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Abstract: To promote sustainable agriculture worldwide, it is important to understand what
constitutes eco-efficiency for rice, a staple food in many countries. This study examined whether
expanding the scale of rice farming contributed to the improved eco-efficiency of intensive rice
production in Japan. Both life cycle assessment (LCA) and data envelopment analysis (DEA) were
used to measure comprehensively the eco-efficiency of rice production. A DEA window analysis
technique with two DEA inputs (global warming and eutrophication from the LCA results) and one
DEA output (weight-based rice yield) was applied to the statistical data for 2005–2011 categorized
by the size of rice farms. The results indicate that expanding the size of rice farms is an effective
way of improving the eco-efficiency of intensive rice production in Japan. The important factors for
improving eco-efficiency are the implementation of economies of scale, reduced outsourcing of farm
work, and savings in chemical fertilizers and pesticides. Expansion of the size of rice farms through
the recent abolition of the rice production adjustment program will also contribute to improving the
eco-efficiency of Japanese rice production.

Keywords: eco-efficiency; life cycle assessment; global warming; eutrophication; data envelopment
analysis; intensive rice production; Japan

1. Introduction

In recent decades, intensification of agriculture by various means including irrigation, fertilizers,
pesticides, and mechanization has contributed to an increase in crop production but has caused harmful
impacts such as global warming and eutrophication of terrestrial and aquatic environments [1,2].
Sustainable intensification that can maintain high crop yields under acceptable environmental impacts
is required to meet the growing demand for food [3]. For example, efficient nutrient and water use,
good soil fertility management, improved disease and pest control, and environmentally friendly
farming practices are effective ways to achieve sustainable intensification of crop production [3].

Because eco-efficiency can integrate both economic and environmental aspects of production [4],
it is a useful index to evaluate sustainable intensification of crop production. Eco-efficiency is defined
as a product or service value per unit of environmental impact such as energy consumption, materials
consumption, and greenhouse gas emissions [4]. Life cycle assessment (LCA), which is a tool for
analyzing the environmental impact of products at all stages in their life cycle (from the cradle to the
grave) [5], is used to calculate the values assigned to the denominator of the eco-efficiency equation,
represented as Product or service value

Environmental impact [4]. In general, eco-efficiency indicators can be measured with
respect to each environmental impact [4]. However, such indicators do not allow the substitution of
different environmental impacts, and cannot provide a single criterion that fulfills the requirements for
decision-making [6].
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To calculate a single eco-efficiency index, there is a need to integrate multiple environmental
impacts into a single environmental damage score for use in the denominator of an eco-efficiency
equation [6]. One solution is to apply a weighting approach to LCA, which can aggregate multiple
environmental impacts in accordance with their relative importance [5]. However, this solution is
incomplete because the weighting depends on value choices influenced by monetary values, standards,
and expert panels [5]. Another solution is to calculate a comprehensive eco-efficiency index using data
envelopment analysis (DEA) [6]. DEA, which can calculate efficiency scores using linear programming
techniques [7], has the advantage that it can accommodate the substitution of different performance
criteria independently of subjective aggregation weightings [6].

It is important to understand the eco-efficiency of rice production to promote sustainable
agriculture around the world. Rice is an important source of nutrients and constitutes a staple food in
many regions in the world, especially Asian countries including Japan [8,9]. Japanese rice production
is very intensive because essentially all of the rice-planted area is irrigated, large amounts of fertilizers
and pesticides are used, and nearly all operations are mechanized [10]. Because the size of Japanese
rice farms has traditionally been small, policy makers in Japan have used agricultural policy reforms to
attach importance to the establishment of large-scale rice farming [9]. However, it is not clear whether
such reforms enhance sustainable intensification of Japanese rice production.

The present study examined the aggregate eco-efficiency improvement of intensive rice production
in Japan that was achieved by increasing the size of rice farms. A joint LCA and DEA methodology was
applied to calculate a single eco-efficiency score for rice production. Because Japanese rice production
is very intensive [10], Japan provides the best case for the analysis.

2. Literature Review

Numerous environmental impact assessment studies of rice production using LCA have been
conducted. Many of these studies assessed only global warming (e.g., [11,12]) or a small number of
environmental impact categories such as global warming and eutrophication (e.g., [13,14]), although
several studies aggregated multiple environmental impacts using a weighting approach [15–19].
However, as noted above, these weighting assessments were subjective and reflected value choices [5].
The combined method of LCA and DEA used in this study can resolve these problems that were
attributable to a weighting approach.

Several previous studies have used DEA to evaluate the energy efficiency/eco-efficiency of rice
production [20–26]. Chauhan et al. [20] determined the energy efficiency of rice farmers in India using
DEA. Houshyar et al. [21] applied DEA to analyze the impacts of farmers’ socioeconomic conditions
on energy use and environmental impacts of Iranian rice production. Masuda [22] studied the effect of
increasing the scale of rice farming on the DEA-based energy efficiency of intensive rice production in
Japan. Nabavi-Pelesaraei et al. [23] assessed the CO2 reduction based on DEA optimization of energy
inputs for rice production in Iran. Nabavi-Pelesaraei et al. [24] optimized the energy consumption for
Iranian rice farms by employing DEA and a multiobjective genetic algorithm. Nassiri and Singh [25]
calculated the DEA-based energy efficiency of rice production in India with respect to farm size
classification and agro-climatic zone classification. Mohammadi et al. [26] quantified the potential
environmental impact reductions and the potential economic savings for inefficient rice farmers in Iran
using the physical inputs optimized by DEA.

As with the research subject of this study, Masuda [22] and Nassiri and Singh [25] analyzed the
variations of DEA-based energy efficiency due to rice farm size differences. Masuda [22] concluded
that an increase in farm size improves the energy efficiency of Japanese rice production, whereas
Nassiri and Singh [25] revealed that compared with larger rice farmers, small rice farmers in India are
energy efficient. It appears that the discrepancy between their findings reflected a difference in the
intensity of rice production between Japan and India. However, because their analyses focused only
on energy efficiency, a comprehensive eco-efficiency assessment is also needed.
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The research subject of this study is whether increasing the scale of rice farming improves the
eco-efficiency of intensive rice production. The findings obtained from the analysis should be useful for
achieving sustainable intensification of rice production in developed countries such as Japan. Further,
this study can give implications to construct a sustainable rice production system when a relatively
low-intensity rice production in developing countries is highly intensified in the future.

3. Materials and Methods

3.1. Japanese Rice Production

Rice is a major agricultural commodity in Japan. The Ministry of Agriculture, Forestry and
Fisheries of Japan (MAFF) reported that in 2015, the rice-planted area was approximately 1.5 million
hectares (ha), which accounted for 33% of the total farmland [27]. In 2015, about 17% (1.5 trillion yen)
of the gross national agricultural output was derived from rice [27]. Recent agricultural policy reforms
such as easing farmland regulations and introducing some support programs for core farmers [9] have
resulted in a steady increase in the average size of Japanese rice farms (from 1.9 to 2.4 ha per farm) [28].

In Japan, the rice production adjustment program, which hindered competitiveness by increasing
rice production costs and dampening market signals, was introduced in 1971 to mitigate overproduction
of rice [9]. In accordance with this program, MAFF allocated to each rice farmer an area of paddy fields
to be converted from rice to upland crops in exchange for subsidies [9]. These allocation procedures
under MAFF’s control were abolished in 2018 [29]. However, because the current farming income
stabilization measures include direct payments for upland crops that are cultivated in paddy fields [29],
abolition of the rice production adjustment program will not necessarily result in a large increase in
rice production.

3.2. Data Sources

There are several articles (e.g., [17,22,30]) that referenced the data from national statistical surveys
on crop production. Following Masuda [22], in this study, MAFF studies [28] on rice production costs
in Japan were used to calculate DEA-based eco-efficiency scores of rice farming. The statistical reports
published by MAFF are typical data sources for identifying crop production in Japan.

MAFF [28] included average data for nine size ranges of rice farms: <0.5 ha, 0.5 to <1 ha, 1 to <2 ha,
2 to <3 ha, 3 to <5 ha, 5 to <7 ha, 7 to <10 ha, 10 to <15 ha, and ≥15 ha. In the present analysis, each
of these size ranges was defined as forming a rice farm. To obtain an adequate sample size for DEA
calculations, the panel data for these size ranges between 2005 and 2011 were collected from MAFF [28].
The data for 2004 and earlier were excluded because of a change in the size range definitions. The data
for 2012 and after were also omitted because there were no deflators to convert these production costs
of inputs into real values (base year = 2005) when assessing off-farm environmental impacts based on
a 2005-based input–output approach [31].

3.3. Life Cycle Assessment

3.3.1. Goal and Scope Definition

The goal of this LCA was to quantify the environmental impacts of Japanese rice production based
on scale observations for a DEA input set. Because both inputs (environmental impacts) and an output
(weight-based rice yield) used in DEA calculations were referenced to an area-based unit [22,30], the
functional unit selected was 1 ha of rice-planted area. Figure 1 outlines the rice production system
that was defined on the basis of the information from MAFF [28]. The rice production system was
composed of on-farm and off-farm stages, and yielded rice as the main output and rice straw as a
byproduct. The environmental impacts that were attributable to rice were allocated using economic
allocation ratios, which were calculated by dividing the sales of rice by the total proceeds from rice
production. Four environmental impact categories, namely energy consumption (EC), global warming
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potential (GWP), acidification potential (AP), and eutrophication potential (EP), were assessed as a
DEA input set because they were the major environmental concerns associated with Japanese rice
production [13].
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Figure 1. A simplified flowchart of rice production. EC, energy consumption; GWP, global warming
potential; AP, acidification potential; EP, eutrophication potential.

3.3.2. Inventory Analysis

The input and output data for the rice production system were collected from MAFF [28] as
indicated in Figure 1, and were used to calculate the energy usage and environmental load emissions.

In the on-farm stage, combustion of fossil fuels, which included heavy oil, diesel oil, kerosene,
gasoline, motor oil, and premixed fuel, was related to directly consumed energy, CO2, CH4, N2O, NOx,
and SOx. Energy consumption for each fuel type on a net calorific value basis was assumed to be
95% of the gross calorific value [32,33]. The greenhouse gas emission factors from Japan’s greenhouse
gas inventory report were used to calculate the emissions of CO2, CH4, and N2O from direct energy
use [32,34]. The NOx and SOx emission factors for fossil fuel combustion were cited from the National
Institute of Agro-Environmental Sciences report [35].

Urea and calcium carbonate fertilizer applied to paddy fields release CO2 into the air. The CO2–C
emission factors of urea and calcium carbonate fertilizers on a weight basis were 20% and 12%,
respectively [32].

Nitrogen inputs of chemical fertilizers, organic fertilizers (purchased and self-supplied manure),
and incorporated rice straw were collected to calculate nitrogen emissions to the air (N2O and NH3)
and to the water (nitrogen leaching) that arose from paddy fields. The nitrogen inputs of chemical
fertilizers and organic fertilizers were calculated by multiplying their quantities by the nitrogen content
rates (5–46% and 0.5%, respectively [36]). Because of the lack of information about incorporated rice
straw in the MAFF report [28], the quantity of incorporated rice straw was deemed to be the difference
between the total production and the quantity removed from paddy fields. The total production of
rice straw on a dry-matter basis was calculated by multiplying 84.5% of the actual weight-based rice
yield [37] by the ratio of rice straw to rice (105.9% [38]). The dry-matter weight of rice straw removed
from paddy fields was calculated by multiplying the actual weight of rice straw (calculated by dividing
the sales of rice straw by the price per unit weight obtained from MAFF [39]) by the dry-matter content
(87.8% [40]). Finally, the nitrogen input of incorporated rice straw was calculated by multiplying the
dry-matter weight of incorporated rice straw by the nitrogen content rate (0.7% [38]).

For nitrogen input, the N2O–N emission factors were 0.31% for chemical fertilizers and organic
fertilizers and 1% for incorporated rice straw [32]. The NH3–N emission factors on a per nitrogen basis
were 2–15% for chemical fertilizers [41], 2% for organic fertilizers [42], and 0.9% for incorporated rice
straw [43]. The amount of nitrogen leaching was assumed to be 30% of the total nitrogen input, which
was the default value defined by the Intergovernmental Panel on Climate Change [32].

CH4 emitted by and phosphorus leaching from paddy fields were assumed to be independent of
the inputs in the on-farm stage. The CH4 emission factors were 313.8–363.1 kg CH4/ha/year, which
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were calculated by dividing the total CH4 emission by the total rice-planted area in the country for
each year [32]. The amount of phosphorus leaching was deemed to be constant (5.7 kg P/ha/year [44])
because in Japan, a decrease in phosphorus fertilizer input did not result in a reduction in phosphorus
leaching [44].

The off-farm data were collected based on the production costs of rice, which were converted into
real values using a price index for agricultural production materials (2005 = 100) [39]. Indirect energy
consumption on a net calorific value basis and emissions of CO2, CH4, N2O, NOx, and SOx were
calculated using the embodied global energy and air-emission coefficients based on the purchaser price
for household consumables or the producer price in 2005 [31]. Nansai et al. [31] provided the CH4 and
N2O emission coefficients that were converted into CO2 equivalents using the early CO2-equivalence
factors (21 for CH4 and 310 for N2O) [45,46]; therefore, CH4 and N2O emission coefficients that were
recalculated in terms of CH4 and N2O, respectively, were used to calculate these indirect emissions.

The values for rice and rice straw for sale were obtained from the rice production system.
The weight-based rice yield was not used in this LCA, but it was collected for the DEA output variable.
Data collected in the inventory analysis were allocated to rice using the economic allocation ratios.

3.3.3. Impact Assessment

EC, GWP, AP, and EP were included in the impact assessment. EC was measured in terms of net
calorific values of consumed energy. For GWP, the greenhouse gas emissions were converted into CO2

equivalents using the CO2-equivalence factors for 100 years (1 of CO2, 28 of CH4, and 265 of N2O) [47].
AP on a SO2-equivalence basis was calculated by multiplying the quantities of acidifying pollutants by
the SO2-equivalence factors: NOx 0.7, SOx 1, and NH3 1.88 [5]. For EP, expressed as PO4-equivalence,
the eutrophying emissions were characterized using the PO4-equivalence factors for NOx (0.13), NH3

(0.35), N (0.42), and P (3.06) [5].

3.4. Data Envelopment Analysis

The decision-making units (DMUs), which are regarded as the entities responsible for converting
inputs into outputs [7], corresponded to the nine size categories of rice farms that ranged from <0.5 ha
to ≥15 ha. Following the framework proposed by Kuosmanen and Kortelainen [6], the DEA-based
eco-efficiency scores of rice production were calculated using the environmental impacts as DEA inputs
and the weight-based rice yield as a DEA output. Because there was a substantial overlap of inputs
between EC, GWP, AP, and EP, a grouping procedure based on a correlation analysis was applied to
avoid redundancy between the environmental impacts [30,48].

An input-oriented, slacks-based measure of efficiency (SBM) model with variable returns to scale
(VRS) was used to measure the DEA-based eco-efficiency scores of rice production [22,30]. The SBM
model overcomes the shortcomings of radial models such as the Charnes–Cooper–Rhodes model
(i.e., the assumption of proportional changes in inputs or outputs and the neglect of slacks in reporting
the efficiency score) [49]. An input-oriented DEA aims at reducing the input levels by as much as
possible while keeping at least the present output levels [7]. Given that farmers have more control
over the inputs responsible for environmental impacts than over the outputs [50], the adoption of an
input orientation rather than an output orientation was most appropriate. When not all the DMUs
operate at an optimal scale, the assumption of VRS is better than that of constant returns to scale [51].
Because Japanese rice farmers produced rice under the rice production adjustment program during the
analyzed period of 2005–2011 [9,29], VRS was assumed in the DEA calculations.

When the DMUs ( j = 1, . . . , n) have m inputs (x1 j, . . . , xmj) and s outputs (y1 j, . . . , ysj), the relative
efficiency of each DMUo (o = 1, . . . , n) based on an input-oriented SBM model with VRS is calculated
by solving the following linear programming model [49]:

ρ∗I = min
λ,s−,s+

1−
1
m

m∑
i=1

s−i
xio

, (1)
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subject to

xio =
n∑

j=1

xi jλ j + s−i (i = 1, . . . , m), (2)

yro =
n∑

j=1

yrjλ j − s+r (r = 1, . . . , s), (3)

n∑
j=1

λ j = 1, (4)

λ j ≥ 0(∀ j), (5)

s−i ≥ 0(∀i), (6)

s+r ≥ 0(∀r), (7)

where ρ∗I is the SBM-input efficiency, s−i is the ith input slack, s+r is the rth output slack, and λ j is the
jth intensity. If ρ∗I equals one, a DMUo is efficient. Because an inefficient DMUo becomes efficient by
deleting the input excesses (input slacks) and augmenting the output shortfalls (output slacks) [7,49],
the input slacks and output slacks were assumed to be the potential input reductions and potential
output increases, respectively.

DEA window analysis, where the DMU in each period is dealt with as if it were a different
DMU [7,52], was applied to address the small number of DMUs. The length of the window was
calculated using the following equation [7]:

pw =
k + 1

2
, (8)

where pw is the length of the window and k is the number of periods. Because k was seven years, pw

was four years. Therefore, the 2005–2011 panel data based on observations of the size of rice farms
were divided into 2005–2008, 2006–2009, 2007–2010, and 2008–2011 windows. Each window included
36 DMUs (multiplying nine DMUs by four years). For the purpose of comparison of eco-efficiency
between the different sizes of rice farm, a cumulative average was calculated by averaging the annual
averages in these windows.

The DEA calculations in each window were performed using DEA-Solver-PRO Version 14.0 [53].
BellCurve for Excel Version 2.20 [54] was used for the statistical analyses.

4. Results

4.1. Collected Data

Table 1 presents the descriptive statistics of input and output data on an annual mean basis.
To calculate the energy usage and environmental load emissions of rice production in the LCA, the
input data that were allocated to rice were collected as indicated in Figure 1. As noted above, direct
emissions of CH4 and phosphorus from paddy fields were calculated using constant values. The output
data for rice yield were used for the DEA output. Of these data, the values of production costs, fossil
fuels, rice yield, and allocation ratio were the same as those used by Masuda [22]. In a comparison of
the <0.5 ha range and the ≥15 ha range farms, expansion of the size of rice farms caused a considerable
reduction in several inputs: fossil fuels (−49.6 and −18.6 L/ha/year for gasoline and premixed fuel,
respectively), seeds and seedlings (−50.7 thousand yen/ha/year), chemical fertilizers (−24.0 thousand
yen/ha/year and −8.7 kg N/ha/year), pesticides (−23.0 thousand yen/ha/year), agricultural services
(−180.8 thousand yen/ha/year), buildings (−74.0 thousand yen/ha/year), motor vehicles (−53.0 thousand
yen/ha/year), and agricultural machinery (−158.0 thousand yen/ha/year).
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Table 1. Descriptive statistics of input and output data on an annual mean basis (2005–2011, per year) 1.

- Rice Farm Size (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

Production costs (thousand yen/ha) 2,3

Fossil fuels 31.8 30.7 29.9 28.7 28.5 27.9 29.6 31.7 27.9
(3.4) (2.6) (2.5) (2.8) (3.5) (2.6) (3.4) (3.6) (3.5)

Electricity 4.4 5.5 7.3 7.2 6.5 7.3 6.5 7.3 5.4
(0.7) (0.8) (0.4) (0.7) (0.4) (0.6) (0.5) (1.1) (0.7)

Seeds and seedlings 66.8 46.3 32.8 23.9 23.4 20.5 18.1 16.6 16.1
(5.3) (5.4) (3.3) (0.9) (2.6) (1.4) (1.9) (1.1) (0.5)

Chemical fertilizers 88.3 81.8 75.5 75.8 71.5 76.6 69.7 63.0 64.3
(8.8) (7.7) (5.4) (7.7) (6.5) (5.4) (9.3) (5.5) (3.8)

Purchased manure 4 4.1 4.1 4.6 2.4 1.9 3.4 1.3 2.4 3.3
(1.0) (1.0) (0.4) (1.1) (1.0) (0.8) (1.4) (0.8) (1.9)

Pesticides 72.5 68.6 66.5 64.3 62.4 66.4 61.7 55.2 49.5
(3.8) (2.8) (3.6) (3.3) (3.1) (5.4) (4.5) (4.2) (3.4)

Land improvement and irrigation 42.5 43.6 47.3 49.0 52.7 55.8 51.7 55.7 49.0
(7.0) (10.1) (5.5) (6.2) (13.1) (5.5) (7.5) (3.9) (5.3)

Agricultural services 232.4 180.8 112.1 81.5 67.6 55.9 58.9 57.0 51.6
(19.7) (14.9) (15.1) (8.4) (11.7) (9.8) (9.7) (8.8) (4.8)

Buildings 107.4 82.9 56.0 37.7 30.5 25.7 33.8 38.2 33.4
(35.0) (23.8) (10.8) (6.3) (4.5) (5.5) (4.4) (5.1) (4.0)

Motor vehicles 66.2 50.5 32.8 26.1 21.0 16.8 15.9 16.3 13.2
(14.5) (5.5) (3.6) (5.5) (1.0) (2.5) (2.7) (3.5) (1.9)

Agricultural machinery 309.5 303.1 246.4 197.1 194.1 159.3 158.0 147.9 151.4
(61.6) (37.9) (12.7) (13.8) (13.9) (14.3) (25.6) (11.9) (7.2)

Fossil fuels (L/ha) 2

Heavy oil 0 0.1 0 0 0 0.1 0 0 0
(0) (0.4) (0) (0) (0) (0.4) (0) (0) (0)

Diesel oil 111.4 116.4 116.7 119.4 120.1 121.2 136.0 153.9 152.8
(11.6) (7.9) (1.6) (8.7) (7.8) (2.4) (6.2) (11.4) (9.2)

Kerosene 34.4 43.4 73.4 79.9 88.4 98.2 108.9 109.8 103.4
(4.8) (2.9) (5.2) (6.8) (9.7) (4.8) (5.0) (16.2) (9.0)

Gasoline 94.2 88.2 75.6 72.2 67.0 59.4 60.1 64.7 44.5
(5.0) (4.0) (4.5) (7.2) (2.9) (7.6) (3.2) (5.5) (10.2)

Motor oil 5.0 3.6 3.5 3.4 2.5 3.1 2.5 3.2 1.8
(1.2) (0.7) (0.5) (0.5) (0.5) (0.7) (0.5) (0.5) (0.4)

Premixed fuel 19.4 15.1 8.9 4.6 4.3 2.9 2.9 2.5 0.8
(1.6) (1.4) (1.3) (1.1) (0.8) (0.6) (1.1) (1.1) (0.7)

Chemical fertilizers for CO2 emission
sources (kg/ha) 2

Urea 1.0 0.7 1.3 1.3 1.1 1.7 1.7 3.1 5.0
(0.6) (0.9) (0.9) (0.7) (1.0) (0.9) (2.2) (2.7) (5.2)

Calcium carbonate fertilizer 1.0 18.7 1.7 8.8 5.0 8.6 7.7 1.9 1.2
(1.1) (5.0) (1.4) (10.5) (5.5) (15.5) (9.8) (2.4) (2.2)

Nitrogen inputs (kg N/ha) 2

Chemical fertilizers 66.6 64.8 58.3 61.0 55.9 61.5 62.5 56.7 57.9
(3.3) (3.9) (3.4) (2.8) (5.2) (2.9) (2.8) (6.6) (7.2)

Organic fertilizers 4 4.0 6.1 5.2 3.1 3.1 5.2 2.6 2.9 4.4
(0.9) (2.1) (1.1) (1.5) (0.9) (1.1) (2.8) (1.7) (1.6)

Incorporated rice straw 23.5 22.9 23.7 24.3 24.2 24.9 25.5 24.0 23.6
(1.1) (1.6) (1.7) (0.9) (1.7) (1.5) (2.5) (1.4) (2.8)

Total 94.1 93.8 87.2 88.5 83.3 91.5 90.6 83.6 86.0
(4.2) (4.0) (4.1) (4.3) (6.4) (2.9) (3.6) (7.9) (11.0)

Rice yield (kg/ha) 5084 5040 5113 5231 5277 5346 5419 5380 5207
(131) (80) (72) (128) (93) (139) (189) (194) (131)

Allocation ratio 0.978 0.977 0.978 0.978 0.977 0.978 0.979 0.974 0.976
(0.002) (0.003) (0.004) (0.002) (0.003) (0.004) (0.005) (0.003) (0.006)

1 Values in parentheses are standard deviations. Sources of these data are described in the text. Data on production
costs, fossil fuels, rice yield, and allocation ratio are the same as those used by Masuda [22]. 2 Data were allocated to
rice using economic allocation ratios. 3 Production costs are real values (base year = 2005). 4 Costs of purchased
manure included the valuations of self-supplied manure. Nitrogen inputs of organic fertilizers were derived from
both purchased and self-supplied manure.

4.2. Environmental Impacts

Table 2 presents the LCA results for rice production on an annual mean basis. Overall, the
expansion of the size of rice farms resulted in the mitigation of environmental impacts. The value of
EC was 39.0–64.2 GJ/ha/year, which is the same as that reported by Masuda [22]. GWP was within the
range of 12,682–14,902 kg CO2 eq./ha/year. The main greenhouse gas contributing to GWP was CH4

(63.8–73.8%). The AP impacts (kg SO2 eq./ha/year) ranged from 16.7 to 23.0. There was little difference
in the contribution rates to AP by NOx (29.1–31.4%), SOx (30.8–38.7%), and NH3 (29.9–39.6%). The
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value of EP was 29.6–31.5 kg PO4 eq./ha/year. The two greatest contributors of nutrients to EP were P
(54.1–57.6%) and N (35.4–37.7%).

Table 2. LCA results for rice production on an annual mean basis (2005–2011, per year) 1.

Rice Farm Size (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

EC (GJ/ha) 64.2 58.9 51.1 45.5 43.6 42.1 42.0 42.3 39.0
(5.8) (3.4) (1.2) (2.0) (1.2) (1.5) (1.9) (1.5) (1.8)

GWP (kg CO2 eq./ha) 14902 14410 13727 13263 13086 12987 12961 12880 12682
(1002) (801) (553) (689) (495) (639) (637) (484) (393)

CO2 34.3% 32.5% 29.5% 27.3% 26.5% 25.8% 25.7% 25.7% 24.4%
CH4 63.8% 65.7% 68.7% 70.9% 71.8% 72.3% 72.5% 72.6% 73.8%
N2O 1.9% 1.8% 1.8% 1.8% 1.7% 1.8% 1.8% 1.7% 1.8%

AP (kg SO2 eq./ha) 23.0 21.5 18.9 17.9 16.8 17.1 17.2 16.9 16.7
(1.5) (0.8) (0.4) (0.6) (0.8) (0.4) (0.6) (0.7) (0.8)

NOx 31.4% 31.1% 30.9% 29.8% 30.5% 29.1% 29.7% 31.2% 29.6%
SOx 38.7% 37.4% 35.9% 33.6% 33.9% 32.0% 31.7% 32.2% 30.8%
NH3 29.9% 31.5% 33.2% 36.6% 35.6% 38.9% 38.7% 36.6% 39.6%

EP (kg PO4 eq./ha) 31.5 31.4 30.3 30.4 29.6 30.7 30.7 29.6 30.0
(0.5) (0.6) (0.6) (0.6) (1.0) (0.4) (0.6) (1.1) (1.6)

NOx 4.2% 4.0% 3.6% 3.3% 3.2% 3.0% 3.1% 3.3% 3.1%
NH3 4.1% 4.0% 3.9% 4.0% 3.8% 4.0% 4.0% 3.9% 4.1%

N 37.6% 37.7% 36.2% 36.7% 35.4% 37.5% 37.2% 35.5% 36.1%
P 54.1% 54.3% 56.3% 56.1% 57.6% 55.5% 55.7% 57.3% 56.7%

EC, energy consumption; GWP, global warming potential; AP, acidification potential; EP, eutrophication potential.
1 Values in parentheses are standard deviations. EC results are the same as those used by Masuda [22].

4.3. DEA Input and Output Data

As shown in Table 3, to group the candidate DEA input variables, analysis of the correlations
between the environmental impact categories was performed on 63 samples (multiplying nine size
ranges by seven years). The correlation coefficients between EC and GWP, EC and AP, and GWP
and AP were 0.855 (p < 0.001), 0.978 (p < 0.001), and 0.815 (p < 0.001), respectively. However, the
correlation coefficients between EP and the other categories were not very high (0.188–0.604). Further,
there was no significant relationship between EP and GWP (r = 0.188, p = 0.1401). The main reasons for
these relatively weak relationships between EP and the other categories are that phosphorus leaching
was calculated using the constant value independent of the inputs and nitrogen input as the cause of
nitrogen leaching was less important for the other categories.

Table 3. Pearson correlation coefficients between the environmental impact variables.

EC GWP AP EP

EC 1
GWP 0.855 ** 1
AP 0.978 ** 0.815 ** 1
EP 0.489 ** 0.188 0.604 ** 1

EC, energy consumption; GWP, global warming potential; AP, acidification potential; EP, eutrophication potential;
** indicates statistical significance at 1% level.

Based on these results, and similarly to Masuda [30], the DEA inputs that were finally selected
were GWP as a global environmental problem and EP as a regional one. The DEA output was the
weight-based rice yield.

Table 4 presents the input and output data for the DEA calculations. Overall, annual variations
in the data were small, although the GWP values for each rice farm size demonstrated a relatively
increasing trend from 2005 to 2011. The use of the constant value per unit area for phosphorus leaching
contributed to reducing the EP variations. Considering small variations of the rice yields, there was
not a great change in rice production conditions during the analyzed period.
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Table 4. Input and output data for the DEA calculations.

Rice Farm Size (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

GWP (kg CO2
eq./ha)
2005 13855 13652 13144 12483 12659 12278 12402 12380 12369
2006 13789 13315 13151 12511 12369 12244 12148 12251 12224
2007 14136 13910 13315 12827 12766 12588 12507 12596 12513
2008 15031 14778 13920 13384 13346 13174 13038 12980 12879
2009 15333 14584 13748 13450 13202 13135 13151 13073 12447
2010 16303 15394 14535 14251 13636 13867 13770 13495 13254
2011 15870 15241 14275 13938 13620 13621 13709 13384 13091

EP (kg PO4 eq./ha)
2005 32.2 32.1 31.4 30.7 31.5 30.9 31.6 31.0 31.4
2006 32.2 31.6 30.7 30.4 30.0 30.6 31.0 30.7 31.7
2007 31.2 31.5 30.0 30.4 29.4 30.3 30.6 30.2 31.7
2008 31.2 31.4 30.4 30.7 29.9 31.1 30.2 29.4 29.9
2009 31.0 30.2 30.1 29.7 29.0 30.3 30.2 29.1 28.1
2010 31.1 31.4 29.9 31.4 28.6 31.5 31.0 27.9 28.8
2011 31.9 31.4 29.5 29.6 28.9 30.6 30.1 29.1 28.6

Rice yield (kg/ha) 1

2005 5180 5110 5190 5240 5330 5410 5580 5640 5310
2006 4920 4980 5040 5070 5260 5350 5400 5420 5370
2007 4910 5090 5010 5080 5250 5360 5280 5300 5230
2008 5150 5160 5200 5400 5450 5570 5760 5580 5240
2009 5140 5000 5110 5180 5230 5210 5230 5240 5030
2010 5040 4940 5090 5300 5150 5140 5290 5080 5030
2011 5250 5000 5150 5350 5270 5380 5390 5400 5240

GWP, global warming potential; EP, eutrophication potential; 1 MAFF [28].

4.4. Eco-Efficiency Scores and Operational Targets

Table 5 presents the eco-efficiency scores of rice production based on DEA window analysis.
From the perspective of cumulative averages, the eco-efficiency scores of rice production ranged from
0.878 for the <0.5 ha range to 0.991 for the 10 to <15 ha range. The results showed that expansion of the
size of rice farms is useful to improve the eco-efficiency of rice production.

Table 5. Eco-efficiency scores of rice production based on DEA window analysis.

Rice Farm Size (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

2005–2008 average 0.909 0.919 0.951 0.976 0.985 0.988 0.993 0.997 0.978
2006–2009 average 0.880 0.896 0.929 0.953 0.979 0.974 0.983 0.989 0.977
2007–2010 average 0.866 0.880 0.921 0.938 0.970 0.955 0.970 0.991 0.974
2008–2011 average 0.856 0.870 0.918 0.937 0.964 0.940 0.957 0.988 0.979

Cumulative average 0.878 0.891 0.930 0.951 0.975 0.964 0.976 0.991 0.977

Table 6 presents the operational targets for rice production based on the cumulative averages from
DEA window analysis. To improve the eco-efficiency of rice production, GWP (up to 16.2% potential
reduction) was a more important reduction target than EP (up to 8.5% potential reduction). In contrast,
the potential increase in the rice yield (up to 1.5%) was very low.
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Table 6. Operational targets for rice production based on the cumulative averages from DEA
window analysis.

Rice Farm Size (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

GWP
Potential reduction (kg CO2 eq./ha) 2419 1973 1241 670 463 381 300 131 205

Potential reduction rate (%) 16.2 13.7 9.0 5.1 3.5 2.9 2.3 1.0 1.6
EP

Potential reduction (kg PO4 eq./ha) 2.7 2.6 1.5 1.5 0.5 1.3 0.8 0.2 0.9
Potential reduction rate (%) 8.5 8.3 5.1 4.9 1.6 4.3 2.7 0.8 3.1

Rice yield
Potential increase (kg/ha) 76.9 65.6 40.0 24.4 0 0 0 0 3.0
Potential increase rate (%) 1.5 1.3 0.8 0.5 0 0 0 0 0.1

GWP, global warming potential; EP, eutrophication potential.

5. Discussion

5.1. Factors That Improve Eco-Efficiency

It was found that expansion of the size of rice farms contributed to enhancing the aggregate
eco-efficiency of Japanese rice production (Table 5). These findings are consistent with the results
obtained by Masuda [22], who reported an improvement of the DEA-based energy efficiency of
Japanese rice production based on the increase in the size of rice farms. From the perspective of
the operational targets of increasing the size of rice farms (Table 6), targeting a reduction in the
environmental impacts, especially GWP, was more effective for improving the eco-efficiency of rice
production than targeting an increase in rice yields.

A comparison of the values of GWP between the <0.5 ha range and the ≥15 ha range farms showed
that the main means of reducing GWP (kg CO2 eq./ha/year) were, in order, agricultural machinery
(−679), agricultural services (−640), buildings (−313), chemical fertilizers (−252), motor vehicles (–173),
seeds and seedlings (−171), and pesticides (−110). These reductions were largely caused by decreasing
the greenhouse gas emissions, especially CO2, in the off-farm stage; these indirect emissions were
calculated using the emission coefficients per unit of cost based on an input–output approach [31].
The main reason for the difference in the values of EP between the <0.5 ha range and the ≥15 ha range
farms was a reduction in nitrogen leaching from paddy fields (−1.0 kg PO4 eq./ha/year), which was
caused by a decrease in the nitrogen inputs derived from chemical fertilizers (Table 1). The factors
leading to a reduction in GWP had only limited effects on reducing EP (from −0.02 kg PO4 eq./ha/year
for pesticides to −0.13 kg PO4 eq./ha/year for agricultural machinery).

Economies of scale, which occur when the farmer can spread more production over the same
level of fixed expenses [55], greatly influenced the reduction in the environmental load emissions per
ha of agricultural machinery, buildings, and motor vehicles as the result of an expansion of the size
of rice farms. A reduction in the environmental load emissions of agricultural services per ha was
achieved by reducing dependence on outside contractors for services such as harvesting by having a
full complement of agricultural machinery on larger rice farms [28]. Although large-scale rice farmers
invested widely in high-performance agricultural machines [28] to allow them to effectively perform
farm work themselves, economies of scale nonetheless enabled a reduction in the cost of agricultural
machinery per ha in large rice farms. Furthermore, the environmental load emissions of seeds and
seedlings per ha decreased as the size of rice farms expanded because, in contrast to small-scale
rice farmers who purchased expensive rice seedlings, large-scale rice farmers raised rice seedlings
themselves from inexpensive seeds [28].

However, the main reason for a reduction in the environmental load emissions per ha of chemical
fertilizers and pesticides with an increased size of rice farms is that, compared with small-scale rice
farmers, large-scale rice farmers tended to adopt environmentally friendly agricultural practices, such
as reduced use of chemical fertilizers and pesticides, to achieve product differentiation in the market [9].
Larger rice farms may also introduce more efficient nitrogen application techniques, which are effective
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in reducing nitrogen leaching from paddy fields. For example, a side-dressing technique of coated
nitrogen fertilizer during rice transplanting, which is recommended throughout Japan [56], is useful
to decrease the quantity of nitrogen derived from chemical fertilizers [57]. However, because a rice
transplanter equipped with a fertilizer applicator for side dressing is more expensive than a normal
rice transplanter [57], large-scale rice farmers can better afford to purchase these agricultural machines
than can small-scale rice farmers.

5.2. Implications for Sustainable Intensification

The findings of this study suggested that expanding the size of rice farms contributes to enhancing
the sustainability of intensive rice production in Japan. Japanese agricultural policy reforms that
pursue the promotion of large-scale rice farms [9,29] are justified in terms of not only farm income
enhancement but also eco-efficiency improvement. In the analysis, realization of economies of scale,
reduction in the outsourcing of farm work, and savings in chemical fertilizers and pesticides were
identified as important means of sustainable intensification for rice production. Of these factors, the
implementation of economies of scale is most closely related to an increase in the rice farm size.

The rice production systems in developing countries have been less mechanized, considering
that human labor was treated as an important input variable for rice production [20,21,23–26]. From
the viewpoint of the reduction in the environmental load emissions per unit area from fixed capital
goods such as agricultural machinery, the eco-efficiency improvement of rice production based on an
increase in the size of rice farming will be achieved under the conditions of high-level mechanization.
Therefore, some program that simultaneously supports both the expansion of farm size and agricultural
mechanization should be an effective way to promote sustainable intensification of rice farmers in
developing countries.

5.3. Limitations

This analysis had several limitations that were attributable to the data sources. The MAFF
studies [28], which are the statistical reports on rice production costs in Japan, contained no information
about agricultural practices and field conditions at the farm level. Because of a lack of information
about the soil conditions in the paddy fields, soil carbon budgets were excluded from the GWP
evaluations. CH4 emissions from paddy fields were assumed to be constant within each size range of
rice farms. Although GIO [32] included the information about water regimes that was required to
estimate CH4 emissions from paddy fields at the regional level, it was impossible to associate such
information with the MAFF data [28] at the farm level. For the same reason, water budgets at the farm
level were not taken into account in the calculations of nitrogen and phosphorus leaching from paddy
fields. If actual measurement data at the farm level were available, the accuracy of these calculations
could be enhanced. However, soil conditions and water regimes that are site-specific are not directly
affected by an increase in the size of rice farms. Therefore, even with these limitations, the results of
this analysis demonstrate that expansion of the size of rice farms is an effective way to improve the
eco-efficiency of Japanese rice production.

In this study, DEA, which is a nonparametric method, was used to calculate the aggregate
eco-efficiency of Japanese rice production. However, stochastic frontier models are also useful to
estimate eco-efficiency of agricultural production (e.g., [58,59]), but application of such parametric
approaches requires a large sample size. Because the sample size derived from the panel data was
small (63 samples), a nonparametric DEA method was most appropriate for the analysis of these data.

6. Conclusions

In this study, LCA and DEA methods were jointly applied to examine whether expansion of the
size of rice farms contributed to improvement of the eco-efficiency of intensive rice production in Japan.
An input-oriented SBM model with VRS that had two DEA inputs (GWP and EP) and one DEA output
(weight-based rice yield) was constructed to measure the aggregate eco-efficiency of rice production.



Sustainability 2019, 11, 5368 12 of 14

The results showed that expansion of the size of rice farms is an effective way to improve the
eco-efficiency of Japanese rice production. From the perspective of operational targets, a reduction
in the environmental impacts, especially GWP, was more effective for improving the eco-efficiency
of rice production than an increase in rice yields. Realization of economies of scale, reduction in the
outsourcing of farm work, and savings in chemical fertilizers and pesticides were identified as the key
factors affecting the improvement in eco-efficiency.

Japanese agricultural policy reforms aim to develop larger rice farms. For example, the recent
abolition of the rice production adjustment program will contribute to improving the eco-efficiency of
Japanese rice production by expanding the size of rice farms. However, the current direct payments
for upland crops that are cultivated in paddy fields may diminish the improvement in eco-efficiency of
rice production by suppressing this expansion of rice farm size.
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