly consumer price index of the U.S., obtained from the Federal Reserve Bank of Saint
Louis. Figure 1 shows the movements of the natural gas futures and physical prices from January 2002
to March 2017. Here, it can be seen that the overtrends of the natural gas futures prices and citygate,
commercial, industrial, and power prices have always stayed consistent, while the residential prices
show obvious seasonal characteristics.
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Figure 1. Natural gas futures and physical monthly prices from January 2002 to March 2017.

Table 1 shows the descriptive statistics of the natural gas futures and physical prices. The average
prices of commercial and residential gas were significantly higher than those of citygate, industrial, and
power. At the same time, the standard deviations of residential gas and futures prices were higher than
those of the other kinds of natural gas prices, indicating that residential gas and futures prices fluctuate
at significantly higher levels than those of the other kinds of natural gas prices. This is mainly because
residential gas prices are susceptible to seasonality, such as in the winter. The seasonal component
of the price creates additional noise; thus, the seasonally adjusted data were obtained using the X-12
procedure for further analysis.

Table 1. Summary statistics of the price series for natural gas futures and physical markets.

Futures Citygate Commercial Residential Industry Power

Mean 5.010 6.149 9.407 12.534 5.810 5.480
Median 4.336 5.730 9.070 12.380 5.280 5.040

Max 13.454 12.480 15.640 20.770 13.060 12.410
Min 1.812 3.220 6.280 7.100 2.880 2.330

Std. dev. 2.320 1.884 1.835 2.818 2.032 2.007
Skewness 1.313 1.010 0.869 0.337 1.138 1.015
Kurtosis 4.968 3.916 3.770 2.409 4.260 4.091

Jarque–Bera 82.099 37.545 27.561 6.119 51.592 40.475
Probability 0.000 0.000 0.000 0.047 0.000 0.000

N 183 183 183 183 183 183

Note: The unit of the price series for natural gas futures and physical markets is USD/Mbtu.

4. Empirical Results and Discussion

4.1. Multiscale Analysis

The decomposition results of natural gas futures and physical returns are shown in Figure 2,
which shows that four IMFs and one residual term were obtained for all of the original return series.
The time scale of each decomposition component was measured, and these results are shown in Table 2.
The average duration of IMF1 was three months, corresponding to the market fluctuations caused by
the short-term market disequilibrium between supply and demand. The duration of this fluctuation
effect was relatively short. The duration of IMFs 2–4 was between six months and three years, mainly
because of the shock effects of minor or significant events or significant changes in energy policies.
Because of the different attributes of the different natural gas markets, the natural gas futures and
physical markets are likely to be affected by different factors that have medium-term effects. The
residual term reflects the long-term evolution trends of the natural gas markets.



Sustainability 2019, 11, 5518 8 of 23
Sustainability 2019, 11, x FOR PEER REVIEW 8 of 23 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

-20
0

20

IM
F1

-10
0

10

IM
F2

-10
0

10
IM

F3

-5
0
5

IM
F4

2004 2006 2008 2010 2012 2014 2016
-5
0
5

R
es

IM
F1

IM
F2

IM
F3

IM
F4

R
es

IM
F1

IM
F2

IM
F3

IM
F4

R
es

IM
F1

IM
F2

IM
F3

IM
F4

R
es

Figure 2. Cont.



Sustainability 2019, 11, 5518 9 of 23
Sustainability 2019, 11, x FOR PEER REVIEW 9 of 23 

 
(e) 

(f) 

Figure 2. Decomposition results of natural gas futures and physical monthly returns from January 
2002 to March 2017. (a) Futures, (b) Citygate, (c) Commercial, (d) Residential, (e) Industry, (f) Power. 

To analyze the contribution of each decomposition series to the total fluctuations of the original 
series, the proportion of the variance of each decomposition series to the variance of the original series 
was measured. Based on the results in Table 2, the IMF1 accounted for the largest proportion of the 
total market fluctuations. In particular, the proportion values of IMF1 accounted for 61.77%, 44.85%, 
52.89%, 59.14%, 58.50%, and 61.07% of the natural gas futures, citygate, commercial, residential, 
industrial, and power returns, respectively. These results show that the short-term market 
fluctuations contributed most to the behavior of the natural gas futures and physical markets. IMFs 
2–4 also accounted for a large proportion, indicating that the impact of minor or significant events 
can cause large fluctuations in the natural gas futures and physical markets [42,43]. The residual 
terms contributed relatively little to the fluctuations of the natural gas futures and physical markets. 
In the different natural gas markets in the U.S., the internal driving mechanisms are basically the 
same. That is, the U.S. natural gas markets’ fluctuations are mainly caused by short-term 
disequilibrium between market supply and demand and the shock impact of minor or significant 
events, while the long-term market trends contribute little to natural gas fluctuations. This is mainly 
because the pricing of U.S. natural gas is based on the U.S. gas-on-gas pricing system, not on a 
formula linked to oil prices [44–46].

-20
0

20

IM
F1

-10
0

10
IM

F2

-10
0

10

IM
F3

-5
0
5

IM
F4

2004 2006 2008 2010 2012 2014 2016
-5
0
5

R
es

IM
F1

IM
F2

IM
F3

IM
F4

R
es

Figure 2. Decomposition results of natural gas futures and physical monthly returns from January 2002
to March 2017. (a) Futures, (b) Citygate, (c) Commercial, (d) Residential, (e) Industry, (f) Power.

Table 2. Measurements of the extracted modes for futures and physical returns.

Time Scale
(Months)

Mode
Importance a

Time Scale
(Months)

Mode
Importance

Time Scale
(Months)

Mode
Importance

Futures Returns Citygate Returns Commercial Returns

IMF1 2.98 61.77% 3.19 44.85% 3.03 52.89%
IMF2 6.74 14.55% 6.74 28.69% 6.74 17.32%
IMF3 14.00 14.83% 16.55 10.22% 13.00 17.81%
IMF4 36.40 5.52% 36.40 4.56% 36.40 7.11%

Residue 60.67 3.32% 60.67 11.68% 60.67 4.87%

Residential Returns Industry Returns Power Returns

IMF1 3.08 59.14% 3.14 58.50% 2.94 61.07%
IMF2 7.00 21.30% 7.00 15.29% 6.74 18.03%
IMF3 15.17 12.60% 15.17 15.64% 15.17 10.02%
IMF4 36.40 4.50% 36.40 8.53% 36.40 5.43%

Residue 60.67 2.46% 60.67 2.04% 60.67 5.45%

Notes: a Mode importance was calculated based on the proportion of the variance of each component that accounted
for the total variances of IMFs (intrinsic mode functions) and the residual item.

To analyze the contribution of each decomposition series to the total fluctuations of the original
series, the proportion of the variance of each decomposition series to the variance of the original series
was measured. Based on the results in Table 2, the IMF1 accounted for the largest proportion of the total
market fluctuations. In particular, the proportion values of IMF1 accounted for 61.77%, 44.85%, 52.89%,
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59.14%, 58.50%, and 61.07% of the natural gas futures, citygate, commercial, residential, industrial, and
power returns, respectively. These results show that the short-term market fluctuations contributed
most to the behavior of the natural gas futures and physical markets. IMFs 2–4 also accounted for a
large proportion, indicating that the impact of minor or significant events can cause large fluctuations
in the natural gas futures and physical markets [42,43]. The residual terms contributed relatively
little to the fluctuations of the natural gas futures and physical markets. In the different natural gas
markets in the U.S., the internal driving mechanisms are basically the same. That is, the U.S. natural
gas markets’ fluctuations are mainly caused by short-term disequilibrium between market supply
and demand and the shock impact of minor or significant events, while the long-term market trends
contribute little to natural gas fluctuations. This is mainly because the pricing of U.S. natural gas is
based on the U.S. gas-on-gas pricing system, not on a formula linked to oil prices [44–46].

4.2. Analysis of Physical and Futures Gas Market Integration

The degree of integration of the futures and physical natural gas markets was analyzed from a
multiscale perspective in this study. Figure 3 shows the minimum spanning trees of the return systems
of the futures and physical natural gas markets from January 2002 to March 2017 on the original data
level and different time scales, where the numbers indicate the distance between the two kinds of
natural gas markets. The network structures of the minimum spanning trees were the same on the
different time scales. The results show that the linkage between the futures and physical gas markets
was similar at various time horizons, and the linkage was stable across different time scales. Specifically,
the minimum spanning trees of IMFs for physical gas markets exhibited the same core structures. The
citygate returns were always the core of the physical gas markets.

Figure 4 presents the average path length of the monthly minimum spanning tree of the physical
and futures gas markets on the original data level and different time scales. Here, the average path
length of the minimum spanning trees showed some differences for the different time scales. However,
these results did not show an obvious trend. The average path length of the minimum spanning
trees ranged from 0.6 to 1, which also shows that the physical and futures natural gas markets are
highly integrated on different time scales. This result was also similar to the findings of Arano and
Velikova [22], Arano and Velikova [23], Apergis et al. [25], and Ghoddusi [26]. However, these previous
studies provided strong evidence of high integration only for the futures, upstream, and downstream
gas markets on the original data level. Therefore, this study confirmed new evidence and extended the
previous literature on multi-time scales.
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4.3. Linear Granger Causality Analysis

The stationary characteristics of the original and decomposition series were tested, and the results
of the augmented Dickey–Fuller (ADF) [47] and Phillips–Perron (PP) [48] unit root tests are shown in
Table 3, which suggested that all series are stationary (the results of the unit root test for the IMFs and
residual series can be provided upon request). In addition, the structural breaks in the time series may
have caused the natural gas price behavior to change, thus affecting the results of the unit root test. In
this study, the unit root test allowing for a single exogenous structural break, as proposed by Zivot and
Andrews [49], was employed. As shown in Table 3, the results indicated that the original futures and
physical returns are stationary, and were not affected by the structural breaks. Meanwhile, most of
these structural breaks mainly occurred in 2005/9, 2005/10, and 2006/1, due to the North American shale
gas revolution that happened around 2006 [44,46]. Next, the results of the linear Granger causality test
between the natural gas futures and physical markets on the multi-time scales are shown in Table 4.
For the original data level, only a unidirectional linear Granger causality from the natural gas futures
to all of the physical gas returns was found at the 5% significance level. This result was consistent with
the findings of Ghoddusi [26]. Price movements in the natural gas futures market can be expected to
cause the change of prices in the wholesale and end-use markets.

Table 3. Unit test results of original futures and physical returns.

Futures Citygate Commercial Residential Industry Power

ADF test −5.036 *** −4.650 *** −4.900 *** −6.879 *** −5.333 *** −5.248 ***
PP test −12.146 *** −12.352 *** −10.171 *** −12.882 *** −12.219 *** −11.729 ***

Zivot–Andrews test −12.578 ** −12.931 *** −10.907 *** −7.151 *** −7.104 ** −7.014 *
Break point 2005/9 2005/10 2005/10 2006/1 2005/10 2005/10

Notes: *, **, or *** denote the significance at the 10%, 5%, or 1% levels, respectively.

For the short time scale, a bidirectional linear Granger causality between natural gas futures and
all of the physical gas returns was found at the 5% significance level, showing that short-term market
fluctuations can be conducted between the futures and physical markets. For the medium time scale,
a unidirectional linear Granger causality from the natural gas futures to citygate returns was found
at the 5% significance level. However, a bidirectional linear Granger causality between the natural
gas futures and other physical markets was found at the 5% significance level in most cases. For the
long-term scale, a unidirectional linear Granger causality was found only from natural gas futures to
citygate, commercial, and industry returns, while no evidence was found for a linear Granger causality
between natural gas futures and residential and power returns. For the long-term relationship, this
result was similar to Ghoddusi [26], who found that futures returns are co-integrated with power,
industrial, and citygate returns but not for commercial and residential returns. Both of these results
showed that a long-term relationship does not exist between futures returns and residential returns.

In summary, our results extended the findings of Ghoddusi [26] to multiple time scales. Indeed,
the time scales have an impact on the linear relationship between futures and physical markets. The
relationship between futures and physical gas returns is not constant across various time scales. Due to
differences in the market price behavior in the short-term and long-term scales, the linear relationship
between futures and physical markets changes on different time horizons. These results also showed
that the multi-time scales should be considered when the complex linkage mechanisms between futures
and physical markets are explored.
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Table 4. Multiscale linear Granger causality between the futures and physical returns.

Time scale Series Lag a
H0: Futures does not

Cause End Use
H0: End Use does not

Cause Future Results

χ2 p-Value χ2 p-Value

The Futures and Citygate Returns

Original level Original 1 263.141 0.000 1.551 0.213 Futures=>Citygate
Short scale IMF1 2 89.965 0.000 11.866 0.003 Futures<=>Citygate

Medium scale IMF2 6 40.914 0.000 9.310 0.157 Futures=>Citygate
IMF3 8 17.498 0.025 13.889 0.085 Futures=>Citygate
IMF4 7 16.445 0.021 13.627 0.058 Futures=>Citygate

Long scale Residue 7 16.824 0.019 12.403 0.088 Futures=>Citygate

The Futures and Commercial Returns

Original level Original 2 320.617 0.000 4.306 0.116 Futures=>Commercial
Short scale IMF1 2 109.852 0.000 18.250 0.000 Futures<=>Commercial

Medium scale IMF2 9 37.973 0.000 19.942 0.018 Futures<=>Commercial
IMF3 7 20.657 0.004 16.983 0.018 Futures<=>Commercial
IMF4 6 35.171 0.000 11.700 0.069 Futures=>Commercial

Long scale Residue 7 23.369 0.002 7.301 0.398 Futures=>Commercial

The Futures and Residential Returns

Original level Original 2 109.293 0.000 1.808 0.405 Futures=>Residential
Short scale IMF1 4 17.716 0.001 13.255 0.010 Futures<=>Residential

Medium scale IMF2 13 23.260 0.039 26.269 0.016 Futures<=>Residential
IMF3 7 10.642 0.155 33.514 0.000 Futures<=Residential
IMF4 6 26.883 0.000 13.721 0.033 Futures<=>Residential

Long scale Residue 6 6.574 0.362 2.123 0.908 ×

The Futures and Industry Returns

Original level Original 3 449.585 0.000 3.016 0.389 Futures=>Industry
Short scale IMF1 2 112.413 0.000 15.634 0.000 Futures<=>Industry

Medium scale IMF2 8 59.573 0.000 24.521 0.002 Futures<=>Industry
IMF3 7 10.169 0.179 10.321 0.171 ×

IMF4 7 16.898 0.018 8.073 0.326 Futures=>Industry
Long scale Residue 6 165.127 0.000 9.253 0.160 Futures=>Industry

The Futures and Power Returns

Original level Original 12 49.706 0.000 9.929 0.622 Futures=>Power
Short scale IMF1 4 10.807 0.029 12.814 0.012 Futures<=>Power

Medium scale IMF2 9 12.645 0.179 15.180 0.086 ×

IMF3 9 11.641 0.234 32.456 0.000 Futures<=Power
IMF4 6 40.878 0.000 16.918 0.010 Futures<=>Power

Long scale Residue 7 8.724 0.273 11.681 0.112 ×

Note: a The lag number is determined based on the Akaike information criterion (AIC).

4.4. Results of the Brock, Dechert, and Scheinkman (BDS) Test

To test whether the original return and decomposition series had embedded nonlinear
characteristics, the BDS test [50] was employed to explore the time series filtered by the GARCH (1,1)
model. If the null hypothesis of the time series as independent and identically distributed was rejected,
this would indicate that the time series had nonlinear features. Hence, a nonlinear Granger causality
test was needed to capture the nonlinear linkage mechanism. Table 5 shows the results of the BDS test.
The results showed that except for the original series of the GARCH (1,1), filtering the residuals for the
natural gas futures and physical returns was not significant at the 5% level; all the other series rejected
the null hypothesis, indicating that they had embedded nonlinear characteristics.
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Table 5. Results of the Brock, Dechert, and Scheinkman (BDS) test from the GARCH (1,1) residuals of
futures and physical returns.

Embedding
Dimension

(m)

Futures Citygate Commercial Residential Industry Power

BDS Statistics

Panel A: Original Data

2 −0.000242 −0.000194 −0.006822 0.004069 0.002344 0.000862
3 0.002275 0.001693 −0.006713 0.006209 −0.002661 0.009104
4 −0.000154 −0.006946 −0.012462 0.001728 −0.002791 0.010231
5 −0.008789 −0.003270 −0.020357 −0.008917 0.001533 0.002638
6 −0.005726 −0.002051 −0.015795 −0.006580 0.003544 0.001586

Panel B: IMF1

2 0.009649 ** −0.001624 −0.001430 0.006643 0.005070 0.001176
3 0.014303 ** 0.005992 0.014652 ** 0.019381 *** 0.017581 ** 0.018367 **
4 0.016011 ** 0.012205 0.020392 ** 0.021703 *** 0.026312 *** 0.025183 ***
5 0.011084 0.006276 0.017401 ** 0.014263 0.028664 *** 0.027411 ***
6 0.007941 0.002248 0.010723 0.011620 0.025706 *** 0.021482 **

Panel C: IMF2

2 0.013157 *** 0.022336 *** 0.014046 *** 0.015443 *** 0.013528 *** 0.032496 ***
3 0.049803 *** 0.052713 *** 0.037088 *** 0.052437 *** 0.050860 *** 0.063068 ***
4 0.080175 *** 0.076892 *** 0.064649 *** 0.089276 *** 0.083164 *** 0.094598 ***
5 0.089173 *** 0.083481 *** 0.078703 *** 0.103173 *** 0.093653 *** 0.105608 ***
6 0.091791 *** 0.087128 *** 0.078959 *** 0.101795 *** 0.096219 *** 0.107025 ***

Panel D: IMF3

2 0.104119 *** 0.109942 *** 0.100339 *** 0.082090 *** 0.104806 *** 0.112725 ***
3 0.152274 *** 0.158026 *** 0.140181 *** 0.117750 *** 0.151637 *** 0.166554 ***
4 0.174473 *** 0.175693 *** 0.152239 *** 0.137345 *** 0.172999 *** 0.192427 ***
5 0.182647 *** 0.183153 *** 0.153129 *** 0.147097 *** 0.180768 *** 0.208371 ***
6 0.184341 *** 0.184094 *** 0.149664 *** 0.147675 *** 0.180516 *** 0.218008 ***

Panel E: IMF4

2 0.139982 *** 0.146683 *** 0.138056 *** 0.141213 *** 0.143374 *** 0.136818 ***
3 0.224853 *** 0.232634 *** 0.214129 *** 0.227818 *** 0.224551 *** 0.211520 ***
4 0.267462 *** 0.276486 *** 0.249845 *** 0.271217 *** 0.263199 *** 0.248084 ***
5 0.281226 *** 0.291718 *** 0.258628 *** 0.287203 *** 0.272559 *** 0.262538 ***
6 0.276956 *** 0.288511 *** 0.251665 *** 0.285178 *** 0.262900 *** 0.270274 ***

Panel F: Residue

2 0.159631 *** 0.159043 *** 0.156567 *** 0.151490 *** 0.165270 *** 0.170011 ***
3 0.255517 *** 0.254679 *** 0.265158 *** 0.266841 *** 0.265031 *** 0.278411 ***
4 0.307311 *** 0.306801 *** 0.329372 *** 0.337955 *** 0.321713 *** 0.341470 ***
5 0.328593 *** 0.329975 *** 0.362891 *** 0.378317 *** 0.360273 *** 0.372463 ***
6 0.329477 *** 0.334311 *** 0.375025 *** 0.397153 *** 0.378444 *** 0.382278 ***

Note: ** or *** denote the significant nonlinear dependencies at 5% or 1% levels of significance, respectively.

4.5. Nonlinear Granger Causality Analysis between Futures and Physical Markets from the GARCH (1,1)

This section describes our extension of the previous findings and discusses the results under a
nonlinear causality framework. Based on this study’s sample size, according to Diks and Panchenko [40],
the lag period was set to 6, the bandwidth parameter was set to 8, the theoretical optimisation rate was
set to 2/7, and the optimal bandwidth was set to 1.81 (according to Diks and Panchenko (2006), the
bandwidth was calculated by the following: εn = max(Cn−2/7, 1.5), Cn−2/7 = 1.811502). Tables 6–10
present the results of the multiscale nonlinear Granger causality test between futures and physical
gas markets.
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4.5.1. Nonlinear Granger Causality Analysis between Futures and Citygate Returns

On the original data level, only a unidirectional nonlinear causality was found from the gas futures
to citygate returns. For the short-term scale, the results for IMF1 showed that a bidirectional nonlinear
causality between the gas futures and citygate returns was found at the 5% significance level. For the
medium-term scale, the nonlinear Granger causality test indicated that a bidirectional nonlinear Granger
relationship existed between them at the 5% significance level for IMF2, but not for IMF3 and IMF4. For
the long-term scale, no evidence of nonlinear causality could be found, unlike the linear Granger test,
which showed that a unidirectional linear causality was found from the futures to citygate returns.

Table 6. Multiscale nonlinear Granger causality between futures and citygate returns.

Lx = Ly
H0: Futures does not

Cause Citygate
H0: Citygate does
not Cause Futures

H0: Futures does not
Cause Citygate

H0: Citygate does
not Cause Futures

Tn Tn Tn Tn

Panel A: Original data Panel D: IMF3

1 4.837 *** 0.670 0.033 1.956 **
2 4.073 *** 0.893 0.554 1.792 **
3 3.479 *** 0.024 0.505 1.442
4 2.872 *** −0.382 1.060 1.679 **
5 2.645 *** −0.188 1.197 1.539
6 2.638 *** −0.725 1.547 1.752 **

Panel B: IMF1 Panel E: IMF4

1 3.192 *** 3.025 *** 0.338 1.906 **
2 1.942 ** 2.680 *** 0.036 1.723 **
3 1.790 ** 1.737 ** 0.030 1.411
4 1.683 ** 1.670 ** −0.028 1.393
5 0.850 1.324 0.156 1.177
6 0.782 1.569 0.350 1.165

Panel C: IMF2 Panel F: Residue

1 3.554 *** 2.080 ** −0.630 0.058
2 2.673 *** 0.747 −0.758 −0.115
3 2.133 ** 1.050 −0.901 −0.264
4 1.639 1.166 −0.721 −0.153
5 1.776 ** 1.589 0.067 −0.182
6 1.712 ** 1.874 ** 0.379 −0.108

Note: ** or *** denote significance at the 5% or 1% levels, respectively.

4.5.2. Nonlinear Granger Causality Analysis between Futures and Commercial Returns

For the original data level, the test showed that only a unidirectional nonlinear causality existed
from the futures to commercial returns. For the short-term scale, the results for IMF1 show that a
bidirectional nonlinear Granger causality existed between the natural gas futures and commercial
returns. For the medium-term time scale, the nonlinear Granger causality test supports that a
unidirectional nonlinear Granger causality was significant at the 1% confidence level from the natural
gas futures to commercial returns for IMF2 and IMF4. For the long-term scale, the test showed that a
nonlinear Granger causality did not exist between the two market returns.
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Table 7. Multiscale nonlinear Granger causality between futures and commercial returns.

Lx = Ly
H0: Futures does not
Cause Commercial

H0: Commercial does
not Cause Futures

H0: Futures does not
Cause Commercial

H0: Commercial does
not Cause Futures

Tn Tn Tn Tn

Panel A: Original data Panel D: IMF3

1 5.963 *** 0.522 2.468 *** −0.312
2 5.009 *** −0.014 2.409 *** −0.644
3 4.155 *** 0.941 2.413 *** −0.034
4 3.647 *** 1.427 1.759 ** 1.779 **
5 3.371 *** 1.321 1.425 2.450 ***
6 2.879 *** 1.301 1.042 1.996 **

Panel B: IMF1 Panel E: IMF4

1 4.292 *** 2.454 *** 1.319 * −0.001
2 3.361 *** 1.858 ** 1.073 −0.124
3 2.613 *** 1.523 1.041 0.009
4 1.776 ** 1.265 0.915 0.686
5 1.446 0.951 0.926 1.077
6 1.195 0.467 0.769 1.151

Panel C: IMF2 Panel F: Residue

1 2.919 *** 2.418 *** 1.155 0.840
2 1.859 ** 1.991 ** 1.023 0.620
3 2.007 ** 1.992 ** 1.067 0.255
4 1.856 ** 2.329 *** 1.206 0.411
5 1.996 ** 2.498 *** 1.308 1.066
6 1.821 ** 2.368 *** 1.299 1.380

Note: ** or *** denote significance at the 5% or 1% levels, respectively.

4.5.3. Nonlinear Granger Causality Analysis between Futures and Residential Returns

For the original data level, the test showed that only a unidirectional nonlinear Granger causality
existed from the natural gas futures to residential returns. For the short-term scale, the results for IMF1
showed that a unidirectional nonlinear Granger causality existed from the natural gas residential to
futures returns. For the medium-term time scale, the nonlinear Granger causality test supported the
idea that a bidirectional nonlinear Granger causality was significant at the 5% confidence level between
the natural gas futures and commercial returns for IMF2. For the long-term scale, the test showed a
unidirectional nonlinear Granger causality from futures to residential returns, which was unlike the
results of the linear causality test in which no causality evidence was found between the futures and
residential returns on the long-term scale.

Table 8. Multiscale nonlinear Granger causality between futures and residential returns.

Lx = Ly
H0: Futures does not

Cause Residential
H0: Residential does

not Cause Futures
H0: Futures does not

Cause Residential
H0: Residential does

not Cause Futures

Tn Tn Tn Tn

Panel A: Original data Panel D: IMF3

1 3.280 *** −0.820 1.481 −0.478
2 2.555 *** −0.692 1.151 −0.255
3 2.001 ** −0.760 1.558 0.587
4 1.523 −1.190 0.732 0.901
5 2.124 ** −0.267 0.242 1.297
6 2.207 ** −0.692 0.077 1.300
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Table 8. Cont.

Lx = Ly
H0: Futures does not

Cause Residential
H0: Residential does

not Cause Futures
H0: Futures does not

Cause Residential
H0: Residential does

not Cause Futures

Tn Tn Tn Tn

Panel B: IMF1 Panel E: IMF4

1 0.947 2.063 ** 1.399 −1.424
2 0.484 1.402 1.775 ** −0.867
3 0.823 1.451 1.888 ** −0.379
4 −0.433 1.057 1.906 ** 0.268
5 −0.625 −0.322 1.719 ** 0.811
6 −0.439 −0.684 1.791 ** 0.701

Panel C: IMF2 Panel F: Residue

1 2.157 ** 2.211 ** 1.802 ** −0.232
2 0.857 2.069 ** 1.690 ** −0.241
3 0.450 1.726 ** 1.526 −0.171
4 0.445 2.656 *** 1.474 −0.354
5 0.660 2.262 ** 1.661 ** −0.133
6 0.335 2.324 ** 1.671 ** −0.115

Note: ** or *** denote significance at the 5% or 1% levels, respectively.

4.5.4. Nonlinear Granger Causality Analysis between Futures and Industry Returns

For the original data level, the test showed that only a unidirectional nonlinear Granger causality
from the natural gas futures to industrial returns existed. For the short-term scale, a significant
bidirectional nonlinear Granger causality was found for IMF1 between the natural gas futures and
industrial returns at the 5% confidence level. For the medium-term scale, the nonlinear Granger
causality test at the 5% significance level indicated that a bidirectional nonlinear Granger causality
existed between the natural gas futures and industrial returns for IMFs 2 and 3. For the long term, the
test showed that no nonlinear Granger causality existed between the two market returns.

Table 9. Multiscale nonlinear Granger causality between futures and industry returns.

Lx = Ly
H0: Futures does

not cause Industry
H0: Industry does
not cause Futures

H0: Futures does
not cause Industry

H0: Industry does
not cause Futures

Tn Tn Tn Tn

Panel A: Original data Panel D: IMF3

1 5.937 *** 1.190 1.373 1.409
2 4.202 *** 0.356 1.446 1.582
3 3.894 *** −0.123 2.196 ** 1.679 **
4 3.634 *** 0.499 2.815 *** 1.320
5 3.042 *** 0.296 2.655 *** 1.157
6 2.713 *** −0.445 2.444 *** 1.180

Panel B: IMF1 Panel E: IMF4

1 4.595 *** 1.508 1.387 0.961
2 3.408 *** 2.149 ** 1.211 1.054
3 3.088 *** 0.744 1.035 1.015
4 2.315 ** −0.453 0.780 0.884
5 1.560 −0.312 0.691 1.004
6 0.957 0.068 1.234 0.970
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Table 9. Cont.

Lx = Ly
H0: Futures does

not cause Industry
H0: Industry does
not cause Futures

H0: Futures does
not cause Industry

H0: Industry does
not cause Futures

Tn Tn Tn Tn

Panel C: IMF2 Panel F: Residue

1 4.523 *** 3.418 *** 0.848 0.263
2 3.274 *** 2.072 ** 0.820 0.279
3 2.942 *** 2.280 ** 0.776 0.199
4 2.983 *** 2.640 *** 0.559 0.103
5 3.316 *** 2.409 *** 0.354 −0.020
6 3.362 *** 2.106 ** 0.387 −0.132

Note: ** or *** denote significance at the 5% or 1% levels, respectively.

4.5.5. Nonlinear Granger Causality Analysis between Futures and Power Returns

For the original data level, the test found that a unidirectional nonlinear Granger causality
existed from the natural gas futures to power returns. For the short-term scale, the nonlinear Granger
causality test results for IMF1 from the power to natural gas futures returns were insignificant at the 5%
confidence level. On the medium-term scale, the nonlinear Granger causality test at the 5% significance
level indicated a bidirectional nonlinear Granger causality between the natural gas futures and power
returns for IMF2. For the long term, the test showed that a nonlinear Granger causality did not exist
between the two market returns.

Table 10. Multiscale nonlinear Granger causality between futures and power returns.

Lx = Ly
H0: Futures does
not Cause Power

H0: Power does
not Cause Futures

H0: Futures does
not Cause Power

H0: Power does
not Cause Futures

Tn Tn Tn Tn

Panel A: Original data Panel D: IMF3

1 2.211 ** 0.954 0.069 1.968 **
2 1.524 0.319 0.597 1.786 **
3 0.906 0.250 1.189 1.776 **
4 0.981 −0.059 1.497 1.993 **
5 0.684 0.137 2.212 ** 2.137 **
6 0.678 −0.420 1.999 ** 2.109 **

Panel B: IMF1 Panel E: IMF4

1 0.204 2.852 *** −1.183 1.802 **
2 −0.153 2.352 *** −1.049 1.740 **
3 −0.315 2.666 *** −0.865 1.648 **
4 0.406 2.264 ** −1.209 1.343
5 0.274 1.821 ** −1.181 1.338
6 0.031 1.596 −0.700 1.142

Panel C: IMF2 Panel F: Residue

1 1.864 ** 2.635 *** 1.033 −0.108
2 1.392 2.255 ** 1.103 −0.245
3 0.966 2.123 ** 1.110 −0.427
4 0.949 1.642 1.052 0.061
5 0.973 1.634 1.140 0.305
6 0.816 1.580 0.948 0.331

Note: ** or *** denote significance at the 5% or 1% levels, respectively.

In summary, such nonlinear evidence effectively supplemented the results of the linear
causality test, while also providing new evidence to support Ghoddusi [26] and Ghoddusi and
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Emamzadehfard [27]. On the medium-term scale, the nonlinear test found that bidirectional causality
existed between futures and all of the physical returns, while the linear test showed that no evidence
of causality between futures and city gate could be found. The nonlinear test also found unidirectional
causality from futures to residential returns for the long-term scales. As can be seen, it is indeed
important to consider nonlinear features when explaining the complex linkages between futures and
physical gas markets. Furthermore, the relationship was strengthened between futures and physical
gas returns on the short- and medium-term scales, while it became weak on the long-term time scale.

4.6. Sensitivity Analysis

The natural gas market is an uncertain environment and is often impacted by significant extreme
events, such as the North American shale gas revolution or the 2008 Global Financial Crisis. In order
to ensure the robustness of the empirical results, a sensitivity analysis was carried out. Thus, this study
divided the full sample into two subsamples, and investigated whether the results of the subsamples
were consistent with the results of the full sample, considering the impact of the North American shale
gas revolution and the 2008 Global Financial Crisis on the full sample. Referring to Geng et al. [44]
and Aruga [51], we divided the full sample into two subsamples. The first subsample period ranged
from January 2002 to September 2009, and the second subsample period ranged from October 2009 to
March 2017.

The minimum spanning trees for natural gas futures and physical markets on the original data
level during the two subsample periods are shown in Figure 5. The structure of the minimum spanning
trees in the first sample was the same as the one in the second subsample, which was also consistent
with the results of the full sample. Furthermore, the linear Granger causality between the futures and
physical returns on the original data level during the two subsample periods is shown in Table 11.
Most of the results of the two subsamples were consistent with the results of the full sample. Nonlinear
Granger causality results between the futures and physical returns on the original data level during
the two subsample periods are shown in Table 12, which were also consistent with the results of the
full sample. Given space limitations, the results of the IMFs and residual series will be provided upon
request. These results supported the robustness of the empirical results of the full sample. The results
also mean that while the uncertain environment will indeed influence the changes of natural gas prices,
it is difficult to affect the integrated relationship between natural gas futures and physical markets.
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Table 11. Linear Granger causality between the futures and physical returns on the original data level
during the two subsample periods.

Series Lag a
H0: Futures does

not Cause End Use
H0: End Use does
not Cause Future Results

χ2 p-Value χ2 p-Value

During the First Subsample Period

Futures and Citygate 4 176.263 0.0000 10.201 0.0372 Futures<=>Citygate
Futures and Commercial 1 232.584 0.0000 1.815 0.1779 Futures=> Commercial
Futures and Residential 4 43.649 0.0000 2.577 0.6310 Futures=> Residential

Futures and Industry 3 193.330 0.0000 5.766 0.1236 Futures=> Industry
Futures and Power 3 36.211 0.000 15.665 0.0013 Futures<=> Power

During the Second Subsample Period

Futures and Citygate 1 52.512 0.0000 0.007 0.9342 Futures=>Citygate
Futures and Commercial 6 87.561 0.0000 8.467 0.2058 Futures=> Commercial
Futures and Residential 12 38.649 0.0010 14.784 0.2534 Futures=> Residential

Futures and Industry 13 216.141 0.0000 16.614 0.2176 Futures=> Industry
Futures and Power 3 10.388 0.0155 6.895 0.0753 Futures=> Power

Note: a The lag number was determined based on the AIC.

Table 12. Nonlinear Granger causality between the futures and physical returns on the original data
level during the two subsample periods.

Y-Variables X|Y Y|X Y-Variables X|Y Y|X

During the first subsample period During the second subsample period

Citygate *** Citygate ***
Commercial *** Commercial ***
Residential ** Residential **

Industry *** Industry ***
Power * Power *

Note: The test was done in two directions: X means futures returns; X|Y implies variable X Granger-causes variable
Y; and Y|X implies variable Y Granger-causes variable X. *, **, or *** denote significance at the 10%, 5%, or 1%
levels, respectively.

5. Conclusions and Policy Implications

The minimum spanning tree graphic showed that a unified market has already formed for the
futures and physical gas markets. The network structures of the minimum spanning trees were the
same on various time horizons. Specifically, the citygate returns were always the core of the physical
gas markets. Moreover, high integration always existed for the physical and futures natural gas
markets on different time scales. Furthermore, the direction of the causality between the futures and
physical markets was comprehensively clarified, showing that the causality direction between the
futures and physical gas returns behaves differently across time scales. For the long term, the futures
gas returns only had a linear causality with the citygate, commercial, and industry gas returns, and a
unidirectional nonlinear causality with residential gas returns.

At various horizons, this study’s findings can provide new information on natural gas futures
and physical markets for energy policy makers and market participants. In the short term, policy
makers and market participants need to be concerned about potential shock impacts on the physical
gas markets regarding the price uncertainty of the futures markets. At the same time, they need to
pay more attention to the impact of supply and demand information in the physical gas markets, and
how this may affect the natural gas futures market. In the medium term, they should focus on the
market conduction effect of the resulting fluctuations of natural gas futures on the physical markets
and the variations of the citygate prices. The related medium-term adjusting strategies related to
the citygate prices could have a significant impact on the integration of the futures and downstream
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end-use gas markets. In the long term, policy makers and market participants should focus on the
long-term evolution patterns of the futures gas market, because long-term policy of the gas futures
market will have an impact on the long-term trends of the natural gas physical markets, with the
exception of the power returns.

This study’s findings can be treated as a reference sample when energy policy makers regulate
their domestic gas markets or when market participants make investment, production, storage, and
consumption plans with various time horizons. Though some differences in the domestic gas markets
of different countries exist, this study’s findings also have significant policy implications for other
countries. Of course, further analyses of the complex linkage mechanisms in other countries or regions
could be a future research avenue, one that can help generalize this study’s findings.
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