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Abstract: With the development of distributed energy resources (DERs) and advancements in
technology, microgrids (MGs) appear primed to become an even more integral part of the future
distribution grid. In order to transition to the smart grid of the future, MGs must be properly
managed and controlled. This paper proposes a microgrid energy management system (MGEMS)
based on a hybrid control algorithm that combines Transactive Control (TC) and Model Predictive
Control (MPC) for an efficient management of DERs in prosumer-centric networked MGs. A locally
installed home energy management system (HEMS) determines a charge schedule for the battery
electric vehicle (BEV) and a charge–discharge schedule for the solar photovoltaic (PV) and battery
energy storage system (BESS) to reduce residential customers’ operation cost and to improve their
overall savings. The proposed networked MGEMS strategy was implemented in IEEE 33-bus test
system and evaluated under different BEV and PV-BESS penetration scenarios to study the potential
impact that large amounts of BEV and PV-BESS systems can have on the distribution system and
how different pricing mechanisms can mitigate these impacts. Test results indicate that our proposed
MGEMS strategy shows potential to reduce peak load and power losses as well as to enhance
customers’ savings.

Keywords: battery energy storage; electric vehicle; microgrid; model predictive control; monte carlo
simulation; transactive control

1. Introduction

Over the past years, technological developments have driven an increase in distributed energy
resources (DERs) across the distribution network, particularly at the demand side. DERs are changing
the electrical landscape from a conventional demand-driven power grid to a transactive supply
following energy system, where customers (as electricity consumers and/or producers) are actively
engaged in transactions and participate in the operation and management of the power grid [1–3].
Although the overall installed capacity of DERs is still significantly low, projections indicate a ramp-up
in the coming years. According to the U.S. Energy Information Administration (EIA), solar photovoltaic
(PV) generation at the distribution level (utility-scale and small-scale) has grown 232% over the past
five years (2014–2018), going from a total net generation of 28,925 MWh in 2014 to 96,147 MWh in
2018 [4]. Moreover, the EIA in its 2019 annual energy outlook projects that electricity generation from
solar PV will reach 15% of total U.S. electricity generation by 2050 [5].
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On another front, transportation has also been experiencing important changes around the world.
According to the international energy agency (IEA), in 2017, a new milestone was reached with more
than 3 million battery electric vehicles (BEVs) on the road worldwide [6]. Furthermore, the same report
projects the worldwide BEV fleet to reach 13 million and 130 million by 2020 and 2030, respectively.
Thus, it can be seen that, in the next few years, the increase in BEVs and solar PV generation will cause
various integration challenges on the electric grid. The current power grid was not designed to host the
increase of load caused by BEV charging and power-flow fluctuations caused by solar PV generation,
especially low-voltage distribution networks.

In this regard, Microgrids (MGs), as shown in Figure 1, are considered a key asset of the power grid
of the future as they can be used to manage the increasing levels of DERs [7]. MGs are autonomously
managed and powered sections of the electrical distribution grid that can be as small as a single building
or as large as a downtown area or neighborhood. MGs equipped with advanced communication
and control technology can enable coordination between the distribution system and other MGs.
Networking of multiple MGs (networked MGs), also known as community MGs, MG cluster, or MG
clustering, share a common geographic region and can provide a variety of benefits, e.g., increased
efficiency, reliability, and resiliency. Moreover, in the future smart grid, networked MGs could help
mitigate the variability of DERs and allow consumers and prosumers to transact and exchange energy
(i) among each other and (ii) with other MGs and (iii) to participate in a local retail market providing
ancillary services with the rest of the distribution system [8].
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Different approaches are proposed in the existing literature to manage and control networked
MGs [9–18]. The role of networked MGs as distributed energy systems to improve power-grid
resiliency during extreme weather events is analyzed in Reference [9]. In Reference [10], a multilayered
control architecture based on a large-signal model has been proposed to regulate voltage magnitude
and frequency as well as output power of DERs within networked MGs. Primary frequency control
to support switching transients for networked MGs is reported in Reference [11]. A method for
energy-storage dispatch and renewable energy resource sharing in a network of grid-connected MGs
to reduce electricity costs is presented in Reference [12]. Shi et al. [13] proposed a distributed energy
management strategy formulated as an optimal power-flow problem for the optimal operation of MGs
with consideration of the distribution network and the associated constraints. A priority-based energy
scheduling mechanism for distribution networks with multiple MGs is described in Reference [14].
Gregoratti and Matamoros [15] addressed a multiple-MG energy-trading strategy in order to minimize
the global operation cost while satisfying local energy demand of MGs. A most valuable player
algorithm is presented in Reference [16] to optimize the scheduling of the generation units and battery
storage of an MG. In Reference [17], a distribution grid service market is proposed to provide voltage
stability services in MGs. A demand-side management scheme for cost minimization in a residential
MG using strawberry and cuckoo search algorithms is discussed in Reference [18].
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Although network-MG control and management has been widely studied [7–18], many of these
studies fail to analyze the impacts that these approaches might have on conventional distribution
networks. As in some cases, the distribution network is not considered [12,15] and in other cases,
a simplified version is considered [10,11,13,14]. Thus, some of the solutions obtained from the
aforementioned algorithms might be infeasible in practice. Also, most of these studies fail to consider
customer willingness to participate in their control strategies, assuming customer participation as a
given, i.e., no incentives are offered for customer participation. A transactive control (TC) approach
can be used to incentivize customer participation and to help manage DERs in an MG.

A TC is a market-based distributed mechanism that can combine multiple objectives and constraints
using uniform transactive incentive signals (TIS) and transactive feedback signals (TFS) [1]. These
signals propagate through a communication network where the TC is embedded in the electrical
network. TIS and TFS are two different signals with TIS representing the actual delivered cost of
electric energy ($/kWh) and TFS dealing with the net electric load (kW) at a specific system location.
In recent years, TC-mechanism use in smart grids and MG applications has been studied due to its
potential for an efficient DER management and the creation of opportunities to engage in transactions
between the different entities that constitute the electrical distribution system, e.g., electric utility and
customers. A review of the state-of-the-art of transactive energy systems and concepts are presented
in Reference [19]. The potential benefits of TCs were reported in the Pacific Northwest Smart Grid
Demonstration project, where the TCs were functional and operational in a variety of pilot projects
ranging from MG applications up to wholesale market level transactions [20]. In Reference [21],
a transactive bilateral energy-trading mechanism is proposed to minimize the costs for individual
participants and to ensure the reliability and security of the distribution system, where Nash bargaining
theory and alternating direction method of multipliers (ADMM) are used to model the problem. A
multi-agent transactive energy-management framework for networked MGs is presented in [22]. The
multi-agent system manages energy imbalances in the MGs, using demand response and battery energy
storage systems (BESS) with the objective of minimizing the costs for MG customers. A multi-agent
system is also proposed in Reference [23], where an auction-based locational marginal price (LMP)
is used to motivate the energy transactions among MGs. In Reference [24], a day-ahead transactive
market framework is proposed for DER scheduling to reduce local supply costs. TCs are used for BEV
charging in References [25–27]. A TC based on model predictive control (MPC) is used for real-time
scheduling of BEVs in Reference [25], where the MPC is used to clear a day-ahead transactive market.
In Reference [26], the charging demand of the BEV is used to manage uncertainties of the building PV
generation. Hu et al. [27] implemented a TC with the purpose of minimizing the BEV-charging cost
as well as of preventing grid congestion and voltage violations. A reactive power incentive program
to maintain distribution-system reliability is presented in Reference [28]. In Reference [29], a Nash
bargaining formulation is proposed for energy trading between networked MGs for MG operation cost
reduction. A TC coupled with a pricing rule is proposed for grid-connected, islanded, and congested
networked MGs in Reference [30]. DC MGs have also been studied for application of TCs [31–33].
In Reference [31], a framework is proposed for short-term operation of DERs, controllable demands,
and MGs in a transactive energy architecture, with a focus on the distributed energy management of
hybrid AC/DC microgrids. Jingpeng et al. [32] presented a centralized energy-management system
approach based on transactive energy to reduce the total operation cost and to achieve efficiency in a
DC residential system. In Reference [33], a transactive energy-management system for supply/demand
coordination with demand response programs was implemented to manage rural DC MGs.

Several other models have been proposed for BEV charging/discharging and pricing
scheduling [34–39]. The impact of variable prices on the behavior of BEV users is studied in
Reference [34], where the variable prices are determined based on the calculation of distribution
locational marginal price (DLMP) and updated continuously based on the users’ trips and behavior.
In Reference [35], an optimal Time-of-Use (TOU) schedule and a controlled BEV-charging algorithm
are used to maximize both customer and utility benefits, and a controlled charging algorithm is
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also proposed to improve thier voltage quality at the EV load locations while avoiding customer
inconvenience. In Reference [36], meta-heuristic techniques are used for charging coordination of BEVs
with simultaneous operation of capacitor switching to minimize power losses and voltage deviation in
a distribution system. Furthermore, a TOU electricity tariff was included in the proposed charging
coordination to reduce the PEV charging cost. Cherikad et al. [37] proposed a distributed dynamic
pricing model for BEV-charging and -discharging scheduling and building energy management in an
MG. Their model consisted of a cloud-software defined networking communication architecture and a
linear optimization approach to achieve efficiency in the MG. Pasetti et al. [38] proposed a model to
estimate the price of BEV charging considering the impacts solar PV generation has on the charging
costs of BEVs. The model estimated the costs considering demand charges and utility loss of revenue
and was compared to a TOU tariff. In Reference [39], a two-stage real-time optimization algorithm is
proposed to recharge a fleet of plug-in BEVs to minimize costs, to avoid creating new peaks in the
demand profile, and to improve use of power system equipment. The optimization algorithm used a
dynamic price signal based on probabilistic models developed using historical price data.

Motivated by the promising benefits of using TCs, this paper proposes a hybrid control mechanism
based on the combination of TC and MPC for an efficient management of DERs in prosumer-centric
networked MGs. Hereinafter, the proposed control approach is termed TC+MPC. This paper further
presents a detailed analysis of the impacts (economical and technical) produced by the TC+MPC within
the MGs, and the distribution system as a whole is presented. To carry out this analysis, a Monte
Carlo Simulation (MCS) is proposed to consider BEV driving uncertainties and the proposed hybrid
TC+MPC management system is used to manage DERs. The hybrid TC+MPC combines the control
capabilities and features of the MPC with the TIS–TFS signals of the TC, creating a robust control
mechanism that is driven by price signals. The objective of the TC+MPC management system is to
produce optimal BEV charge and solar PV-BESS charge/discharge schedules to significantly reduce the
residential MG customers’ operational cost and to improve their overall savings. The proposed MG
energy-management system (MGEMS) is evaluated considering different case studies and scenarios to
analyze the impacts that BEV and PV-BESS systems can have on the distribution network.

To the best knowledge of the authors, the proposed hybrid control mechanism, i.e., TC combined
with MPC and MCS, has not been applied in the area of networked microgrid energy-management
systems, thereby advancing the state-of-the-art in controlling mechanisms for networked MGs. In
contrast to the existing literature, the major contributions of this paper to the state-of-the-art are the
following:

1. Development of a new hybrid TC+MPC control mechanism to manage DERs (BEVs, solar PV, and
BESS) of networked MGs constituted by consumer groups (CGs) and prosumer groups (PCGs)
and detailed study of their behavior while being incentivized by different price signals;

2. Development of TIS and TFS signals, where TIS is based on distribution locational marginal price
(DLMP) and distribution system conditions, whereas TFS development is based on CG/PCG net
load and BEV driving patterns generated by MCS.

3. Detailed analysis of the impacts on the distribution grid due to the use of TCs for DER management,
i.e., bus voltage and power loss impacts.

4. Detailed cost/savings analysis for consumers/prosumers under different pricing rates when they
are equipped with BEVs, solar PV, and hybrid solar PV-BESS systems.

In order to evaluate the proposed TC+MPC based energy-management system, five case studies
(with and without PV/BESS and under different price signal scenarios) are conducted on residential
networked MGs based on an IEEE 33-bus test system. The remainder of this paper is organized as
follows. Section 2 details the essential components of the proposed TC+MPC-based MGEMS with the
uncertainty modeling and the incentive signal formulation. Numerical test results and discussion are
presented in Section 3, and Section 4 concludes the paper.
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2. Transactive Control-Based Microgrid Energy-Management System Formulation

This section describes the detailed TC-based MGEMS formulations and comprises the step-by-step
procedures followed by several contextual elements required for the optimization procedure, i.e., MCS,
BEV, and BESS modeling for the MPC, and the schedule optimization process.

2.1. Optimization and Control Procedure

The control hierarchy of the distribution system proposed in this paper is considered to be a
hybrid control approach, which is divided into centralized and decentralized control mechanisms.
The MG controls are assumed to be decentralized as they use the local information (available solar
PV power and state of charge of the BEV and BESS) to optimize and coordinate their schedules. A
centralized control is assumed to be supervised by the distribution system operator (DSO), ensuring
generation–demand balance and providing ancillary services for the whole distribution system.

The initial step is the preparation of the input data, i.e., day-ahead electricity price, residential
load, solar PV power output, and BEV driving patterns. The initial step also requires the definition of
the technical parameters of the DER considered in the case studies, e.g., BEV and BESS battery capacity
and charging limits.

Once the input data is prepared, an MCS is conducted to generate a set of BEV driving patterns.
This step is explained in detail in Section 2.2. The following task is to execute a set of TCs based on
MPC to determine the charge schedule of the BEVs and the charge/discharge schedule of the BESS. The
mathematical models and MPC formulation are presented in Section 2.3. The next task is to assign the
load profiles to each bus in the test system and to run a power-flow simulation to calculate the bus
voltages, DLMP, power generation, and power losses.

The final step in the procedure is to calculate the costs/savings for the consumers/prosumers, net
load, and final BEV and BESS schedules. Figure 2 presents a flow chart of the different steps of the
optimization and control procedure.

Sustainability 2019, 11, x FOR PEER REVIEW 5 of 24 

This section describes the detailed TC-based MGEMS formulations and comprises the step-by-
step procedures followed by several contextual elements required for the optimization procedure, 
i.e., MCS, BEV, and BESS modeling for the MPC, and the schedule optimization process. 

2.1. Optimization and Control Procedure 

The control hierarchy of the distribution system proposed in this paper is considered to be a 
hybrid control approach, which is divided into centralized and decentralized control mechanisms. 
The MG controls are assumed to be decentralized as they use the local information (available solar 
PV power and state of charge of the BEV and BESS) to optimize and coordinate their schedules. A 
centralized control is assumed to be supervised by the distribution system operator (DSO), ensuring 
generation–demand balance and providing ancillary services for the whole distribution system. 

The initial step is the preparation of the input data, i.e., day-ahead electricity price, residential 
load, solar PV power output, and BEV driving patterns. The initial step also requires the definition 
of the technical parameters of the DER considered in the case studies, e.g., BEV and BESS battery 
capacity and charging limits. 

Once the input data is prepared, an MCS is conducted to generate a set of BEV driving patterns. 
This step is explained in detail in Section 2.2. The following task is to execute a set of TCs based on 
MPC to determine the charge schedule of the BEVs and the charge/discharge schedule of the BESS. 
The mathematical models and MPC formulation are presented in Section 2.3. The next task is to 
assign the load profiles to each bus in the test system and to run a power-flow simulation to calculate 
the bus voltages, DLMP, power generation, and power losses. 

The final step in the procedure is to calculate the costs/savings for the consumers/prosumers, net 
load, and final BEV and BESS schedules. Figure 2 presents a flow chart of the different steps of the 
optimization and control procedure. 

 
Figure 2. Flowchart of the proposed optimization and control procedure. 

2.2. Monte Carlo Simulation 

MCS is an accurate technique to estimate probability density functions (PDFs) using historical 
data. In this paper, an MCS is used to generate daily driving patterns of BEVs to represent the 
stochastic nature of BEV charging. The MCS requires historical BEV driving patterns (𝛿) to generate 
a random BEV driving pattern. To consider uncertainties, the underlying stochastic formulation of 
MCS must include two random components: a uniform distribution (𝑅𝑈) and a normal distribution 
(𝑅𝑁). A distribution function to describe the driving behavior of BEV fleets using an MCS was 
developed in Reference [40]. The distribution function used in Reference [40] has been adopted in 
this paper and applied in the MCS. The distribution function used to represent the BEV random 
driving pattern is formulated as follows: 

Figure 2. Flowchart of the proposed optimization and control procedure.

2.2. Monte Carlo Simulation

MCS is an accurate technique to estimate probability density functions (PDFs) using historical
data. In this paper, an MCS is used to generate daily driving patterns of BEVs to represent the stochastic
nature of BEV charging. The MCS requires historical BEV driving patterns (δ) to generate a random
BEV driving pattern. To consider uncertainties, the underlying stochastic formulation of MCS must
include two random components: a uniform distribution (RU) and a normal distribution (RN). A
distribution function to describe the driving behavior of BEV fleets using an MCS was developed in
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Reference [40]. The distribution function used in Reference [40] has been adopted in this paper and
applied in the MCS. The distribution function used to represent the BEV random driving pattern is
formulated as follows:

di
n,k = (δi

k + RUi
n,k) · (1 + RNi

n,k), (1)

where di
n,k is the stochastic driving pattern of BEV i at time period k and scenario n. δi

k is the expected
energy consumption of BEV i at time period k. This process is repeated for a specified number of
scenarios n that ensures convergence over a simulation period t.

Samples of historical data are used for the MCS and are constituted by BEV driving patterns in
terms of BEV battery energy usage [40]. These BEV driving patterns reflect conventional driving by
residential customers and are considered as the base driving patterns.

2.3. Transactive-Model Predictve Control Formulation

MPC, also known as Receding Horizon Control (RHC), has been developed considerably over the
past years and has widely been recognized for its application in academic research and the industry.
MPC is a control methodology that computes an optimal control action based on a model of a dynamic
system and its predicted future evolution [41]. The control objective and the mathematical model are
formulated as an optimization problem that repeatedly computes the control inputs. The objective can
be to maximize profit, to minimize operational costs, or to force a system to follow a predetermined
trajectory. Only the computed inputs associated with the current time step are actuated on the physical
system. A new current model state is estimated regularly when new measurements are available, and
the real-time optimization procedure is repeated.

In this paper, the BEV and BESS batteries are formulated as discrete time space models to be used
in an MPC. The discrete state space model is formulated as follows [41]:

xk+1 = Axk + Buk + Edk k ∈ N, (2)

yk = Cxk k ∈ N, (3)

x(0) = x0, (4)

where xk is the state at time period k, uk is the input variable, yk is the output variable, dk is a random
variable acting on the state transition, A is the state transition matrix, B is the input matrix, E is the
disturbance matrix, C is the output matrix, and x0 is the initial state. In Equation (2), uk represents
the control variable and the battery state of charge (SOC) is equal to the output variable: yk = xk In
the case of the BEV model, BEV driving usage is represented by dk as a disturbance of the battery
SOC. When modeling the BESS, dk represents the residual solar PV power. The BEV daily usage is
modeled using BEV driving patterns generated by the MCS. The state space matrices of the model are
the following Equations (5)–(8).

A = 1, (5)

B = (η/BEVmax)Ts, (6)

C = 1, (7)

E = −(η/BEVmax)Ts, (8)

where η is the BEV or BESS efficiency, BEVmax is the maximum charging of the BEV or BESS, and Ts
is the chosen time sample. The state transition matrix (A) and the output matrix (C) are set to 1 as it
is assumed that no other factors affect the state of charge of the batteries. If other factors were to be
considered (e.g., battery degradation and temperature) to affect the state of charge of the batteries, these
matrices would be modified. For BESS modeling, matrix B is negative and E is positive. The change in
signs of matrices B and E for the BESS model is because the input variable (uk) is now controlling the
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discharge of the battery (decreasing the SOC of the battery) and the solar PV power (dk) is charging the
battery (increasing the SOC of the battery).

2.3.1. Battery Electric Vehicle Schedule Optimization

Adopting the discrete time space model presented in Equations (2)–(8), the optimal BEV charge
schedule is achieved while minimizing the charging costs as shown in the objective function of Equation
(9), which is subject to constraints of Equations (10)–(13).

min F =
N−1∑
k=0

pk ∗ (uBEV,k), (9)

subject to
xBEV,k+1 = AxBEV,k + BuBEV,k + EdBEV,k k ∈ N,

(10)

yBEV,k = CxBEV,k k ∈ N, (11)

uBEVmin ≤ uBEV,k ≤ uBEVmax,k k ∈ N, (12)

yBEVmin ≤ yBEV,k ≤ yBEVmax k ∈ N, (13)

where, in Equation (9), N is the prediction horizon, pk is the electricity price, and uBEV,k is the charging
power. The discharge constraints are not considered for BEV modelling as the BEV discharge is
based on the customer driving patterns and is controlled by the on-board computer of the BEV. From
Equation (10), xBEV,k+1 is the BEV future SOC; yBEV,k is the current battery SOC; and uBEVmin and
uBEVmax,k are the battery minimum and maximum charging power, respectively. The constraint of
Equation (13) represents the minimum and maximum SOC of the battery. The optimal BEV charging
plan uBEV,k will be solved for the determined prediction horizon N. To carry out the simulations and to
determine the optimal charging schedule forecasted, BEV load dBEV,k and electricity price pk are used.

2.3.2. Battery Energy Storage System Schedule optimization

Similar to the BEV, the BESS is modeled as Equations (2)–(8). The objective function of Equation (14)
is to maximize the savings of prosumers by optimizing the BESS discharging schedule subject to
the constraints of Equations (14)–(19). The objective function for the MPC can be formulated as
follows [42,43]:

max F =
N−1∑
k=0

pk ∗ (uBESS,k), (14)

subject to
xBESS,k+1 = AxBESS,k + BuBESS,k + EdBESS,k k ∈ N,

(15)

yBESS,k = CxBESS,k k ∈ N, (16)

uBESSmin ≤ uBESS,k ≤ uBESSmax,k k ∈ N, (17)

dBESSmin ≤ dBESS,k ≤ dBESSmax,k k ∈ N, (18)

yBESSmin ≤ yBESS,k ≤ yBESSmax k ∈ N, (19)

where xBESS,k+1 is the future SOC of the BESS; yBESS,k is the BESS SOC; and uBESSmin and uBESSmax,k
are the BESS minimum and maximum discharging power, respectively. In Equation (18), dBESSmin
and dBESSmax,k are the minimum and maximum charging power of the BESS, respectively, and in
Equation (19), yBESSmin and yBESSmax are the minimum and maximum SOC of the BESS, respectively.
The optimal BESS discharging plan uBESS,k will also be solved for the determined prediction horizon N.
To determine the optimal discharging schedule, forecasted solar PV power (dBESS,k) is considered as
the disturbance.
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2.4. Formulation of Incentive Signals

In this paper, DLMP is considered for energy pricing and used for the TC operation. The DLMPs
are determined by minimizing the cost of generation considering the physical constraints of the
distribution system, which exposes producers and consumers to the marginal cost of electricity delivery
at different locations. The DLMP is constructed based on three components: (i) the wholesale locational
marginal price (LMP), (ii) system conditions (available generation, load demand, and losses), and
(iii) uplift costs (operation and maintenance costs). The LMP is defined as the marginal increase in the
overall system costs for the additional per-unit active power consumption at each transmission bus. For
simulation purposes, it is assumed that the DSO receives the LMP, determines the DLMP at each bus
of the distribution network for the next day, and updates the DLMP in an hourly manner. Equations
(20) and (21) describe the calculations for TIS and TFS, respectively [43]. The TIS is formulated in the
following manner:

TISi,t = DLMPt + LCt + TOC + LOLCt, (20)

where DLMPt is the DLMP at time t, LCt is the cost of distribution losses at time t, TOC is the total
owning costs of the transformer, and (LOLC) the penalty cost for transformer loss of life. The estimated
transformer TOC considers the initial transformer cost and the cost to operate and maintain the
transformer over its life. The transformer LOLC is estimated based on the loading of the transformer.
Similarly, TFS signal represents the net load of the customer and is calculated as follows:

TFSi,t = Di,t + BEVLi,t, (21)

where Di,t is the demand of customer i at time t and BEVLi,t is the BEV charging demand of customer i
at time t.

The TIS and TFS signals are used in the MPC formulations presented in Sections 2.3.1 and 2.3.2 to
create a hybrid TC+MPC mechanism. This is achieved by replacing the electricity price pk with the TIS
and by employing the TFS as a disturbance in the MPC discrete time space models.

3. Numerical Results and Discussion

In this section, case studies are presented to test the proposed hybrid TC+MPC scheduling method
on an IEEE 33-bus radial distribution system. For simulation purposes, BEV penetration is considered
based on the EV30@30 campaign [44]. The EV30@30 campaign was launched at the Eighth Clean
Energy Ministerial in 2017 in which the collective goal for all Electric Vehicle Initiative members is to
reach a 30% market share for BEVs by 2030. In the case studies, a total of 242 households are assumed
to be located in three MGs. Data from the US Census Bureau [45] was used to estimate the number of
households that own vehicles, and assuming a 30% BEV penetration, a fleet of 74 BEVs is considered
to be distributed among the households located in each MG. Three BEV historical driving patterns are
considered for the case studies [40]. Detailed historical BEV driving data expressed in kWh is shown
in Table A1 in Appendix A. For the simulation, 1000 scenarios are generated for each BEV type. Table 1
shows the BEV parameters used to calculate the random components that are needed for generating
BEV driving patterns by MCS.

The three MGs considered for the simulations are assumed to be located in a 33-bus radial
distribution system, as shown in Figure 3. The test system data was acquired and modified from
Reference [46] by placing three MGs along the feeders of the test system and by modifying the load
values. Detailed bus load data for the 33-bus distribution system is shown in Table A2 in Appendix A.
In Figure 3, each bus represents a distribution transformer and the dotted lines indicate normally open
tie lines. Connected to each transformer are sets of residential customers that are aggregated as CGs or
PCGs depending on their classification, i.e., consumer or prosumer. The tie lines are not used in the
case studies and are only kept to maintain the test system topology as described in Reference [46].
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Table 1. Parameters of random components of residential customer Battery Electric Vehicle (BEV).

Parameter Battery Electric Vehicle 1
(BEV1)

Battery Electric Vehicle 2
(BEV2)

Battery Electric Vehicle 3
(BEV3)

No. of Scenarios 1000 1000 1000

Normal Distribution
(RN)

Stand. Dev (kWh) 2 1 2
Mean (kWh) 1 0.5 1

Uniform Distribution
(RU) (kWh) 0–1 0–1 0–1

Confidence Interval µ Lower Bound (kWh) 0.5668 0.1471 0.3748
Upper Bound (kWh) 0116 0.8170 1.7552

Confidence Interval σ
Lower Bound (kWh) 1.3297 0.6166 1.2705
Upper Bound (kWh) 2.3999 1.1128 2.2930
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To run the simulations, actual hourly data of load, PV power output, and electricity price have
been used. Price data (fixed and time-of-use rates) were obtained from El Paso Electric, a utility in the
U.S. southwest [47,48]. The LMP price data was obtained from Pennsylvania, Jersey, Maryland Power
Pool (PJM) market [49]. The load data was obtained from the U.S. Department of Energy Open Data
Catalog, residential load at TMY3 locations for the surrounding region of Ashland, Oregon [50]. The
specific locations are Klamath Falls, Medford-Rogue Valley, and Redmond, all from Oregon. The solar
PV power output data was obtained from a solar PV system located in Ashland, Oregon. The solar PV
power output profile is representative of a sunny summer day. Figure 4 shows the solar PV power
output profile considered for each prosumer. The load data was selected for these locations to make
the simulation more realistic as the PV power output is considered for the same region. Moreover, by
using real load, price, and PV data, the case study results can better illustrate the potential benefits that
can be achieved by using a TC+MPC for BESS and BEV management in residential networked MGs.

Most of the latest BEV models (2019 and newer) that are being produced have driving ranges
above 200 miles and are equipped with batteries that have capacities between 60 kWh and 100 kWh [51].
Furthermore, five of the top ten selling BEVs in the U.S. have battery capacities of 60 kWh or higher [52].
Therefore, it is expected that newer BEV models will continue this trend which will become the norm
in most distribution systems in the future. Hence, for BEV modeling, a Tesla Model S is considered [53].
The Model S offers various battery capacity presentations; we considered the 70-kWh battery. It is
assumed that the maximum charging power is 10 kW which is based on a 240-V, 40-A connection. A
large-scale electric vehicle deployment project known as My Electric Avenue was conducted in the
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United Kingdom between January 2013 and December 2015 [54] in which one of the major findings
was that the likelihood of a BEV being charged when its initial SOC was 16.6% or lower is less than 15%.
Another study conducted by the Idaho National Laboratory, U.S.A. found that the average percentage
of users who started a commute or a charge with an SOC of 20% or lower is less than 5% [55]. Thus,
for simulation purposes, we assume the minimum and maximum BEV SOCs to be 20% and 100%,
respectively. The BESS considered for the simulations is a Tesla Powerwall [56]. The PowerWall
battery has a capacity of 13.5 kWh and a charging/discharging power of 5 kW. The minimum and
maximum BESS SOCs are set as 0% and 100%, respectively. The information regarding the BEVs and
BESS is presented in Tables 2 and 3, respectively. The data used for the case study is summarized in
Table 4, where households are abbreviated as HHs, Load represents the peak load, Solar represents the
maximum PV power output, BEV represents the peak BEV load, and BESS—Capacity and Output are
the BESS storage capacity and rated power output, respectively.
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Table 2. Battery electric vehicle data [53].

Battery Electric Vehicle (BEV) Parameter Value

BEV battery size 70 kWh
BEV battery efficiency 90%

Maximum charging power 10 kW
Minimum State-of-Charge (SOC) 20%
Maximum State-of-Charge (SOC) 100%

Table 3. Battery energy storage system data [56].

Battery Energy Storage System (BESS) Parameter Value

Energy Capacity 13.5 kWh
Operating Voltage 240 V
Operating Current 48 A

Peak Power 7 kW
Continuous Power 5 kW

Round-Trip Efficiency 90%
Depth of Discharge 100%
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Table 4. Case study data.

Prosumer Group (PCG)
Consumer Group (CG) Bus Households

(HHs) Load (kW) Solar Photovoltaic (PV)
(kW) BEV (kW) BESS

Capacity (kWh) Output (kW)

Microgrid 1 (MG1)

PCG1 23 10 32 50 60 270 50
PCG2 24 12 34 60 50 324 60
CG1 25 15 42 - 50 - -

Microgrid 2 (MG2)

PCG3 19 10 28 50 50 270 50
CG2 20 11 30 - 60 - -

PCG4 21 12 38 60 40 324 60
PCG5 22 12 34 60 30 324 60

Microgrid 3 (MG3)

CG3 7 40 70 - 50 - -
CG4 8 40 100 - 60 - -

PCG6 9 20 48 100 70 540 100
PCG7 10 20 48 100 70 540 100
CG5 11 20 35 - 70 - -

PCG8 12 25 45 125 80 675 125

Increasing penetration of DERs is requiring utilities to adjust their current price rates and to design
new ones to better align pricing and costs with price signals that guide customer usage [57]. Different
utilities in the U.S. already have plans in place and are transitioning their customers from fixed tariffs
to TOU tariffs [58]. Thus, we propose to compare three types of price tariffs (fixed, time-of-use, and
dynamic) and to analyze the impacts each type has on the customers and on the distribution system.
The operation of the proposed TC+MPC was analyzed considering five case studies. The following
case studies were tested and compared with the base case and among each other. Table 5 presents a
summary of the different case studies.

1. Case 1: Considering Load and BEV (Without PV and BESS)—Under Fixed Price Signal Scenario
2. Case 2: Considering Load, BEV, and PVs (Without BESS)—Under Fixed Price Signal Scenario
3. Case 3: Considering Load, BEV, PV, and BESS—Under Fixed Price Signal Scenario
4. Case 4: Considering Load, BEV, PV, and BESS—Under Time of Use price Signal Scenario
5. Case 5: Considering Load, BEV, PV, and BESS—Under Dynamic Price Signal Scenario

Table 5. Case study characteristics.

Load BEV PV BESS Price Signal

Case 1 X X Fixed
Case 2 X X X Fixed
Case 3 X X X X Fixed
Case 4 X X X X Time-of-Use (TOU)
Case 5 X X X X Dynamic Price (DP)

The base case considers only residential and BEV loads. The base case (Case 1) is similar to current
electrical distribution systems throughout the U.S. and around the world. Case 2 is the next step
of evolution of the conventional distribution system, where customers also have roof-top solar PV
installations. Cases 3–5 assume customers have BESS technology, which enables them to participate
in an electricity retail market and to respond to incentive signals generated by the DSO. For all case
studies, an individual charge schedule is produced for each BEV. Also, an individual charge/discharge
schedule is produced for each BESS. The following assumptions are considered for all case studies:

• The consumers/prosumers are equipped with home energy management system (HEMS), in
which the hybrid TC+MPC mechanism is embedded.

• The hybrid TC+MPC mechanism is used for all case studies.
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• The BEV charge is analyzed only at the consumer/prosumer household, i.e., charging between 6
am and 6 pm is not available.

• Net metering is considered for cost/savings calculations.
• The BEV SOC must remain at least at 20% throughout the day.
• The BEV cannot be in driving mode (discharging) and charging mode simultaneously.
• The BESS cannot be charged/discharged simultaneously.

3.1. Case 3: Fixed Price Signal Scenario

In this case, a fixed cost is used [47]. This case can be considered the conventional case as most
residential customers around the world pay the electric utility or DSO at a fixed rate for electricity. In the
US, normally, it is expressed in dollars per kilowatt-hour ($/kWh). Under this pricing rate, there is no
incentive for customers who own BEVs to charge at different times, e.g., during off-peak hours. Thus, BEV
charging is uncontrolled and BEVs are charged at any time. In the case of customers that own PV-BESS
systems, the BESS discharge is also uncontrolled and can be discharged at any time as there is no incentive
to discharge, for example, during peak load hours. Figure 5 presents a sample of the individual BEV
charge/discharge schedules of five BEVs that comprise prosumer group 2 and are located in MG1.
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Figure 5. Optimal charge schedule and driving pattern of BEVs located in PCG2-MG1 (Case 3).

Table 6 presents the numerical values of the BEV charge and usage schedule per MG. The positive
values are the BEV-charging demand and the negative demand represents BEV discharging while
being driven. Figure 6 presents a comparison of the BEV charge and discharge patterns in each MG.
The figure illustrates the aggregated BEV drive patterns and BEV charge schedules for CGs and PCGs
in MG1, MG2, and MG3. In this case, the customer charges the vehicle all night until their departure in
the morning (6:00 am) and, then, another charge is conducted around (7:00 pm) to have enough energy
for the commute between (8:00–9:00 pm). It is clear that, since the price is fixed throughout the day, the
customer does not have any incentive to charge at a different time.
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Table 6. Aggregated BEV charge schedule and driving pattern (Case 3).

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Price ($/kWh) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

BEVs in MG1
(kWh) 157 110 110 81 0 −56 −70 −71 −6 −17 −23 −25

BEVs in MG2
(kWh) 177 130 126 74 0 −67 −82 −70 −5 −36 −47 −25

BEVs in MG3
(kWh) 383 270 259 143 0 −139 −167 -146 −14 −71 −93 −49

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Price ($/kWh) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

BEVs in MG1
(kWh) −24 0 −13 −56 −68 −24 48 −49 −53 0 0 0

BEVs in MG2
(kWh) −25 0 −25 −68 −68 −7 54 −63 −67 0 0 0

BEVs in MG3
(kWh) −49 0 −51 −138 −141 −17 113 −125 −132 0 0 0

3.2. Case 4: Time-of-Use Price Signal Scenario

In this case, a Time-of-Use (TOU) price is considered for a day in summer. The TOU plans are
based on the time of day and the season. By using TOU, customers can manage their energy costs.
This is achieved by taking advantage of lower rates during off-peak periods and by avoiding on-peak
periods when energy resources are in high demand. The TOU price that is being tested for this specific
case study considers the on-peak period from 12:00 pm through 6:00 pm, Monday through Friday,
for the months of June through September. The off-peak period is all other hours not covered in the
on-peak period [48]. Figure 7 shows a sample of the individual BEV charge schedules and driving
patterns of five BEVs that constitute prosumer group 2 and are located in MG1.
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Table 7 presents a numerical summary of the BEV charge schedule and discharge pattern per
MG. The TOU price, the aggregated BEV drive pattern, and the charge schedule within each MG are
depicted in Figure 8. The optimal BEV charge schedule presented in Figure 8 is produced by using the
TC+MPC. In this case, the customer charges the vehicle all night (off-peak period) until their departure
in the morning. This is due to the BEV charging taking place during the off-peak period when the
price is lowest. Having the price information and an incentive (lower prices) during different periods
of the day allows the customers to charge their BEVs during the low-price periods. Moreover, this
process is further optimized with the TC+MPC as it takes in to account the TOU information and BEV
driving pattern during the day to produce a least cost schedule. By using the hybrid mechanism, the
energy consumption is also minimized as the BEV is charged with the minimum energy required for
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the daily commute while maintaining a minimum SOC of 20%. Therefore, the customers improve their
savings as they charge their vehicle in an optimal manner based on the needs for their commute.

Table 7. Aggregated BEV charge schedule and driving pattern (Case 4).

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Price ($/kWh) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.23

BEVs in MG1
(kWh) 157 110 110 81 0 −56 −70 −71 −6 −17 −23 −25

BEVs in MG2
(kWh) 177 140 133 64 0 −67 −82 −70 −5 −36 −47 −25

BEVs in MG3
(kWh) 383 280 273 133 0 −139 −167 −146 −14 −71 −93 −49

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Price ($/kWh) 0.23 0.23 0.23 0.23 0.23 0.23 0.07 0.07 0.07 0.07 0.07 0.07

BEVs in MG1
(kWh) −24 0 −13 −56 −68 −50 73 −49 −53 0 0 0

BEVs in MG2
(kWh) −25 0 −25 −68 −68 −50 89 −63 −67 0 0 0

BEVs in MG3
(kWh) −49 0 −51 −138 −141 −102 184 −125 −132 0 0 0
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Comparing the charge schedules with the ones obtained in Case 3, it can be seen that, having an
incentive (lower price) at different times of the day, the TC+MPC increases the charging power (4–8%)
between 2:00–3:00 am. The charging power is also increased (52–65%) at 7:00 pm to take advantage of
the low price available after 6:00 pm.

3.3. Case 5: Dynamic Price Signal Scenario

In the final case, a dynamic price (DP) signal is considered. The price signal is based on the system
DLMP (see Section 2.4). The DLMP is determined by minimizing the cost of generation considering
the physical constraints of the distribution system, which exposes prosumers and consumers to the
marginal cost of electricity delivery at different locations. For this case study, the DLMP accounts for
marginal costs of generation and marginal costs of losses and is updated hourly.

Although the customers are receiving hourly price information, it can be difficult and time
consuming for a customer to manually observe electricity prices for that specific hour and to decide
when to charge their BEV. The HEMS with the embedded TC+MPC can assist the customers by
automating BEV charging. The TC+MPC uses the forecasted DLMP and a forecasted BEV demand
pattern to determine the optimal BEV charge schedule that minimizes the customers charging costs.
The main differences with the fixed price and TOU are that the DLMP (i) is time varying (in this case
hourly) and (ii) accounts for the system conditions (generation, load, and losses). Figure 9 depicts the
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charge schedules and driving patterns of five BEVs that are located in MG1 and are part of prosumer
group 2. A detailed analysis of the numerical values of the aggregated BEV charge schedule and
discharge pattern per MG is presented in Table 8.
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Table 8. Aggregated BEV charge schedule and driving pattern (Case 5).

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Price ($/kWh) 0.09 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.10 0.10

BEVs in MG1
(kWh) 106 110 110 157 0 −56 −70 −71 −6 −17 −23 −25

BEVs in MG2
(kWh) 111 140 140 177 0 −67 −82 −70 −5 −36 −47 −25

BEVs in MG3
(kWh) 229 280 280 383 0 −139 −167 −146 −14 −71 −93 −49

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Price ($/kWh) 0.10 0.10 0.10 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.09 0.09

BEVs in MG1
(kWh) −24 0 −13 −56 −68 −50 48 −49 −53 0 0 0

BEVs in MG2
(kWh) −25 0 −25 −68 −68 −50 34 −63 −67 0 0 0

BEVs in MG3
(kWh) −49 0 −51 −138 −141 −102 81 −125 −132 0 0 0

Figure 10 shows the aggregated BEVs drive pattern and the optimal charge schedule for each MG
using the TC+MPC. It can be seen from Table 8 and Figure 10 how the TC+MPC optimizes the BEV
charge by selecting the hours when the price is lowest. Specifically, the maximum charging occurs
between 2–4 am when the price is lowest and another lower charging period occurs at 7:00 pm. When
using the TC+MPC, the BEV is charged with sufficient energy for the daily commute of the customer
while minimizing the costs. Comparing the results of this case with Cases 3, there is a decrease between
32–40% at 1:00 am and an increase between 94–168% at 4:00 am. These results explicitly show how the
TC+MPC identifies the hours (3:00–4:00 am) with the lowest prices and maximizes the charging at
those hours to avoid incurring additional costs during high-price hours. Also, incentivizing customers
to charge their BEVs during low-price periods (off-peak) can reduce peak load. When compared to
Case 4, there are similarities as both price signals have low-price periods. However, for the TOU, the
low-price periods are fixed regardless of the distribution system conditions.
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Figure 11 shows the comparison of the overall system net load for each case. Comparing the four
cases with the base case (Case 1), it can be seen that the overall system net load is lower for all the
cases, which is due to the solar PV power output. It can also be seen from Figure 11 that having BESS
available allows the prosumers to shift the surplus power production of solar PV (from 7:00 am to
3:00 pm) to peak load periods (between 6:00 and 10:00 pm). Shifting surplus power from off-peak
periods can reduce peak load from 21–30% (489–685kW). Moreover, storing the solar PV surplus power
can reduce load ramp rates from 39–58% (136–196kW/h). It can also be seen in Figure 11 that, due to
the BESS discharge during the peak period, the demand curve becomes more volatile and steep load
ramps (from 347–542kW/h) are created. This an undesirable effect, and it becomes an important aspect
to consider when setting the BESS discharge constraints in order to minimize negative impacts due to
the BESS discharge.
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As it was explained in Section 2.1, a power-flow simulation is conducted to calculate system
power losses and bus voltage profiles. The power-flow results are obtained using MATPOWER [59]. In
MATPOWER, when BEVs and BESS are charging, these are treated as load. For every hour, an energy
balance is conducted at each bus, i.e., solar PV power is subtracted from the load (household load+BEV
and BESS charge). If the net load is negative (i.e., solar PV power generation is greater than the load),
then the bus becomes a PV bus. On the other hand, if the net load is positive, the bus remains as a PQ
bus. Once the values are assigned for the time period (1 h), the power flow is executed. This process is
repeated for the simulation horizon of 24 h. Table 9 shows a comparison of the total system losses for



Sustainability 2019, 11, 5436 17 of 24

each case. Comparing the overall system losses of Cases 2–5 with the base case (Case 1), it can be seen
that all the cases reduce power losses and that the highest reduction in losses (11.5%) is achieved in
Case 2. Case 2 assumes customers have BEVs and rooftop solar PV installations, and any surplus PV
power is injected back to the utility grid. Cases 3–5 achieve an overall system power loss reduction
of 6.5%, 6.3%, and 6.8%, respectively, compared to the base case (Case 1). It is worth noting that the
reduction in power losses that is achieved in the case studies can be dependent on the location of the
DERs in the distribution network. As previous research has shown, the location of DERs can reduce
power losses and, in some cases, increase them [42]. The difference in power loss reduction between
Case 2 and Cases 3–5 can be attributed to power losses in storing surplus power in the BESS and to
the residual energy that remains stored in the BESS. Although there is a higher power loss reduction
in Case 2 compared to Cases 3–5, there are other benefits achieved in Cases 3–5. These benefits are
(i) reduction in peak load, (ii) minimization of charging costs for BEV owners, and (iii) participation in
a retail electricity market and maximization of savings by prosumers by using the power stored in the
BESS during high-price periods. Benefit number (iii) gives the customers flexibility to use the energy
for their own use or to sell to other customers when high prices are available.

Table 9. Comparison of total system power losses.

Power Losses (kW) Reduction (%)

Case 1 (Without PV or BESS) 1788 0%
Case 2 (Without BESS) 1582 11.5%

Case 3 (Fixed Price) 1672 6.5%
Case 4 (TOU Price) 1676 6.3%

Case 5 (Dynamic Price) 1667 6.8%

Voltage profiles are also analyzed to observe the effects produced by the BEV-charging and
BESS-discharge schedules for each case. Table 10 presents a comparative summary of bus voltage
violations (undervoltages) that were recorded when running the simulations as well as improvements
to the bus voltage profiles. It should be mentioned that no overvoltages were observed in any of the
buses of the test system. The bus voltages that are not shown in Table 10 did not present violations
(over/under voltages). The comparative analysis summarized in Table 10 is done between the base
case (Case 1) and Cases 2–5. The values shown in the undervoltage column indicate the number of
hours an undervoltage has been recorded in the corresponding case. The values presented in the
difference column indicate the difference in number of hour(s) that the corresponding case recorded an
undervoltage compared to the base case (Case 1). A negative sign (−) indicates a reduction in hour(s),
a positive sign (+) indicates an increase in hour(s), and a zero (0) indicates no difference.

By further analyzing the results presented in Table 10, it can be stated that having rooftop solar PV
installations (Case 2) can improve bus voltage profiles from 20% and up to 42% compared to the base
case (Case 1). However, having a hybrid PV-BESS system (Cases 3–5) can improve voltage profiles
between 25% and 75% compared to the base case. In all but one bus (Bus 33), the cases where BESS is
present render a higher voltage profile improvement. Thus, having controllable demand-side DER can
protect the system from overvoltages that can be incurred in the uncontrolled case (Case 2) while also
providing the benefits that have been previously discussed.

Finally, a cost/savings analysis is carried out to compare the total daily costs and savings for the
PCGs and CGs located in each MG. The daily costs and savings data are presented in Tables 11 and 12.
In Table 11, the Costs ($) refer to the amount paid for the daily energy consumption and Savings ($)
refer to energy cost reduction associated to the use of rooftop solar PV and BESS.
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Table 10. Summary of bus voltage improvements.

Hours Under Voltage
(<0.95 p.u.) Hour Difference

Hours Under Voltage
(<0.95 p.u.) Hour DifferenceBus Case Bus Case

9

1 4 0

17

1 11 0
2 4 0 2 7 −4
3 2 −2 3 6 −5
4 1 −3 4 6 −5
5 1 −3 5 6 −5

10

1 5 0

18

1 11 0
2 4 −1 2 7 −4
3 2 −3 3 6 −5
4 2 −3 4 6 −5
5 2 −3 5 6 −5

11

1 6 0

28

1 5 0
2 4 −2 2 4 −1
3 2 −4 3 2 −3
4 2 −4 4 2 −3
5 2 −4 5 2 −3

12

1 7 0

29

1 8 0
2 5 −2 2 5 −3
3 3 −4 3 5 −3
4 3 −4 4 5 −3
5 3 −4 5 5 −3

13

1 8 0

30

1 10 0
2 5 −3 2 6 −4
3 4 −4 3 5 −5
4 6 −2 4 5 −5
5 6 −2 5 5 −5

14

1 9 0

31

1 12 0
2 6 −3 2 7 −5
3 6 −3 3 7 −5
4 6 −3 4 7 −5
5 6 −3 5 7 −5

15

1 9 0

32

1 13 0
2 6 −3 2 8 −5
3 6 −3 3 9 −4
4 6 −3 4 9 −4
5 6 −3 5 8 −5

16

1 11 0

33

1 13 0
2 7 −4 2 8 −5
3 6 −5 3 9 −4
4 6 −5 4 9 −4
5 6 −5 5 9 −4

Table 11. Total Daily Costs ($) and Savings ($) Comparison per Microgrid.

Case 1 Case 2 Case 3
Total Costs Total Savings Total Costs Total Savings Total Costs Total Savings

PCG1 54.66 0.00 40.96 13.70 31.36 23.30
MG1 PCG2 70.65 0.00 51.90 18.75 37.60 33.05

CG1 52.99 0.00 52.99 0.00 52.99 0.00

PCG3 51.79 0.00 36.17 15.62 27.32 24.47
MG2 CG2 43.84 0.00 43.84 0.00 43.84 0.00

PCG4 55.85 0.00 39.41 16.44 29.93 25.92
PCG5 43.54 0.00 30.91 12.64 23.88 19.66

CG3 108.42 0.00 108.42 0.00 108.42 0.00
CG4 165.86 0.00 165.86 0.00 165.86 0.00

MG3 PCG6 89.73 0.00 62.33 27.40 46.09 43.64
PCG7 92.15 0.00 60.90 31.25 44.63 47.52
CG5 72.44 0.00 72.44 0.00 72.44 0.00

PCG8 91.00 0.00 64.67 26.33 50.99 40.01

Case 4 Case 5
Total Costs Total Savings Total Costs Total Savings

PCG1 25.50 31.90 39.79 29.63
MG1 PCG2 33.15 45.76 45.73 41.98

CG1 53.29 0.00 65.07 0.00

PCG3 21.52 36.59 34.44 29.19
MG2 CG2 42.65 0.00 55.63 0.00

PCG4 23.72 38.19 35.04 32.01
PCG5 18.54 24.92 27.15 24.66

CG3 118.57 0.00 134.84 0.00
CG4 202.87 0.00 209.43 0.00

MG3 PCG6 37.72 63.07 71.20 56.12
PCG7 36.74 71.29 62.49 62.32
CG5 25.50 31.90 39.79 29.63

PCG8 33.15 45.76 45.73 41.98
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Table 12. Net costs ($) comparison per microgrid.

Case 1 Case 2 Case 3
Net Costs ($) Inc./Red. (%) Net Costs ($) Inc./Red. (%) Net Costs ($) Inc./Red. (%)

PCG1 54.66 0.00 27.26 −50.13 8.06 −85.25
MG1 PCG2 70.65 0.00 33.15 −53.07 4.55 −93.57

CG1 52.99 0.00 52.99 0.00 52.99 0.00

PCG3 51.79 0.00 20.54 −60.33 2.85 −94.50
MG2 CG2 43.84 0.00 43.84 0.00 43.84 0.00

PCG4 55.85 0.00 22.97 −58.87 4.01 −92.81
PCG5 43.54 0.00 18.27 −58.05 4.22 −90.31

CG3 108.42 0.00 108.42 0.00 108.42 0.00
CG4 165.86 0.00 165.86 0.00 165.86 0.00

MG3 PCG6 89.73 0.00 34.93 −61.07 2.44 −97.28
PCG7 92.15 0.00 29.66 −67.82 −2.90 −103.14
CG5 72.44 0.00 72.44 0.00 72.44 0.00

PCG8 91.00 0.00 38.34 −57.87 10.97 −87.94

Case 4 Case 5
Net Costs ($) Inc./Red. (%) Net Costs ($) Inc./Red. (%)

PCG1 −6.40 −111.7 10.17 −81.40
MG1 PCG2 −12.61 −117.8 3.75 −94.69

CG1 53.29 0.57 65.07 22.79

PCG3 −15.06 −129.1 5.26 −89.85
MG2 CG2 42.65 −2.73 55.63 26.89

PCG4 −14.47 −125.9 3.03 −94.58
PCG5 −6.38 −114.6 2.49 −94.28

CG3 118.57 9.37 134.84 24.37
CG4 202.87 22.31 209.43 26.27

MG3 PCG6 −25.35 −128.2 15.08 −83.20
PCG7 −34.55 −137.5 0.17 −99.82
CG5 72.33 −0.14 103.88 43.41

PCG8 −14.18 −115.6 40.30 −55.71

Comparing the results of the five cases (see Table 11), we can observe that the highest overall
savings are achieved by PCGs in Cases 4 (TOU) and 5 (DP). Also, Cases 3–5 produced greater savings
than Cases 1 and 2. Specifically, the savings differences were between 52–76% (Case 3), 128–144%
(Case 4), and 95–123% (Case 5). When comparing the costs of Cases 2–5 to those of Case 1 (base case),
they all achieve a cost reduction. The total cost reductions compared to Case 1 for Case 2 is 29%, for
Case 3 is 45%, for Case 4 is 57%, and for Case 5 is 37%.

The results comparison demonstrates that, by having the BESS, the reduction in total costs for
Cases 3–5 is improved. This is more noticeable in Case 5 as the demand during high-price periods is
fulfilled by the energy stored in the BESS. With the reduction of the peak demand between 6:00 pm
and 9:00 pm (see Figure 11), there is an associated reduction in electricity price, which in turn has a
significant impact on the total costs of the CGs and PCGs. We can clearly observe that, by shifting the
surplus PV generation with BESS (controlled by TC) to peak load hours, PCGs can reduce their total
energy costs.

Table 12 presents the comparison of net costs and the difference between each case and the base
case. In Table 12, Net Costs are the costs minus savings (Costs − Savings) and the percentage column
indicates an increase (Inc.) if it is positive and a reduction (Red.) if negative.

Further analysis of the net costs results (see Table 12) shows that Case 4 achieves the highest net
cost reduction percentages for both CGs and PCGs followed by Case 5, which produces a higher net
cost reduction for PCGs. Also, CGs achieve more net cost reduction under the fixed and TOU pricing
schemes (Cases 3 and 4) compared to a DP scheme (Case 5). These results are reasonable as CGs do
not possess alternative sources of generation to fulfill their own demand and can only participate by
deferring or shifting loads to low-price periods.

Therefore, it can be inferred that a DP scheme is better suited for PCGs that are able to respond to
price signals via BESS or other controllable distributed generation sources. It should be noted that, for
simulation purposes, in Case 2–5, the price signal is considered the same for buying and selling power
(net metering). In different electricity markets, utilities and DSOs have lower paying costs for selling
power to the grid. Consequently, the total savings for Cases 2–4 could be lower under these pricing
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schemes when compared to Case 5, thus adding more value to TC+MPC and BESS for customers
under those pricing schemes.

It should be noted that the test results are only representatives and are obtained under simulated
conditions for the considered test system. More case studies could be further conducted for longer time
horizons (e.g., weeks and months) with different scenarios, test systems, and MG locations in order to
be able to conclude that the benefits mentioned in the case studies will be achieved with high certainty.

The TC+MPC formulation presented in this paper has been implemented in MATLAB R2017a and
solved with YALMIP and GUROBI (Gurobi Optimization, LLC., Beaverton, OR, USA). MATLAB (The
MathWorks Inc., Natick, MA, USA) is used as the programming environment, while YALMIP structures
the optimization problem into matrices with the objective function, the optimization variables, and
the equality and inequality constraints [60]. GUROBI is used as an external solver to find the optimal
solution of the problem [61]. All simulations were conducted using a personal computer with 2.8 GHz
CPU, 4 GB RAM.

4. Conclusions

This paper presented a new hybrid TC+MPC control mechanism for residential prosumer-centric
networked MGs. The proposed hybrid TC+MPC combines the control capabilities and features of the
MPC and the TC, creating a robust control mechanism that is driven by transactive incentive signals,
and thus, also providing the MGEMS capability to deal with the stochastic nature of BEV driving by
using a MCS to generate the BEV driving patterns. The proposed TC+MPC was able to effectively
generate the BEV-charge and BESS-discharge schedules for the CGs/PCGs located in each MG. Test
results demonstrated the potential of using pricing mechanisms for demand-side management of DERs.
The results can be summarized as follows: (i) reduction in peak load (between 21–30%) by shifting
surplus PV power from off-peak hours using BESS; (ii) reduction in load ramp rates between 39–58%;
(iii) reduction in power losses between 6.3–6.8%; (iv) bus voltage improvements between 25–75% for
busses that present undervoltages; and (v) total cost reductions between 29–57% and savings between
52–144%. Therefore, the main objectives of the MGEMS are met by allowing CGs/PCGs to minimize
their costs as well as to maximize their savings. It can also be inferred from the results that the incentives
provided by the pricing mechanisms can encourage customers to not only reduce peak demand but
also to install more demand-side energy resources (e.g., but not limited to BESS and rooftop solar).
Moreover, the DSO or utility operators can benefit from controlled customer participation by reducing
their system power losses, by improving bus voltage profiles, and by reducing overloading system
components. An important finding of the case studies is that the BESS-discharging operation can
create steep load ramp rates when discharging during peak periods. This aspect should be considered
high priority when defining the discharge constraints to avoid incurring negative impacts on the grid.
For the case studies presented in this paper, we assumed full BESS discharging (SOC = 0%). It should
be noted that this discharging operation could impact the expected life of the BESS. Future work would
be interesting to study the depth of discharge impacts on the BESS life cycle and, then, to expand
it to larger time frames (e.g., months and years) to analyze the effects of continuous BEV and BESS
charge/discharge cycles. From an economic perspective, different TOU tariffs could also be tested to
further verify the capabilities of the TC and costs associated to DER purchase and installation could be
included to better reflect the net costs/savings. Finally, from a utility perspective, a study of reliability
and resiliency impacts on distribution networks due to the use of TCs and DERs can also be considered
in future work.
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Appendix A

Table A1. Historical BEV daily driving patterns.

BEV Driving Patterns (kWh)

Hour (h) BEV1 BEV2 BEV3 Hour (h) BEV1 BEV2 BEV3

1 0.0 0.0 0.0 13 1.6 0.0 0.0
2 0.0 0.0 0.0 14 0.0 0.0 0.0
3 0.0 0.0 0.0 15 0.0 0.0 2.7
4 0.0 0.0 0.0 16 2.7 1.3 2.7
5 0.0 0.0 0.0 17 4.8 1.6 0.0
6 2.7 1.3 2.7 18 3.2 1.6 0.0
7 3.8 1.9 2.7 19 0.0 0.0 0.0
8 4.8 2.4 0.0 20 2.7 0.0 2.7
9 0.0 1.3 0.0 21 3.0 0.0 2.7
10 0.0 0.0 4.0 22 0.0 0.0 0.0
11 0.0 0.0 5.4 23 0.0 0.0 0.0
12 1.6 0.0 0.0 24 0.0 0.0 0.0

Table A2. Load data for the 33-bus distribution system.

Bus Pd (kW) Qd (kVAR) Bus Pd (kW) Qd (kVAR)
2 97 60 18 64 40
3 80 40 19 24 40
4 117 80 20 19 40
5 43 30 21 29 40
6 58 20 22 21 40
7 71 100 23 24 50
8 97 100 24 29 200
9 49 20 25 27 200

10 48 20 26 58 25
11 35 30 27 58 25
12 44 35 28 58 20
13 58 35 29 85 70
14 117 80 30 195 600
15 43 10 31 145 70
16 58 20 32 204 100
17 58 20 33 58 40
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