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Abstract: Information and communication technology development has yielded large-scale
spatiotemporal datasets, such as mobile phone, automatic collection system, and car-hailing data,
which have resulted in new opportunities to investigate urban transportation systems. However,
few studies have focused on regional mobility patterns. This study presents a multistep method for
exploring traffic analysis zone (TAZ)-based mobility patterns and the corresponding relations with
local land use characteristics. Based on a large-scale mobile phone dataset from a major mobile phone
operator in Beijing, we applied the K-means clustering algorithm to the hourly aggregated trip data
to create clusters of TAZs with similar temporal mobility patterns. Land use characteristics were then
derived and correlated with the temporal TAZ-based mobility patterns. Four clusters of TAZs with
the similar patterns and intensities of urban activities during given time windows were identified.
Land use indicators, such as residence and commercial and business area indicators, were correlated
with specific temporal TAZ-based mobility patterns. The proposed multistep method could be applied
in other cities to enrich relevant analyses and improve urban design and transportation planning.

Keywords: mobile phone data; mobility patterns; clustering; logit model; regional-oriented demand
management policy

1. Introduction

Understanding urban mobility patterns is important for transportation planning and transportation
demand management policy designation. Regular commuting travel demands and irregular leisure
travel demands in the subdivisions of a specific geographical area (e.g., traffic analysis zones or grids)
can result in different urban mobility patterns [1]. For example, commuting-related trips represent
regular flows between residential areas and business areas, and leisure-based trips that occur in
off-work hours are often stochastic movements. Regional-oriented demand strategies may efficiently
alleviate traffic congestion. To this end, knowledge of regional-based human mobility patterns could
contribute toward establishing planning and management policies.

Currently, urban mobility patterns are generally based on digital footprints, which have benefited
from the development of information and communication technology (ICT). Data sources, such as
cellular networks [1], GPS devices [2], and Wi-Fi hotspots [3], provide a new opportunity to study
the underlying urban mobility patterns. In the existing literature, there are many studies of mobility
patterns. Studies can be largely categorized into three groups from the perspective of the research
focus: (i) studies of individual mobility mechanisms from a micro-perspective [4–6], (ii) studies of
aggregate mobility characteristics [7–11], and (iii) studies of the interactions between mobility patterns
and land use characteristics [12–14]. These three categories are not independent. We review some
typical works in the remainder of this section.

Sustainability 2019, 11, 5452; doi:10.3390/su11195452 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/2071-1050/11/19/5452?type=check_update&version=1
http://dx.doi.org/10.3390/su11195452
http://www.mdpi.com/journal/sustainability


Sustainability 2019, 11, 5452 2 of 15

For the first two categories, mobility patterns are usually studied via metrics derived from
individual trips [15,16]. Large-scale and high-dimension spatiotemporal datasets are regarded as a
reasonable proxy of human mobility. Oliveira showed that human mobility habits are similar regardless
of the nature of the dataset, which was based on datasets from eight major world cities [17]. Many studies
have investigated the characteristics of regularity in urban areas. For example, Ma proposed a
framework that is capable of identifying the travel patterns of individual transit riders and grouping
the corresponding regularity patterns [18]. Ma focused on transit commuters, identified their travel
regularities based on continuous long-term observations, and extracted individual-level residence
and workplace data [19]. Yan and Jiang studied the aggregate mobility patterns by exploring the
distance distribution at different spatial scales [7,9]. Zhang investigated the statistical properties of
taxi trips to characterize travel patterns at seasonal, weekly, and daily time scales [8]. Yang proposed
a method to measure the regularity of travelers and to predict travelers’ future movement between
visited locations [10], whereas Mendoza discovered the regularity mobility patterns for identifying
a predictable aggregate ridesharing supply [11]. Identifying and explaining individual mobility
patterns are priorities in studies of collective mobility patterns. However, these studies focus on
human-based mobility patterns, and regional mobility patterns and macro-perspective patterns have
been less studied.

To contribute to transportation planning over a longer time window, studies have focused on
geographical area subdivision-based travel patterns and labeled geographical area subdivisions with
distinct characteristics. Clustering algorithms and feature extraction methods are the most popular
methods of grouping different geographical area subdivisions. Kang developed a framework to detect
spatial taxi operation patterns using matrix factorization, and several typical taxi demand regions and
taxi supply regions were investigated [20]. Demissie applied the fuzzy c-means clustering algorithm to
categorize locations with the same features using cellphone data instead of trip data [21]. The pattern
and intensity of urban activities with similar features were detected. However, the detected locations
were only a reflection of a subset of the population during a given time window, and the travel
tendencies associated with this location were ignored. Alexander clustered locations into groups given
the observed duration at each location; these locations were inferred to be a home, workplace, or other
location depending on the day of the week and time of day [22]. Yong used matrix factorization and
correlation analysis to extract the stable/occasional components from the collective human mobility
data for the Beijing subway [23]. Although these findings provide insights into the subway’s operations
and management, subway networks are biased samples. Call detail records (CDRs) can be regarded
as the most complete record of daily mobility, which covers all travel modes. Aniello revealed the
demand distribution among different zones and identified the land use through analyzing the outgoing
calls for each zone [24]. Wang revealed hidden patterns in urban road usage for reducing travel time
via using CDRs [25].

Urban activities result in different travel patterns over different time windows, and heterogeneous
travel patterns departing from or arriving at different geographical area subdivisions reflect urban land
use characteristics. To further explain travel patterns, cellular phone data, GPS data, auto fare collection
system (AFC) datasets, and land use characteristic datasets can be combined to assess the relations
among land use and travel patterns. Notably, land use characteristics affect physical activity [26].
Thus, detailed insight into spatiotemporal travel patterns can be obtained by considering a land use
dataset [27,28]. The relationships between land use characteristics and bus rapid transit (BRT) station
demands were examined in [28], and the results suggested that the extent of developable land around
a station determines the BRT traffic flow. After mining passenger routes among all metro stations and
exploring the spatial heterogeneity of the dynamic space, Gong found that check in/out passenger flows
are highly related to the land use structure around metro stations [13]. Gan studied the relationship
between mobility patterns and land use in the Nanjing metro, and metro stations were classified into
classes with different travel characteristics [29]. The relations between land use characteristics and
mobility patterns can be investigated using correlation analysis. Correlation analysis can identify the
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mobility patterns at a given location specifically due to the existing land use characteristics. Thus,
the influence of land use characteristics on mobility patterns should be further discussed at a large
geographical scale.

In summary, most studies have focused on investigating mobility patterns. Groups of individuals
with different mobility patterns and their corresponding impact factors have been extensively studied.
However, there is still room for improvement in research on this topic.

i Regional-based mobility patterns, which can provide macro-insights into mobility patterns,
have not been fully analyzed.

ii The influence of regional land use on mobility patterns has not been studied from a quantitative
perspective.

To achieve these improvements, we develop and implement a multistep method using
mobile phone data and point-of-interest (POI) data to analyze traffic analysis zone (TAZ)-based
mobility patterns and explore the relations between land use characteristics and mobility patterns.
The contributions of this work are as follows.

• We categorize the TAZs with similar daily TAZ-based mobility patterns into different groups.
The travel intensity and differences in departure and arrival are used to separate each group.

• We investigate the relations between land use characteristics and mobility patterns. The occurrence
probability of different mobility patterns with respect to the relevant land use characteristics is
explored from a quantitative perspective.

• We apply our workflow to a real-world dataset in a selected metropolitan area of Beijing, China.

The remainder of the paper is organized as follows. The next section presents the methodology,
followed by empirical analysis. Finally, we conclude the paper.

2. Methodology

To assess the relationship of TAZ-based mobility patterns and land use characteristics, TAZ-based
mobility patterns identification and land use characteristics representation are the preliminary methods.
A clustering method is an efficient method to distinguish TAZ-based mobility patterns while considering
hourly generation and attraction mobility trips in each TAZ. We first used cluster analysis to categorize
TAZs into different groups based on arrival and departure mobility patterns with similar temporal
profiles. Then, we needed to find a good representation of a TAZ’s land use characteristics due to
the urban planning map not being publicly available. Based on this, we introduced a method to
characterize the land use type within TAZs using POI data. As for the relationship of discretized
TAZ-based mobility patterns and land use characteristics corresponding to each TAZ-based mobility
pattern group, multinomial logit regression could interpret its interactions. Finally, we investigated the
possibility of creating different mobility pattern groups with respect to different land use characteristics
using a multinomial logit model. The workflow of this study is shown in Figure 1.

2.1. Cluster Analysis

In general, popular approaches to defining the variables in a time series cluster analysis consist of
using the statistical characteristics of mobility patterns or directly using the mobility patterns. The first
type of approach extracts key features from mobility patterns as candidate variables. The latter is a
straightforward method of representing the daily mobility patterns of a TAZ.

Let Xi = (xi1, . . . , xid, . . . xin) denote a mobility pattern observation for TAZ i, where n represents
the dimension of the attributes being clustered and d = 1, . . . , n denotes the indices of the attributes.
Specifically, xid may indicate the departure/arrival trips in time window d. We use X = {X1, . . . , Xm}

T

to represent all the mobility patterns, with I = 1, . . . , m denoting the TAZ index.
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Mobility patterns vary by TAZ over the course of the day, and the mobility patterns in all time
windows can be combined to obtain the overall mobility pattern information. Because hourly mobility
patterns are corresponding to each TAZ, hourly departure and arrival trips can be used as variables.
Here, we use the number of hourly arrival and departure trips as candidate variables in cluster analysis.
To this effect, each TAZ has 48 (departure/arrival trips × 24-h time windows) variables for the cluster
analysis. It is necessary to perform normalization to account for the different land use characteristics
among TAZs. The normalization equation is expressed as follows:

Zi j =
Xi j − µ j

σ j
(1)

where Xi j is the i-th hourly number of trips being normalized in TAZ j, µ j is the arithmetic mean of
the hourly number of trips in TAZ j, and σ j is the standard deviation of the hourly number of trips in
TAZ j.

Among all clustering methods, K-means clustering is generally considered one of the most basic
clustering algorithms based on the centroid model [30]. One weakness of the K-means method is the
number of clusters that need to be predetermined. As a result, an objective criterion is required to
assess clustering performance because the optimal value of K is often difficult to constrain. Therefore,
we applied the Davies and Bouldin [31] index and Silhouette [32] index to determine the optimal cluster
number K. Then, we applied the K-means algorithm to partition the observations into K clusters.

2.2. Constructing Land Use Vectors Using POI Data

To assess the relations between mobility patterns and land use characteristics, a land use
characteristic dataset is needed. In general, the POI dataset collected by the Google Place API [33] has
been used to represent land use characteristics.

A POI consists of a category, name, and location (latitude and longitude). For each TAZ, we can
learn the land use structure in a TAZ by computing the term frequency-inverse document frequency
(TF-IDF) using POIs [34]. Specifically, this variable is calculated as follows.

For a given TAZ Ti, i = 1, . . . , m, a POI vector, fi =
(
vi1, . . . , vi j, . . . , viC

)
, can be obtained, where vi j

(j = 1, . . . , C) is the TF-IDF value of the j-th POI category and C is the number of POI categories.
The TF-IDF value vi j is given as follows:

vi j =
n j

Ni
× log

m∣∣∣∣∣∣Ti j
∣∣∣∣∣∣ (2)
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The TF term is on the left-hand side of Equation (2), where n j represents the number of POIs
belonging to the j-th category and Ni represents the number of POIs in TAZ Ti. The IDF term is the
total number of TAZs m divided by the number of TAZs that include the j-th POI category. Then,
the logarithm of that result is calculated. Ti j indicates the number of TAZs that include the j-th
POI category.

2.3. Multinomial Logit Model

Land use characteristics are coupled with human travel patterns [26]. To this end, the regional
mobility patterns can be changed when the land use characteristics are changed in the long time window.
Note that the change of land use characteristics results from the urban long-term dynamic mechanism,
which involves many factors, such as policy, population changes, traffic network, and so forth.
Building a model that explains this complex mechanism requires more data and more comprehensive
knowledge, which was not available to this study. Therefore, we attempted to establish the relations
between traffic analysis zone-based mobility patterns and land use characteristics rather than discussing
urban long-term dynamic mechanisms.

In this study, we defined the relations as the probability of different mobility patterns being
associated with different land use types. The relations could be captured by a discrete choice model,
such as a logit or multinomial logit model. As discretized TAZ-based mobility patterns in urban
areas may be more than two categories, a multinomial logit model can generalize logit regression
for multivariable problems. Specifically, it is a model that is used to predict the probabilities of the
different possible outcomes of a categorically distributed dependent variable, given a set of independent
variables. A multinomial logit model with j dependent variables is:

P(yi = j
∣∣∣Xi) =

eUi j∑J
j=1 eUi j

(3)

where Ui j is utility functions of a multinomial logit model and Xi is the vector of independent variables.
The utility function indicates the utility extent of independent variables Xi being causally linked to a
j-th dependent variable, and it can be formulated as:

Ui j = β jXi + εi j (4)

where β j is the coefficient, and εi j is an error term subjected to the Gumbel distribution. Parameters
can be estimated using the maximum likelihood. The fitness of the model can be evaluated using
pseudo-R2, which is as follows:

R2 = 1−
LL(β)
LL(0)

(5)

In general, R2 ranges from 0 to 1. A higher R2 indicates a good fitness of the model, and vice versa.
Mcfadden found that a model has a good interpretation and prediction performance when R2 is bigger
than 0.2 [35].

This model can predict the probabilities of the different possible outcomes of a categorically
distributed dependent variable given a set of independent variables. The results can show how
mobility patterns and land use are causally linked. Here, clusters of TAZs with different mobility
patterns are categorically distributed dependent variables, and land use characteristics are a set of
independent variables. By combining the cluster results and POI vectors in TAZs, a multinomial logit
model was established to investigate the relations between land use and TAZ-based mobility patterns.
The probability of a TAZ being categorized into a given cluster is described as follows:

P(yi = j
∣∣∣Xi) =

eXiβ j∑J
j=1 eXiβ j

(6)
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where yi indicates TAZ i being categorized into cluster j, and J is the number of categorized
TAZ-based mobility patterns. In this approach, the relationship between mobility patterns and
land use characteristics can be reflected by this coefficient. Moreover, a multinomial logit model
is a nonlinear model, and the coefficient could not represent the marginal utility of each land use
characteristic for TAZ-based mobility patterns. In fact, the marginal utility of the independent variable
is the partial derivative of the probability of categorized TAZ-based mobility patterns. For the marginal
influence of a certain independent variable, its value is when other variables remain unchanged and
the independent variable changes 1 unit for the TAZ-based mobility patterns.

3. Case Study

3.1. Study Area and Data Description

Beijing covers a total area of 16,410.54 square kilometers. Six ring roads segment urban areas
into several subdivisions with unbalanced job and housing distributions. Inhabitants within the Sixth
Ring Road account for 78% of the total permanent population in the city, and 43% of this population is
within the Fifth Ring Road. Inhabitants between the Fifth Ring Road and Sixth Ring Road are centrally
distributed around several large residential communities. Additionally, 80% of workplaces are located
within the Sixth Ring Road, and 51% are within the Fifth Ring Road. Few workplaces are available
between the Fifth and Sixth Ring Roads [36]. In this context, urban areas within the Fifth Ring Road
and some large residential communities between the Fifth Ring Road and the Sixth Ring Road were
selected as the study area. Figure 2a shows the spatial residence and workplace distributions within
the Sixth Ring Road from the POI dataset.
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Figure 2. Study area and the TAZs and cell towers. (a) Study area and the spatial residence and
workplace distributions, and (b) cell tower distribution within TAZs.

We investigated the relationship between TAZ-based mobility patterns and land use characteristics
based on large-scale, high-penetration mobile phone data and POI data. Data descriptions are given
below, and the preparation of each dataset is described.

Beijing has a high number of mobile phone users. By the end of 2018, the average number of mobile
phones owned per 100 persons among inhabitants was 172.9 [37]. Here, we first used anonymized
mobile phone CDRs from Beijing for the period from 1 June to 7 June 2015 as our original trajectory
dataset. The data were collected by one large mobile operator in Beijing whose subscribers account for
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67% of all mobile phone users. CDRs are made up of millions of records that are triggered by events
such as calls and short messaging services (SMS), or by regular updates of the network. Each record
has an anonymized user ID, cell location, and timestamp.

TAZ is a spatial unit of planning area used for Beijing transportation planning purposes by
the Beijing transportation institute. There are 1127 TAZs in the study area with sizes ranging from
0.13 square kilometers to 10.31 square kilometers. Figure 2b exhibit the relationship between TAZs
and cell towers. As the number of cell towers in a TAZ depends on the land use type and population
within a TAZ, the TAZ boundary is used for dividing the cell towers into different TAZs. We analyzed
the phone users at the tower level to estimate generation/attraction at the TAZ level.

In this study, we only focused on the mobility patterns on weekdays, and we adopted 18 million
anonymous user records from 1 June to 5 June 2015 to extract traveler trip information. The mobile
phone data were cleaned and processed as follows.

Step 1: We removed records in which the user ID, timestamp, or coordinates were missing.
Step 2: Of the selected data records, 18,096,128 unique user IDs were identified. We only used the data

from users with more than one base station location recorded. Then, we ranked the records by
user ID and timestamp in ascending order.

Step 3: Using the records, we could extract trips from mobile phone data by following a commonly
used method [21]. Given that we focused on human mobility pattern profiles within TAZs,
if a user was recorded at a mobile phone base station, we simply mapped the user to the TAZ
where the base station was located.

Step 4: One day was split into 24-time windows. For each hourly time window t, we pinpointed the
origin and destination TAZ in which each mobile phone user was located. Then, we aggregated
the movements with the same origin and destination TAZs into time window t.

Step 5: Inter-TAZ trips were extracted, and trips with the same origin and destination were not
considered. In this step, the hourly numbers of arrival and departure trips in each TAZ
were determined. The number of trips was scaled by the mobile operator market share
(m = 1/0.67 ≈ 1.5).

3.2. Results of the Cluster Analysis

In this section, we first examined the results of tests for K = 2 to K = 10 derived from the average
Silhouette index and Davies–Bouldin index, where the optimal number should be 4 according to the
Silhouette index and Davies–Bouldin index. Consequently, 1127 TAZs were categorized into four
groups. Then, we built the temporal mobility patterns and spatial distribution profiles of each group
of TAZs in Figures 3 and 4. The four groups of mobility patterns exhibited different characteristics.

From a temporal perspective, Figure 3 shows a clear difference in the total amount of travel
intensity for each group, and the average travel intensity of TAZs decreased in the order of clusters
1 to 4. Here, travel intensity depicted the total number of hourly departure and arrival trips in a
TAZ. Additionally, the variations in mobility patterns during each time window were investigated by
presenting the first and third quartiles of the total trips in each panel of Figure 3. Finally, we defined
each group of TAZs based on the corresponding travel intensity as follows:

• significant travel intensity TAZs (cluster 1, including 78 TAZs);
• normal travel intensity TAZs (cluster 2, including 249 TAZs);
• moderate travel intensity TAZs (cluster 3, including 362 TAZs); and
• low travel intensity TAZs (cluster 4, including 438 TAZs).

Cluster 1: For both arrival and departure trips in cluster 1, the highest hourly number of trips
could reach 2000. Figure 3a shows that the changes in the number of hourly trips in this cluster were
higher than those in other clusters. Thus, the travel intensity of cluster 1 was high, but this value
was less distinguishable among other clusters. Additionally, the ratios of departure trips to arrival
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trips and hourly trips to the total number of trips were the highest among all clusters (Figure 3b,c).
This result suggested that these types of TAZs were attraction-oriented during the morning peak hours
and generation-oriented in the afternoon peak hours. In reality, the temporal distribution of trips was
unbalanced, and the peak-hour characteristics were prominent in these TAZs compared to those in
other types of TAZs. This cluster represented the temporal profile of workplace-oriented TAZs.

Cluster 2: For both the arrival and departure trips in cluster 2, the highest number of hourly trips
for normal travel intensity TAZs was less than 1200. The temporal profiles of departure trips and
arrival trips exhibited similar peaks, and there was a slight difference between the number of trips in
peak hours and the total number of daily trips (Figure 3d,e). As shown in Figure 3f, these TAZs shared
some common characteristics: the generation and attraction travel intensities were nearly balanced,
with a ratio above 85%. Slight differences, however, were observed from departure trips to arrival
trips, and this finding was similar to that for cluster 1, but vastly different than the results for the other
two groups. With the temporal mobility profiles and travel intensities, we could determine that this
cluster reflected the travel activities and patterns in residential areas. Because commuters often made
sequentially planned movements for various purposes in the afternoon peak hours [1], it was unlikely
that there would be a significant difference between the average number of departures and arrivals.
These TAZs were usually located in urban residential communities or the community outside the
Fifth Ring Road, where job housing was relatively abundant. Overall, this cluster mainly included
residence-oriented TAZs.

Cluster 3: In this cluster, TAZs with a maximum of 800 average hourly trips were classified as
having a moderate travel intensity. For arrival trips, a large variance was observed during morning
peak hours, but this variance was still lower than those for cluster 1 and cluster 2 (Figure 3g). The ratio
of the number of trips during peak hours to the total amount of daily trips displayed few differences
(Figure 3h), indicating a balance between departure trips and arrival trips in the same time window.
Moreover, the generation and attraction difference between the morning peak and afternoon peak was
the smallest among the four groups, as shown in Figure 3i. As indicated by Figure 4, the clusters in this
group were mainly located in the areas neighboring residential communities and workplaces. Thus,
these TAZs had low population densities and travel intensities, and most trips passed through these
areas rather than originating or departing from them. Consequently, the intensity level was moderate
for these TAZs.

Cluster 4: The remaining TAZs, with no more than 300 departure and arrival trips on average,
were associated with a low travel intensity pattern that varied greatly during a given time window.
As shown in Figure 4, these types of TAZs were located in less-developed urban areas and at the
margins of residential communities and some green land use areas. Thus, these TAZs corresponded
to few human movements, usually including stochastic trips. Given that the travel intensity of this
cluster was markedly lower than those of other clusters, the average hourly numbers of arrival and
departure trips accounted for a significant proportion of the total number of daily trips (Figure 3k).
Moreover, the numbers of arrival trips and departure trips during peak hours were nearly the same
(Figure 3l). There was no significant population entering or exiting these TAZs during a given time
window, and population changes were relatively stable over the course of a day.

By fixing the peak hours of the day, we determined the ratio of peak-hour trips to the total number
of daily trips and the ratio of departure trips to arrival trips, as seen in Figure 3. Note that the TAZs in
cluster 1 tended to have high differences (Figure 3b,c), indicating that departure trips and arrival trips
were imbalanced, particularly during peak hours. Additionally, departure and arrival trips in TAZs
with low travel intensities, such as clusters 3 and 4, tended to be relatively balanced.

From a spatial perspective, as shown in Figure 4, travel activities were concentrated in particular
areas of Beijing. The spatial distributions were concentrated within the east Third Ring Road and east
Fourth Ring Road, and TAZs with significant travel intensities were observed outside the Fifth Ring
Road. For example, there was a higher travel demand within the north Fifth Ring Road than within
the Sixth Ring Road because it included a large residential community.
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Figure 3. Average hourly number of departure and arrival trips for each cluster. (a,d,g,j) show the
comparison of average hourly number of trips for clusters 1 to 4, respectively; (b,e,h,k) indicate the
ratio of the amount of arrival/departure trips in peak hours to the total daily trips for clusters 1 to 4,
respectively; (c,f,i,l) indicate the ratio of departure trips to arrival trips in peak hours for clusters 1 to 4,
respectively. Peak hours were 7:00–9:00 and 17:00–19:00.
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3.3. Relationship between TAZ-Based Mobility Patterns and Land Use Characteristics

Previous studies have been conducted to assess the relationship between traveling activities and
land use characteristics [38]. These studies, which focused on the statistical correlations, identified a
close relationship between land use and mobility patterns. This section examines the co-occurrence
probabilities among different TAZ-based mobility patterns and land use characteristics derived from
POI data.

As TAZ-based mobility patterns are specific to different locations with different urban functions,
POI data and clustered TAZs, in combination, can reveal important information about mobility patterns.
Figure 5 displays the distribution of land use characteristics through the averaged land use vector
obtained using Equation (2). Note that there were seven dense points in the heat map, and labels were
given beside the dense points.

For land use vectors in all TAZs, cluster 1 was dominated by the workplace land use type, and the
residence land use type was dominant in cluster 2. Cluster 3 was characterized by commercial and
entertainment land use types, such as life services and catering businesses, which were associated
with moderate travel intensities. Cluster 4, however, had the highest proportions of train and metro
stations, bus stations, parks and squares, and scenic spots, indicating that TAZs in Cluster 4 tended to
be characterized by the public facility land use type.

Overall, the trips extracted from mobile phone data identified the entire travel process.
Because “last-mile” and “first-mile” strategies are prevalent in large cities, bus stations and metro
stations are usually the transfer point during a trip. Thus, in addition to the green land use type,
urban infrastructure-like transportation facilities could fall into Cluster 4.
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In general, workplaces, residences, green land use areas, and public facilities, such as bus stations,
accounted for a significant proportion of all land use indicators. Other elements in the POI vector were
not obvious, and we merged POI categories together to increase the observed counts. After merging the
POI points into administrative area, commercial and business area, residence, transportation facility,
and green area and square categories, a multinomial logit model was used to investigate the relations
between TAZ-based mobility patterns and land use indicators. The results are shown in Table 1.

The model took cluster 4 as a reference dataset. As described previously, cluster 4 included a
group of TAZs with low travel intensities and no obvious differences in departure and arrival trips
during peak hours. Other clusters were used to investigate the reasonability of assigning selected
clusters to reference datasets. The coefficient reflected the risk probability of assigning a TAZ with
specific land use characteristics to the reference cluster. The coefficient of these clusters could thus be
used to represent the occurrence probabilities of different mobility patterns with respect to the relevant
land use characteristics.

For a given cluster, a positive coefficient indicated low similarity with cluster 4, and vice versa.
This result verified that clear relations existed among land use characteristics and TAZ-based mobility
patterns. As expected, the administrative area and commercial and business area categories largely
influenced TAZ-based mobility patterns, such as those in cluster 1. It was likely that travelers would
arrive at these locations from 7:00–9:00; then, travelers would start their trip home between 17:00
and 19:00. Although the risk of unreasonably grouping residences and transportation facilities may
increase, these categories had little effect on the results because of the small coefficient. As shown in
Figure 4, the Shangdi, Zhongguancun, central business district (CBD), and Fengtaikejiyuan TAZs were
categorized into cluster 1, which was characterized by typical workplace land use types. Additionally,
some transfer metro stations, such as Pingguoyuan Metro (MRT) Station, Pingxifu MRT Station,
and Guoyuan MRT Station, shared the characteristics of TAZs in cluster 1.

For cluster 2, the positive coefficient for residences reflected the average travel intensity of the
corresponding TAZs and the observed departure-oriented phenomenon in the morning peak hours.
A large proportion of the residence land use type in a TAZ would increase the possibility of grouping
this TAZ into cluster 2. However, the negative coefficient in cluster 2 indicated a low probability of
having administrative areas and commercial and business areas in cluster 2. This coefficient was
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generally positive for locations that included residence communities, such as Tiantongyuan and
Fangzhuang (Figure 4).

For TAZs in cluster 3, the inclusion of transportation facilities and green land use types influenced
the distinct temporal profile of cluster 3. As indicated by Figure 4, cluster 3 had a moderate travel
intensity due to the marginal locations of the TAZs in the cluster in residential and workplace areas.
As a result, the locations of transportation facilities had a significant impact on the temporal mobility
patterns of cluster 3. In addition to workplaces and residences, the TAZs within the Fourth Ring Road
were generally categorized into cluster 3 and were more scattered than those outside the Fourth Ring
Road (Figure 4).

Table 1. Regression results of the multinomial logit model (based on cluster 4).

Independent Variables
Cluster 1 Cluster 2 Cluster 3

Coefficient p Coefficient p Coefficient p

Constant −6.006 0.2841 2.728 0.1291 −6.264 0.3655
Administrative areas 0.298 ** 0.0367 −0.114 0.1719 −0.279 0.2685

Commercial and business areas 0.482 *** 0.0086 −0.290 * 0.0660 −0.491 0.1907
Residences 0.032 0.1218 0.311 *** 0.0026 −0.027 0.2972

Transportation facilities 0.007 0.2283 −0.009 0.2847 0.014 ** 0.0333
Green areas and squares −0.017 0.3136 0.016 0.1333 0.005 0.3984

R2 0.289

* Indicates significance at the 0.1 level; ** Indicates significance at the 0.05 level; *** Indicates significance at the
0.01 level.

4. Discussion

For the TAZ-based mobility patterns, there were four types of TAZs with different travel intensities.
We defined these groups as high travel intensity TAZs, normal travel intensity TAZs, moderate travel
intensity TAZs, and low travel intensity TAZs. The categorized TAZs and land use indicators derived
from POI data were combined to reveal the important semantic information associated with each
group. The details are given as follows.

• Cluster 1 had a high travel intensity and a notable difference in the numbers of hourly arrival
trips and departure trips during peak hours. This finding suggests that TAZs in this group were
arrival-oriented in the morning and departure-oriented in the afternoon.

• The TAZs in cluster 2 had a departure tendency (versus arrivals) in the morning and an
arrival tendency (versus departures) in the afternoon. Therefore, these TAZs mostly included
residence-oriented land use types.

• The TAZs with moderate travel intensities were assigned to cluster 3. Significant differences in
the numbers of departure and arrival trips did not exist because this group of TAZs was mainly
located in neighboring residential communities and workplaces.

• The remainder of the TAZs with the smallest travel intensity belonged to Cluster 4, and most of
them were located in less-developed urban areas and green land use areas.

Regarding the relations between TAZ-based mobility patterns and land use indicators, the results
of the multinomial logit model indicated that land use indicators, such as residence and commercial and
business area indicators, were correlated with specific temporal TAZ-based mobility patterns. Notably,
the results suggested that an imbalanced land use distribution could produce significant differences
between arrival trips and departure trips during peak hours. A high proportion of workplace land
use types would likely result in temporal TAZ-based mobility patterns similar to those of cluster 1.
Likewise, a dominance of residences in a TAZ could lead to temporal TAZ-based mobility patterns
similar to those of cluster 2. These TAZ categorization results could be used to design TAZ-based
demand management strategies.
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5. Conclusions

The development of ICT has allowed the human “digital footprint” to be widely used in
transportation systems. This ability has resulted in new opportunities, but also major challenges,
for transportation planners. The consideration of this information can affect how transportation systems
and demand management policies are designed and implemented. Many studies have focused on
analyzing human mobility patterns. Limited research efforts have been devoted to revealing TAZ-based
mobility patterns. In this study, we analyzed a mobile phone dataset and a POI dataset. Based on
millions of trips extracted from mobile phone data, we built TAZ-based temporal mobility pattern
profiles and categorized urban areas into four groups. A multinomial logit model was then used
to investigate the relations between TAZ-based mobility patterns and local land use characteristics.
The following findings were obtained. From a methodological perspective, we built a multistep
methodology to reveal the TAZ-based mobility patterns and study the occurrence probability of
different mobility patterns with respect to the relevant land use characteristics. To determine the
TAZ-based mobility patterns, an unsupervised clustering algorithm was applied to categorize TAZs
with different temporal mobility profiles into several groups. Additionally, a multinomial logit
model was developed to calculate the occurrence probability of different mobility patterns with
respect to the different land use characteristics. From the perspective of our case study, previous
studies that focused on individual or collective mobility patterns provided insights into the human
mobility patterns in Beijing. Here, we focused on identifying the temporal mobility patterns in
TAZs and determining what types of land use characteristics shaped mobility patterns. Through the
interpretation of our findings, we recognize the necessity for further work. First, future studies
should investigate the TAZ-based mobility patterns over different time periods, such as weekdays,
weekends, and seasons. Second, more cross-validation studies need to be done. We acknowledge that
the origin and destination identification method using mobile phone data is not sensitive to short trips.
As a result, more cross-validation analyses combining data, such as AFC and GPS datasets, are needed.
Finally, comparative and empirical studies across cities can enrich the TAZ-base mobility patterns in
the future.
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