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Abstract: This paper deals with the scheduling of paratransit vehicles. The current scheduling
method utilized by paratransit providers is to provide a door-to-door ride for those customers who
have made reservations. Thus, the paratransit providers know in advance the pickup and drop-off
locations of each customer. Using this information, they are able to determine a route for each vehicle
to minimize the total operating costs. In the current scheduling method, vehicles are not allowed
to pick up unscheduled customers. This practice often leads to low seat utilization. To address this
shortcoming, this paper explores the idea of allowing vehicles to pick up unscheduled customers who
are in close proximity to the prescheduled stops (referred to as the dynamic response area or DRA).
To this end, this paper develops an agent-based simulation model to evaluate the effectiveness of this
strategy. The model was tested using the Chicago network. The results of the simulation experiments
indicate that (1) the proposed strategy is able to serve more customers using the same fleet size, and
(2) the proposed strategy will not significantly affect the scheduled customers’ in-vehicle travel time.

Keywords: paratransit; agent-based simulation; NetLogo; demand-responsive transit

1. Introduction

Paratransit plays an important role in public transportation accessibility for senior citizens and
people with disabilities. In the USA, this service is also known as demand-responsive (DR). Those
who are eligible to use this system are provided with door-to-door service at their requested time.
The American Public Transportation Association (APTA) in 2012 reported that the average number
of paratransit trips per month in Los Angeles and Chicago was 265,794 and 289,022, respectively.
The number of trips over the five-year period from 2007 to 2012 showed a 15% and 23% increase in
paratransit demand annually in Los Angeles and Chicago, respectively. This suggests that there is
increasing demand for this mode of transportation. To meet the demand, it is crucial for paratransit
providers to have an efficient method to schedule routes for their vehicles such that they maximize the
number of customers served while minimizing the total operating cost.

Paratransit operates in response to demand. Customers need to make reservations in advance.
These requests have to be met by the paratransit providers. On occasion, due to emergencies, customers
make requests for a ride on the same day of the call and possibly even a few minutes before the
requested pickup time. These dynamic requests do not have to be met by providers, and providers are
not penalized for not accommodating such requests. However, if their request is accepted, the customer
probably gets a cheaper ride than their alternative. However, given that the providers’ revenues are
indirectly dependent on the number of customers served, it is in the best interest of providers to serve
as many customers as possible. The provider’s revenue is not directly dependent on the number of
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customers served because the drivers are paid on a per-hour basis, so additional passengers do not
generally translate into increased revenue. However, additional customers would motivate paratransit
providers to give an incentive to paratransit drivers for each dynamic request served.

There are several strategies that most paratransit providers use to provide service to their
customers. These strategies are “no zoning,” “independent zoning,” and “zoning with transfer
points” [1]. The “no zoning” strategy considers the entire city as a single zone. Thus, drivers might be
tasked with picking up/dropping off customers from/to any part of the city. “Independent zoning”
and “zoning with transfer points” are the most commonly used strategies in the United States.
The “independent zoning” strategy allows the provider to serve those customers who need a ride
from the provider’s zone to other zones. A significant characteristic of this strategy is that it allows
vehicles to travel outside their original zone to drop off customers. The “zoning with transfer points”
strategy prohibits vehicles from traveling outside their assigned zones. To transport customers from
one zone to another, vehicles coordinate the pickup and drop-off at transfer points (located along the
zonal boundaries).

In the aforementioned strategies, the in-vehicle travel time of customers cannot exceed 1.5 to
2.5 times the travel time it would take to provide a direct ride from the customers’ origins to destinations.
In the “independent zoning” and “zoning with transfer points” strategies, most providers in the USA
divide the city into a reasonable number of zones (2—4) to maximize their level of service for customers.

The objective of this paper is to evaluate a potential new strategy for scheduling paratransit
vehicles. This strategy would allow vehicles to pick up unscheduled customers who are in close
proximity to the prescheduled stops (referred to as the dynamic response area or DRA). It is speculated
that this strategy would lead to higher vehicle utilization and thus more indirect revenue for the
providers. However, it also has the potential to lower the level of service for scheduled customers.
To evaluate the pros and cons of this strategy, an agent-based simulation model is developed to allow
for comprehensive assessment of different strategy parameters, particularly the DRA.

The rest of the paper is organized as follows. Section 2 provides a review of related studies.
Section 3 presents the proposed scheduling strategy. Section 4 provides the agent-based simulation
model. Section 5 describes experimental design. Section 6 discusses the experimental results. Lastly,
conclusions are discussed in Section 7.

2. Literature Review

Vehicle-routing problems with time windows have been well documented in the literature [2-5].
The dial-a-ride problem is a well-known problem in the vehicle-routing area. There is a large number of
published studies on this topic, all of which aim to find better vehicle schedules to minimize the cost of
operation and maximize the level of service. Cordeau and Laporte and Berbeglia et al. [6,7] reviewed a
broad range of dial-a-ride problems and presented a classification of problems and their solutions. The
development of exact, heuristic, and meta-heuristic approaches is the main focus of studies in this area.
Some researchers have worked on the dynamic dial-a-ride problem. Coslovich el al. [8] suggested a
two-phase insertion algorithm to accommodate more unscheduled (dynamic) customers in the system.

Operational methods and system evaluation of dial-a-ride systems have been studied by many
researchers. McKnight and Pagano [9] appraised 42 dial-a-ride providers in the United States. Their
investigation indicated that the quality of service for aged and disabled persons increases as the
demand for each provider increases. Wilson and Hendrickson [10] provided a review of models
developed for flexible route systems. Paquette et al. [11] concluded that more studies are needed to
understand the benefits and costs of operational strategies in dial-a-ride systems. Burkhardt et al. [12]
considered a zonal system in DR for specifying the fare. When the size of the zone is increased, longer
trips are required to serve the customers and it may not be possible to serve all customers within
a given time period [13]. Wilson et al. [14] noted the effects of the size of the zone on the system’s
efficiency and showed that the number of vehicles used in each zone is related to the size of the zone.
Ellis and McCollom [15] showed that demand-responsive transit has lower efficiency in rural areas
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than in urban areas. Chira-Chavala and Venter [16] showed that increasing the length of trips results
in more empty trips in larger service areas. Lu et al. [17] proposed an innovative strategy that let
providers serve customers in need of a ride to their zones as well as those who need a ride from their
zones. The results of their new insertion algorithm showed that this strategy can decrease empty trips
and total mileage by up to 25% and 8%, respectively.

A few studies have focused on the coordination of dial-a-ride systems. Burkhardt [18] calculated
that a well-coordinated program could make about a $700 million economic impact per year to human
service and transit agencies in the USA. Interzonal transportation decreases the cost of trips by reducing
low seat utilization and increasing the passenger rate [19]. Hall et al. [20] presented an integrated
dial-a-ride problem that used fixed routes to serve some parts of the path from origin to destination.
Aldaihani and Dessouky [21] considered the utilization of fixed routes for the pickup delivery problem.
Lin [22] used integer programming for the pickup delivery problem and showed that their model
could reduce the number of vehicles and the cost of operation.

An analytical approach has been used to improve dial-a-ride systems. Daganzo [23] was the first
to work on an approximate analytic model for the DR system. Fu [24] proposed an analytic model
for paratransit capacity and quality-of-service analysis. Li and Quadrifoglio [25] specified an optimal
service zone for feeder transit services.

Simulation has also been used to evaluate dial-a-ride systems. Wilson et al. [14] simulated a
computer-aided routing system (CARS). Shinoda et al. [26] used a simulation approach for the purpose
of comparing fixed routes and dial-a-ride systems. Shen and Quadrifoglio [27] indicated that the
number of vehicles and low seat utilization in a decentralized strategy are greater than those in
a centralized strategy. Agent-based simulation was found to be a suitable approach to modeling
dial-a-ride systems. Cubillos et al. [28-30] employed agent-based simulations to model the interaction
between different agents such as clients, trip request, broker, planner, vehicle manager, map, schedule,
and vehicle. Velaga et al. [31] proposed an agent-based simulation algorithm in which customers may
vote for several feasible schedules in terms of mileage, travel time, and price. The schedule with the
highest score will be used to serve customers. Jin and Huang [32] investigated the cooperation of agents
in simulation. They created a model with three layers of agents: taxi agents, dispatcher/scheduler
agents, and high-level decision makers who determine the number of vehicles to be used. In their
model, communication was allowed between each pair of neighboring layers.

As summarized above, the paratransit system is a topic of considerable interest and has been
addressed by many papers. However, there are still many challenges to be addressed. Specifically, there
remains a need for additional research for methodologies to minimize low seat utilization, customers’
wait time and travel time, number of transfer points, and cost of operation, as well as to maximize
the number of customers served and the level of service for customers. This study examines a new
potential scheduling strategy to serve more customers within a certain period of time. Specifically, this
strategy would allow vehicles to pick up unscheduled customers who are in close proximity to the
prescheduled stops. If successful, this strategy would benefit both customers and providers. To our
knowledge, this is the first study to propose and examine this scheduling strategy.

3. Proposed Scheduling Strategy

The proposed scheduling strategy is similar to those insertion methods proposed by Coslovich and
Lu [8,17], which were described earlier in the literature review. The key difference between the proposed
scheduling strategy and strategies being used by most paratransit providers (e.g., Pace in Chicago, IL)
is the consideration of serving dynamic customers near the prescheduled stops. This strategy would
accommodate those customers who for one reason or another (e.g., an emergency) need a ride on the
day of the call.

The current strategy used by providers involves picking up and dropping off customers and
returning to the starting point, which leads to some empty seats over the course of the trip. For example,
if there are three customers who need a ride from zone 1 to zone 2, a vehicle would depart from the
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provider’s location and travel to each customer’s location. Then the vehicle would proceed with
dropping each customer off at their requested destination in zone 2, one at a time. After the first
drop-off, there would be one empty seat, after the second drop-off there would be two empty seats,
and so on. The proposed scheduling strategy seeks to utilize the available empty seats to serve
more customers.

The proposed scheduling strategy allows the driver of the vehicle to consider unscheduled
customers within a certain radius of any stop location along the scheduled route. Considering travel
time variability [33], only those unscheduled customers within a limited area are taken into account to
prevent vehicles from going too far outside of their routes and not being able to travel to the other
destinations in time. Figure 1 provides an illustration of how the proposed strategy would be applied.
In this illustration, there is one provider, represented by the triangle. All vehicles must depart from
and return to this location. The customers’ locations are denoted as “P” and their destinations are
denoted as “D.” A typical schedule would have the vehicle pick a customer up at each of the P (circle)
locations and then proceed to drop each customer off at the D (circle) locations. Upon completion, the
vehicle returns to the provider’s location. The route taken by the vehicle is illustrated by the solid line
in Figure 1. With the proposed scheduling strategy, at each D location, the driver has the option of
picking up a dynamic customer (denoted as “P” (square)) within the DRA (the shaded gray area in
Figure 1). Note that the destination of the dynamic customer (denoted as “D” (square)) must also be
within the DRA. The route taken by the vehicle using the proposed scheduling strategy is illustrated
by the dashed line in Figure 1. The dash-dot line divides the network into zones 1 and 2.

-/.

Figure 1. Illustration of proposed scheduling strategy.

4. Agent-Based Simulation Model

In a typical paratransit system, a manager is responsible for assigning the available vehicles to
requested trips. This method of operation is known as a centralized system. In this system (e.g., Pace
in Chicago, IL), once a route is assigned and the vehicle has departed from the provider’s location,
vehicles do not deviate from the route, and thus, there is no opportunity to serve dynamic requests.
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The proposed scheduling strategy is more suitable to be implemented as a decentralized system, where
drivers make autonomous decisions regarding whether or not they could serve the dynamic requests.
To model this decentralized system, an agent-based simulation model is developed where driversare
modeled as agents. The driver agent follows the given schedule to serve static customers, while it
is able to search within the DRA to find potential dynamic customers. It is also able to change the
schedule to pick up and deliver dynamic customers as well as static customers. The goal of each agent
is to serve as many dynamic customers as possible, provided there are seats available. Agents are
free to serve customers in any zone, and their tendency is to select dynamic requests on a first-come,
first-served principle.

The vehicle agents have two types of behavior, one for static customers and one for dynamic
customers. For static customers, the driver agent selects the customer with the lowest trip time,
which includes the travel time to the customer’s pickup and drop-off locations. It should be noted
that drivers have access only to those customers whose pickup locations are within the zone of the
provider. This “greedy” approach continues until the vehicle capacity is reached. For dynamic
customers, they are served by the vehicle agent if it has one or more empty seats. When there are
available seats, the vehicle agent looks for dynamic customers within the DRA radius of the current
stop. Among these customers, the vehicle agent then checks their destinations and selects among those
customers whose destination are within the DRA of the following scheduled stops based on first-come
first-served principle.

The model was implemented using NetLogo, a multi-agent programmable modeling
environment [34], and its implementation is presented below in the form of pseudocodes.

Pseudocodes

Step 0. Setup network and prescheduled customers.

a  Setup network and prescheduled customers based on the shape and distribution of the customers
in the case study city.

Step 1. Static insertion. For the provider of each zone, do the following:

a  Letjrepresent the number of available seats in each vehicle

b Create a list of available customers.

¢ Consider all customers one by one and calculate the travel time from provider to pick up the
customer, drop off the customer, and return to the starting point.

d  Add the customer with minimum travel time to the selected list.

e  Remove the selected customer in (d) from the available customers list.

f Consider all available customers one by one and do:

a-1  Find the shortest path that serves all customers in the selected list, including the return
trip to the starting point (e.g., two origins, two destinations, and a provider), and calculate
the path travel time.

g  Add the customer who minimizes the travel time to the selected list.
h  Repeat (d), (e), (f), and (g) as long as the number of customers in the selected list is less than or
equal toj.

Step 2. Set up dynamic customers’ request.
Step 3. Dynamic insertion.

a  Askavehicle to start a path from the provider and follow the stops based on what is shown in
selected list. At each stop, do:

a.l  If there is at least one empty seat in the vehicle, do:
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a.l.l Search for any dynamic customers’ origin located in DRA of the stop location.
If there is any customer, do:

a.1.1.1 Search for the destination of the dynamic customer to see if it is located in
the DRAs of the following stops. If yes, pick up the dynamic customer.

b Check for any dynamic customer who needs to be dropped off at this stop.
Step 4. Repeat steps 1 through 3 for all providers, one by one.

5. Experimental Design

The developed agent-based simulation model was used to evaluate the benefits of the proposed
scheduling strategy. The experiment uses a network similar in size to the Chicago, IL paratransit
network. Three zones are considered, similar to how Pace divides the Chicago network into three
different zones. Each zone has one provider. Without a loss of generality, the experiments use the
Euclidean distance between each pair of stops instead of the actual route distance. To simulate
traffic congestion, a speed distribution was constructed using data collected from iPeMS [35] for a
two-lane highway in South Carolina from September 2018 to September 2019. Among the best fit
distributions [36], the normal distribution with a mean of 39.88 mi/h and standard deviation of 4.92 mi/h
was used since it is the most practicable option. Figure 2 shows the histogram and the theoretical
density of the fitted distribution along with its goodness of fit statistics. To obtain the travel time
between each pair of origin and destination, the distance was divided by the speed sampled from the
best-fit distribution.
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Figure 2. Histogram and normal distribution density for average speed (mph).

To compare the proposed scheduling strategy with a scheduling strategy similar to that used
by Pace for the Chicago network, the number of customers in each zone was generated based on the
number of trips per month reported by the APTA. Only those trips with requested drop-off times
within the peak hour are considered. So, there is a chance that a customer will arrive earlier than their
requested time, but not later. The peak hour average requests are shown in Table 1 for each zone.
Because there are no public data on the location of customers in the Chicago network, the customers’
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locations were distributed randomly in each zone for the experiments. Their origins are shown as black
circles and their destinations are shown as red stars in Figure 3. The location of dynamic customers
(both origins and destinations) are distributed randomly throughout the network. Their origins are
shown as black pentagons and their destinations are shown as red pentagons in Figure 3. To determine
the effectiveness of our proposed strategy, two experiments were conducted. Experiment 1 investigates
the impact of DRA radius on the vehicle-hours traveled and number of dynamic customers served.
For this experiment, the number of dynamic customers is assumed to be 10% of the total number of
customers. Experiment 2 investigates the effect of dynamic customers percentage on the vehicle-hours
traveled and the number of dynamic customers served by varying the percentage of dynamic customers
from 0% to 60%.
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Figure 3. Network of scheduled and unscheduled customers in the hypothetical network of the city of
Chicago, IL.

Table 1. Area size and average peak hour requests per zone for Chicago network.

Zone Demand Type Zone Area (sq. km) Peak Hour Average Number of Customers
Northern Scheduled 176 240
Central Scheduled 240 60
Southern Scheduled 176 120
All City Dynamic N/A 42

Total N/A 592 462
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The following modeling and operational parameters were used in the experiments.

e  Paratransit providers look at each customer’s trip independently. If a customer needs a return
trip, it should be reserved in advance as a separate ride, but both reservations could be made in
one call.

e  Vehicles have one hour to serve customers.

e  The number of vehicles available is infinite.

e  Vehicles’ capacity is considered to be 3-5.

e  Drivers are assumed to have access to dynamic requests.

e  The shape of the network is rectangular.

e Providers are located in the geographical center of each zone.

6. Experimental Results and Discussion

The results of the simulation experiment 1 are summarized in Table 2. The performance of the
proposed scheduling strategy is compared to the current strategy (similar to what being used by Pace).
Recall that the goal of the proposed scheduling strategy is to serve as many customers as possible.
Thus, to measure the efficiency of the proposed scheduling strategy, the number of dynamic customers
served is presented. Also, the number of vehicles required by each scheduling strategy is presented.
Table 2 also shows the impact of the DRA size on the proposed scheduling strategy.

Table 2. Performance comparison between current and proposed scheduling strategies.

Capacit Number of Number of Radius of Vehicle-Hours Percent Change Number of
Method (Speat) y Vehicles Used Customer-trips DRA Traveled in Total Travel Dynamic
in Peak Hour P (min) v Time (%) Customers Served
Current 3 140 420 N/A 266.8 N/A N/A
Current 4 105 420 N/A 230.3 N/A N/A
Current 5 84 420 N/A 201.4 N/A N/A
0.75 266.8 0.0 0
1.5 270.8 1.5 2
2.25 270.9 1.5 5
P d
Topose 3 140 420 3 272.7 22 11
3.75 272.9 23 18
4.5 275.2 3.1 21
0.75 230.3 0.0 0
1.5 231.7 1.0 2
2.25 232.4 1.3 7
P d
Topose 4 105 420 3 232.9 15 10
3.75 234.9 2.0 20
4.5 235.1 2.1 23
0.75 201.4 0.0 0
1.5 202.6 0.6 2
2.25 204.7 1.6 8
P d
ropose > 84 420 3 205.6 2.1 14
3.75 206.3 24 23
4.5 211.9 5.2 28

As shown in Table 2, there is no difference in the number of vehicles required between the
proposed strategy and the current strategy. These results indicate that the proposed strategy is able to
serve more customers using the same fleet size. By servicing more customers, the total travel time
is expected to increase. However, the increase is less than 6%. This is likely due to the size of the
DRA being relatively small. Thus, it can be concluded that the proposed scheduling strategy will not
significantly affect the scheduled customers’ travel distance and in-vehicle travel time.

To further illuminate the experimental results, Figures 4 and 5 show the number of dynamic
customers served and the vehicle-hours traveled with respect to the radius of the DRA. The results
shown in Figure 4 exhibit a nonlinear relationship between the number of dynamic customers served
and DRA radius. All three curves show a sharp increase when the DRA radius exceeds 2 min. Thus,
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a small increase in the DRA radius (when it is greater than 2 min) would result in a large increase in the
number of customers served. The results in Figure 4 also show that the average number of dynamic
customers served by the proposed scheduling strategy increases as the vehicle’s capacity increases.
Finally, Figure 5 indicates that the vehicle-hours increase slightly as the DRA increases.
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Figure 5. Vehicle-hours traveled with respect to DRA.

The effect on vehicle-hours traveled can be seen in Figure 6b as the number of dynamic customers
served increases (Figure 6a); note that these experiments used four-seat vehicles. As expected, the
total vehicle-hours traveled increases monotonically. Figure 6¢c shows the difference between the
percentage increase of customers served and total vehicle-hours traveled. It can be seen that the
difference increases as the percentage of dynamic customers increases. This suggests that the proposed
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scheduling strategy is not negatively affected by a high number of dynamic customers. For instance,
a 14% increase in the number of dynamic customers served resulted in only a 1% increase in the total
vehicle-hours traveled.
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Figure 6. Effect of dynamic customers percentage on (a) number of dynamic customers served,

(b) vehicle-hours traveled, and (c) their percent change.
7. Summary and Conclusions

This paper investigated a scheduling strategy for paratransit vehicles that aims to serve more
customers during a certain period of time while using the same fleet size. To evaluate the proposed
scheduling strategy, an agent-based simulation model was developed. The model was then used to
compare the performance of the proposed scheduling strategy against the strategy currently being
used by most providers, using the Chicago network as an example. The experimental results indicate
that (1) the proposed strategy is able to serve more customers using the same fleet size, and (2) the
proposed strategy will not significantly affect the scheduled customers’ travel distance and in-vehicle
travel time. The findings from this study indicate that the proposed scheduling strategy is promising.
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Future research will seek to extend this work by using an actual road network and considering both
outbound and return trips for customers, as well as the need of some customers to arrive within a
certain time window.
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