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Abstract: Intercity transport systems have been plagued by low efficiency and overutilization for
a long time, due to unhealthy competition among multi-transport modes. Hence, this study aims to
estimate the dominant trip distance of intercity passenger transport modes to optimize the allocation
of intercity passenger transport resources and improve the efficiency of intercity transport systems.
Dominant trip distance was classified into two types: Absolute dominant trip distance and relative
dominant trip distance; and their respective models were developed using passenger transport mode
share functions and fitting curves. Particularly, the big data of intercity passenger transport mode
share rate of more than 360 cities in China was obtained using a network crawler and each passenger
transport mode share function and their curves were proposed. Furthermore, the dominant trip
distances estimation models of intercity passenger transport were developed and solved. The results
show that there are significant differences in dominant trip distance between the transport modes.
For example, the absolute and relative dominant trip distances of highway are 8–119 km and 8–463 km,
respectively, while those of airway are 1594–3000 km and 2477–3000 km, respectively.

Keywords: intercity passenger transport; passenger transport mode; mode share; dominant trip
distance; large-scale location-based service data

1. Introduction

During the past few decades, the interconnection between cities has been increasingly efficient
with the process of regional economic integration in China. Thus, intercity transport plays a vital
role in city interconnection. However, intercity transport demand is significantly increasing [1,2],
thereby necessitating higher efficiency of intercity transport systems. However, intercity transport
systems suffer from low efficiency and high utilization due to unhealthy competition among
multi-transport modes including highway, railway, and airway [3,4]. Meanwhile, the contribution by
waterway is often excluded due to the inaccessibility of inland water systems in China and its extremely
low utilization by passengers [5]. Competition among transport modes is mainly reflected in trip cost
including time cost, economic cost, etc. [6–10], while the critical factor influencing trip cost is travel
distance [11–14]. Thus, each transport mode has its dominant trip distance, in which the associated
mode share is relatively high [15–17]. Within the range of the dominant trip distance, the trip cost
of the transport mode is lower and passengers prefer it to other transport modes. Therefore, waste
and surplus of traffic resources can be avoided by investigating the dominant trip distances of
transport modes. This optimizes traffic structure and provides insightful suggestions for the planning
and management of intercity multi-transport systems [18].
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Several researchers have investigated the correlation between transport mode choice
and trip distance, to understand the dominant trip distances of different transport modes [19,20].
However, traditional studies on dominant trip distance mainly relied on questionnaires or surveys.
Dyck et al. [21] conducted a questionnaire on the transport mode choice behaviors of 1281 older
adolescents (17–18 years old) from secondary schools in East and West Flanders and set the criterion
distance for transportation to the school below 8 km for cycling and below 2 km for walking. Meanwhile,
Holz–Rau [22] conducted a survey of the transport mode choice of Berlin residents when they go
shopping. The results suggested that the usage of cars dramatically increases when the distance is
more than 325 m, and the residents seldom chose other transport modes than cars when the distance is
more than 650 m. Furthermore, Zhang et al. [23] conducted a questionnaire on transport mode choice
behaviors of passengers in Beijing-Hangzhou transport corridor. The results showed that few passengers
prefer to travel by highway when the trip distance was more than 1400 km. Meanwhile, no flights for
passengers to choose when the trip distance was less than 300 km.

Traffic questionnaires and surveys have low response efficiency and are costly and time-consuming.
It is difficult to obtain datasets with sufficient samples covering various areas or urban agglomerations,
thereby limiting large-scale investigation. Therefore, traditional studies only focus on small areas such
as urban transportation and some traffic corridors. Moreover, they generally discuss the characteristics
of one or two transport modes. For example, Romάn et al. [24] investigated the competition between
high-speed trains with air transport using a mixed revealed preferences (RP) and stated preferences (SP)
database of Madrid-Barcelona corridors. Ahern et al. [25] examined the perceptions and preferences of
passengers to identify the factors that influence the mode choice between bus and train on intercity
trips. Furthermore, Cattaneo et al. [26] investigated the role of air transport services in the selection of
universities by national students. The results revealed that air transport service affected university
choice for long-distance students living at least 300 km from the university. This shows that long or
super long trip distances are more applicable to airways.

Several studies have identified transport modes from global positioning system (GPS) trajectories
with the increasing availability of GPS. Xu et al. [27] proposed a fuzzy approach by selecting four
speed-related fuzzy variables to characterize five transport modes (walk, bike, bus, rail, and rest)
in the daily traffic of urban areas. The GPS travel data covering 142 days were obtained automatically
from GPS position records carried by 32 volunteers in Shanghai. Gong et al. [28] developed a geographic
information system (GIS) algorithm that automatically processes the data from GPS-based travel
surveys and detects five travel modes (walk, car, bus, subway, and commuter rail) from a multimodal
transportation network in New York City. Additionally, Xiao et al. [29] described the interaction
between features that influence transport mode choice using a Bayesian network. They distinguished
five representative transport modes (walk, bike, e-bike, bus, and car) using the resulting Bayesian
network. Although trip distance can easily be calculated with GPS trajectories, it is difficult to
investigate the dominant distances of transport modes based on GPS data due to low data coverage.
For individuals, few people can use GPS service uninterruptedly due to its high requirement for mobile
networks and hardware. For example, it is difficult to obtain the trajectory of passengers traveling
by air because passengers are prohibited from using electronic equipment during flight. Thus, it is
unrealistic to use GPS data for large-scale research, as most studies were based on artificial travel
experiences [30–32].

With the recent popularity of smartphones and online social media platforms, location-based
service (LBS) systems such as Google Places, Facebook, Tencent, and Baidu are widely used in several
fields including transportation [33–36]. Rashidi et al. [37] confirmed the applicability of social media
data for modeling daily travel behavior, based on the results of a qualitative survey. Zhang et al. [38]
proposed a sequential model-based clustering method to group high-resolution Twitter locations
and extract Twitter displacements, thereby showing the application of social media data in predicting
the travel behavior of individuals. Furthermore, they suggested that social media data is less expensive
in comparison with conventional household travel surveys as it is easier to obtain and, most importantly,
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it can monitor the longitudinal travel behavior features of an individual over a longer observation
period. Abbasi et al. [39] analyzed the travel pattern of tourists, using appropriate Twitter information
such as the places they visited, travel origin, and destination.

However, past studies mostly focused on the optimization of urban traffic structure due to
severe traffic congestions in the city and few intercity trips. Although LBS data has been widely
used in urban traffic and has made several achievements [40–43], few studies exist on dominant
trip distances in intercity transportation [44,45]. It’s worthy to mention that existing studies mainly
focus on dedicated transport corridor and describe how to get the travel learn from the previous
research, trip information including trip distance and trip trajectory can be deduced based on LBS data.
Furthermore, transport mode use and share can be obtained based on the previous records of passenger
transport hub including airports, railway stations, bus stations, toll gates, etc. In this way, a new
database of intercity passenger transport mode share is available for further study. Comparing this
database with the database originating from the questionnaire, this database has three advantages:
(i) It covers a wide area including a large number of inter-city traffic in different cities and contains
more comprehensive transport modes; (ii) it has a high timeliness which can provide both previous
data and the latest data; and (iii) it provides more abundant individual travel information.

The primary contribution of this study is the development of dominant trip distance models
for intercity passenger transport modes and quantitative analysis of their dominant trip distances
using LBS data. More specifically, this study (a) uses a web crawler to download massive LBS
data which can facilitate the investigation of the dominant trip distances of intercity passenger
transport modes, thereby avoiding the limits of traditional questionnaire; (b) compares intercity
multi-transport modes including highway, railway, and airway based on their respective dominant trip
distances, thereby improving the previous studies that focused on single transport modes; (c) classifies
the dominant trip distances into absolute dominant trip distance and relative dominant trip distance.
Two kinds of dominant trip distance models are then developed with LBS data to obtain the dominant
trip distance values of highway, railway, and airway in multi-transport systems. The results of this
study can guide the rational allocation of intercity transport resources and the positive competition
among transport modes, thereby optimizing and improving the efficiency of traffic structures in
intercity transport systems.

This study is organized as follows: Section 2 describes the data sources. Section 3 introduces
the definition of dominant trip distance and proposes a dominant trip distance model. Section 4 solves
the model based on data and discusses the results. Finally, Section 5 concludes and gives the scope for
further research.

2. Data

2.1. Data Collection

With the development of mobile communication technology and the popularity of smartphones,
the real-time location information of mobile phone users can be obtained through location-based
services (LBS) provided by kinds of mobile APP. This study used a network crawler to obtain data from
https://heat.qq.com/qianxi.php, which is a big data location platform established by Tencent. Presently,
this platform can receive more than 60 billion global positioning requests per day, covering one billion
users and more than 150 countries worldwide. It provides a new database for research in many fields,
such as urban transport, intercity transport, population migration, etc. In addition, the platform
provides users with a search bar, which can be used to input city name and date. Mode share between
two cities since February 3rd, 2015 is freely available to obtain.

The platform can store previous historical locations of travelers when receiving positioning requests
and then calculate their trip distances. Moreover, the transport mode of travelers can be identified
through the appearance records of trip speed and key passenger transport hubs such as bus stations,
train stations, and airports. Then, each traveler’s transport mode is concluded. Finally, the mode

https://heat.qq.com/qianxi.php
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share data of various intercity passenger transport modes can be obtained, which is significant to
investigations in intercity transport structures and dominant trip distances of transport modes.

In this study, Python 3.6 was set as the development environment, and a web crawler was
coded using Selenium programing library. Furthermore, BeautifulSoup and SimpleJson programming
libraries were used to parse the web while the data was downloaded and stored in a data center using
Pandas. Additionally, the data format was converted into an appropriate format and stored in a local
file. The data acquisition process is shown in Figure 1.
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In this study, 125 days of travel data in 2017 was collected, in which more than 25 days of data were
recorded in each season including data of National Day Golden Week, Spring Festival, and other special
periods. Moreover, 663,780 data records including date, departure city, destination city, and mode
share of transport modes were obtained. Table 1 shows the data table.

Table 1. Dataset of mode share in intercity transport.

No. Date Departure Destination Highway
Mode Share

Railway
Mode Share

Airway
Mode Share

1 1 October 2017 Beijing Chongqing 1% 30% 69%
2 1 October 2017 Beijing Shanghai 13% 42% 45%
3 1 October 2017 Beijing Changsha 0% 53% 47%
. . . . . . . . . . . . . . . . . . . . .
10 1 October 2017 Beijing Zhengzhou 11% 87% 2%
11 1 October 2017 Chongqing Beijing 0% 28% 71%
12 1 October 2017 Shanghai Beijing 13% 39% 48%
13 1 October 2017 Wuhan Beijing 10% 63% 27%
. . . . . . . . . . . . . . . . . . . . .
20 1 October 2017 Tianjin Beijing 27% 73% 0%
. . . . . . . . . . . . . . . . . . . . .

Meanwhile, no information about distance was obtained, which is essential for studies on
the dominant trip distances of the transport modes. Considering the road distance, railway distance,
and air distance between two cities are different. Thus, the distance D between the cities was calculated
based on the longitude and latitude of each city obtained from Google Maps. The calculation formula
is given by Equation (1):

D = 2R·arcsin


√

sin2

(
lata − latb

2

)
+ cos(lata)·cos(latb)·sin2

(
lona − lonb

2

) (1)

where lata and lona represent latitude and longitude of departure city, respectively; latb and lonb
represent latitude and longitude of destination city, respectively; and R represents radius of the Earth,
unit: Kilometer; D represents the distance between two cities, unit: Kilometer.

The data obtained include 361 departure cities and 362 destination cities, covering all regions
of China. The city distribution is shown in Figure 2, where regions shown in red have dense urban
agglomerations and regions shown in green have sparse urban agglomerations. From the perspective
of city distribution, cities in eastern and southern coastal areas are denser, which is consistent with
the development of regional economy in China.
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Figure 2. City and data distribution of the dataset. (a) City distribution of the dataset; (b) data size of
different cities.

2.2. Data Analysis

Based on existing research, trip distance has a significant impact on the choice of transport
modes by travelers. To clarify the distance distribution, all distances were classified at the interval
of 100 km. The number of each type of data was then counted, and the proportion of each type was
calculated, as shown in Figure 3. The most common trip distance range of intercity transport in China
is 101–200 km. Moreover, trip distance ranges of 8–100 km and 201–300 km had large proportions.
When trip distance is within 100–800 km, the proportion decreased gradually with the increase of trip
distance. However, when trip distance is greater than 800 km, the proportion increased gradually
to 1500 km. Subsequently, there was a sharp decline, especially after 1500 km, such that the proportion
of trips for these distances was extremely low. The reason is that the announced data from big data
platform of Tencent covers daily information of each transport mode of the cities ranked by the top
ten cities in China’s 365 cities. Specifically, such data contain city name, data, the mode share of
intercity passenger transport between a specific city and the other cities, etc. For instance, as shown in
Table 1, when Beijing is the departure city, Chongqing, Shanghai, Changsha, . . . , and Zhengzhou are
the top ten cities as destination for intercity passenger volume generation. Meanwhile, when Beijing is
the destination city, Chongqing, Shanghai, Wuhan, . . . , and Tianjin are the top ten cities as departure
for intercity passenger volume attraction. The distances between cities whose passenger volumes rank
top ten are mostly within 1500 km, therefore, there is an abrupt difference between 1401–1500 km
and 1501–1600 km.
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Based on the above classification, the trip distances were classified again according to the interval
of 300 km. However, data with distances greater than 1500 km were merged into one group, considering
the low proportion. Figure 4 shows the pie chart of the distribution. Intercity passenger travel in China
is dominated by short distance, which is less than 300 km. This accounts for more than half of the total
passenger volume. Meanwhile, mid-distance travel also accounts for a large proportion of the total
passenger volume, while long-distance travel over 1500 km accounts for a very low proportion (0.72%).
Hence, regional travel in China mainly focuses on short and medium distances.
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Considering that the proportion of long-distance trip data is extremely small, it is necessary
to supplement the data to ensure the accuracy of subsequent data analysis. As a result, a second
data acquisition was performed from the same platform to maintain data consistency. We collected
all currently published data when trip distance is greater than 1500 km and randomly selected
a date and collected travel records with distances within 500–1200 km, considering their overall
proportions is too small to make subsequent data analysis. Finally, 274,484 data records whose trip
distances are within 500–1200 km and 80,000 data records whose trip distances are over 1500 km
were obtained and supplemented with the datasets. Finally, 1,016,064 data records were obtained,
including 17,132 different urban O-D pairs. However, the number of each type of data also was
counted, and the proportion of each type was calculated, as shown in Figure 5. The final trip distance
distribution bar diagram is shown in Figure 5. The minimum distance between cities was 9.00 km,
and the maximum distance was 4662.00 km, covering a wide range of distance. Moreover, the average
distance between cities was 900.16 km.
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Figure 5. The final trip distance distribution bar diagram.
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3. Methodology

3.1. Dominant Trip Distance Definition

There are similarities between passenger transport and freight transport in the study of dominant
trip distance. Thus, the dominant trip distance of passenger transport mode is divided into two categories:
Absolute dominant trip distance and relative dominant trip distance, by referring to the classification of
dominant freight transport distance [46]. The definitions are given as follows:

1. Absolute dominant trip distance—This is the trip distance range where the mode share value of
a passenger transport mode is greater than that of any other passenger transport mode.

2. Relative dominant trip distance—This is the trip distance range where the mode share value of
a passenger transport mode in a certain trip distance range is greater than that of any other trip
distance range of the same distance.

3.2. Modeling of Absolute Dominant Trip Distance

Based on the definition of absolute dominant trip distance of passenger modes, a model can be
constructed as shown in Equation (2):

fi(k ≤ x ≤ l) > f j(k ≤ x ≤ l)
i , j

i, j ∈ 1, 2, 3
α ≤ k ≤ β
α ≤ l ≤ β

k ≤ l

(2)

where fi(x) and f j(x) represent the mode share of a type of transport mode when trip distance is x km,
i and j = 1, 2, 3. The values of f1(x), f2(x), and f3(x) represent the mode share of highway, railway,
and airway respectively; k and l represent the value of trip distances (km); [α, β] represents the trip
distance range covering all trips. The absolute trip distance range [k, l] can be obtained by solving
Equation (2).

3.3. Modeling of Relative Dominant Trip Distance

Based on the definition of the relative dominant trip distance of passenger transport mode,
the solution of relative dominant trip distance can be transformed into the solution of minimum
distance range when the area of closed figure surrounded by its mode share curve and the distance
range is fixed. The minimum trip distance range corresponding to the fixed area is the relative dominant
trip distance range of a passenger transport mode. Thus, the model of relative dominant trip distance
is given by Equation (3).

min d = m− n

s.t.


∫ m

n fi(x)dx = γ
∫ β
α

fi(x)dx
α ≤ m ≤ β
α ≤ n ≤ β
m− n ≥ 0

(3)

where m and n represent the value of trip distance (km); d represents the length of relative dominant
trip distance range (km); γ represents the dominant coefficient, whose value ranges from zero to one;
[α, β] represents the trip distance range covering all trips and m, n are in this range. The value of m
and n can be obtained by solving Equation (3). The relative dominant trip distance range is [n, m].
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4. Result Analysis

4.1. Mode Share Functions and Curves

The proportion of trips over 3000 km is extremely low such that it is insufficient for data
processing. Therefore, data with trip distances greater than 3000 km were excluded in the following
steps. Furthermore, data was clustered to reduce the impact of noise, due to the large size of the dataset.
After several cluster tests with different interval sizes, the adjusted R- squared values of highway,
railway, and airway were stable and kept greater than 0.9 when the particle size was over 100 km,
and the values were greater than 0.9, as shown in Figure 6. Therefore, all the data were categorized
at a travel distance interval of 100 km. Meanwhile, the average trip distance of each type was
represented as D′. Moreover, the average values of transport mode share in each type were calculated
separately and represented as Mcar

d , Mtrain
d , Mair

d . Thus, a new dataset
{
Mcar

d , Mtrain
d , Mair

d , D′
}

was created.
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Figure 6. The results of the adjusted R- squared with different particle sizes.

On the basis of data classification, datasets
{
Mcar

d , D′
}
,

{
Mtrain

d , D′
}
, and

{
Mair

d , D′
}

were
fitted with different statistical distributions including linear distribution, exponential distribution,
logarithmic distribution, polynomial distribution, power distribution, and moving average distribution
using MATLAB.

Furthermore, two metrics, adjusted R-squared (R2R2) and root-mean-squared error (RMSE),
were calculated using Equations (4) and (5), respectively, to evaluate the goodness of fit. Figure 6
shows the calculation results. In Equations (4) and (5), yi represents the real value of the mode share;
y represents the average value of the mode share; and ŷi represents the fitting value. Moreover, n is
the number of samples and p is the number of explanatory variables. From Figure 6, (R2 ) is close to
one in all fitting functions, which shows that the mode share functions and curves are credible.

R2
adjusted = 1−

n− 1
n− p− 1

1−
∑n

i=1(ŷi − y)2∑n
i=1(yi − y)2

 (4)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (5)

Table 2 shows the calculation results of all the statistical distributions, which indicates that polynomial
distribution and gaussian performs better in both R-squared and RMSE. However, polynomial
distribution function is much simpler than gaussian distribution function, which is easy to use
and understand. Therefore, the following data fitting were all made with polynomial distribution.
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Table 2. Calculation results of all statistical distributions.

Statistical Distribution Function
RMSE Adjusted R-Squared

Highway Railway Airway Highway Railway Airway

Exponential 3.333 12.870 5.872 0.936 0.475 0.952
Gaussian 3.059 3.952 5.953 0.942 0.950 0.950

Polynomial 3.668 4.557 5.423 0.914 0.934 0.959
Power 3.831 7.304 5.840 0.912 0.831 0.953
Fourier 4.809 5.495 5.361 0.868 0.904 0.96

The mode share functions of intercity passenger transport modes were then obtained, based on
trip distance denoted as x ranging from eight to 3000 km, as shown in Equation (6)–(8).

Mode share function of intercity highway:

f1(x) = −5.718× 10−9x3 + 3.321× 10−5x2
− 6.525× 10−2x + 56.96 (6)

Mode share function of intercity railway:

f2(x) = −5.853× 10−12x4 + 4.527× 10−8x3
− 1.198× 10−4x2 + 0.1015x + 39.26 (7)

Mode share function of intercity airway:

f3(x) =
{

0 (0 ∼ 25 km)

1.105× 10−12x4
− 1.11× 10−8x3 + 3.14× 10−5x2 + 1.584× 10−3x− 2.196 (250 ∼ 3000 km)

(8)
Furthermore, the mode share curves of transport modes were obtained based on their mode share

models, as shown in Figure 7.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 18 
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Figure 7. Mode share curves of intercity transport modes based on trip distance. (a) highway; (b) 
railway; (c) airway. 
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From Figure 7a, the highway mode share decreases monotonously as the trip distance increases.
When the trip distance is between eight and 300 km, the mode share of highway is over 40%.
In long-distance travel where trip distance is close to 3000 km, the highway mode share is 10%
or smaller, indicating that highway is suitable for short-and medium-distance travel, especially
short-distance travel.

From Figure 7b, the railway mode share increases first and then decreases as trip distance increases.
The trip distance corresponding to the inflection point is about 600 km, and the mode share is over 65%.
When the trip distance is within 10–1650 km, the railway mode share is more than 40%. This shows
that railway has obvious advantages for short, medium, and long distances.

From Figure 7c, the airway mode share decreases monotonously as the trip distance increases.
When the trip distance exceeds 1550 km, the airway mode share exceeds 40%, which indicates that
airway has advantages for long and super long distances.

Figure 7d combines the passenger sharing curves of highways, railways, and airways.
The passenger mode share varies with trip distance, and different passenger transport modes have their
own dominant trip distance. Thus, transport structure is the result of competition among the different
transport modes based on trip distance.

4.2. Solution of Absolute Dominant Trip Distance

Based on the share rate curve of transport modes, the intersection point of the highway sharing
curve and railway sharing curve is set as x1, and the intersection point of the railway sharing curve
and airway sharing curve is set as x2, as shown in Figure 7d.

According to the model of absolute dominant trip distance and Figure 7d, when the trip distance
ranges from eight to 3000 km:

f1(8 ≤ x ≤ x1) ≥ f j(8 ≤ x ≤ x1) j = 2, 3

f2(x1 ≤ x ≤ x2) ≥ f j(x1 ≤ x ≤ x2) j = 1, 3

f3(x ≥ x2) ≥ f j(x ≥ x2) j = 1, 2

(9)

Therefore, the absolute dominant trip distance of highway, railway, and airway are [8, x1], [x1, x2],
and [x2, 3000], respectively.

The absolute dominant trip distance of intercity passenger transport modes can be estimated
by Equation (10) composed of Equations (6) and (7) and Equation (11) composed of Equations (7)
and (8). The intersection values of x1 and x2 are solved separately. They satisfy the requirements of
8 ≤ x ≤ 3000.

f1(x) = −5.718× 10−9x3
− 6.525× 10−2x + 56.96

f2(x) = 5.853× 10−12x4 + 4.527× 10−8x3
− 1.198× 10−4x2 + 0.1015x + 39.26

f1(x) = f2(x)
(10)


f2(x) = 5.853× 10−12x4 + 4.527× 10−8x3

− 1.198× 10−4x2 + 0.1015x + 39.26
f3(x) = 1.105× 10−12x4

− 1.11× 10−8x3 + 3.14× 10−5x2 + 1.548× 10−3x− 2.196
f2(x) = f3(x)

(11)

The solution shows that x1 is equal to 119 km and x2 is equal to 1594 km. Therefore, when the trip
distance ranges from eight to 3000 km, the absolute dominant trip distance of highway, railway,
and airway is 8–119 km, 119–1594 km, and 1594–3000 km, respectively.

4.3. Solution of Relative Dominant Trip Distance

Based on the model of relative dominant trip distance, the relative dominant trip distance of
transport modes varies with the dominant coefficient value. In this study, the dominant coefficient was
set to 1/3 as an example, and the relative dominant trip distance can be solved in the following way:
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1. Relative dominant trip distance of highway—As shown in Figure 8, there are four unknown
points m , n, o, p. The values of m and n can be calculated by the area surrounded by m, n, o, p
and the highway mode share curve.
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The relative dominant trip distance of highway with trip distance range of 8–3000 km is established
as Equation (12). The value of γ is set as 1/3.

min d = m− n

s.t.


∫ m

n f1(x)dx = 1
3

∫ 3000
8 f1(x)dx

8 ≤ m ≤ 3000
8 ≤ n ≤ 3000
m− n ≥ 0

(12)

The solution shows that n is equal to 8.00 km and m is equal to 463.28 km, indicating that
the relative dominant trip distance of highway is 8–463 km, which covers a range of 455 km.

2. Relative dominant trip distance of railway—As shown in Figure 9, there are four unknown points
m, n, o, p, and the values of m and n can be calculated by the area surrounded by m, n, o, p,
and the railway mode share curve.
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The relative dominant trip distance of railway with trip distance range of 8–3000 km is given by
Equation (13):

min d = m− n

s.t.


∫ m

n f2(x)dx = 1
3

∫ 3000
8 f2(x)dx

8 ≤ m ≤ 3000
8 ≤ n ≤ 3000
m− n ≥ 0

(13)

The solution shows that n is equal to 344.70 km and m is equal to 1043.70 km, indicating that
the relative dominant trip distance of highway is 345–1044 km, which covers a range of 699 km.

3. Relative dominant trip distance of airway—As shown in Figure 10, there are four unknown
points m, n, o, p, and the values of m and n can be calculated by the area surrounded by m, n, o, p,
and the airway mode share curve.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 18 
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The relative dominant trip distance of airway with trip distance range of 8–3000 km is given by
Equation (14):

min d = m− n

s.t.


∫ m

n f3(x)dx = 1
3

∫ 3000
8 f3(x)dx

8 ≤ m ≤ 3000
8 ≤ n ≤ 3000
m− n ≥ 0

(14)

The solution shows that n is equal to 2,476.50 km and m is equal to 3000 km, indicating that
the relative dominant trip distance of airway is 2477–3000 km, which covers a range of 523 km.

Therefore, when the trip distance ranges from eight to 3000 km and the dominant coefficient is set
as 1/3, the relative dominant trip distance of highway, railway, and airway are 8–463 km, 345–1044 km,
and 2477–3000 km, respectively.

4.4. Result Analysis

In this study, the relative dominant trip distance and absolute dominant trip distance of highway,
railway, and airway within 8–3000 km were obtained by modeling with LBS data, which are shown in
Table 3 and Figure 11.

The absolute dominant trip distance of highway is 8–119 km and its relative dominant trip
distance is 8–463 km, which indicates that highway has significant advantages in short and medium
trip distances. This is because highway has characteristics of convenience, moderate speed, and high
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cost. However, long-distance trips by cars are often time-consuming and uneconomical. The absolute
dominant trip distance of railway is 119–1594 km and its relative dominant trip distance is 318–983 km,
which shows that passengers prefer railway when traveling at medium and long distances. This is
because railway has characteristics of lower cost and faster speed in comparison with highway.
The absolute dominant trip distance of airway is 1594–3000 km and its relative dominant trip distance
is 2477–3000 km, which indicates that airway has significant advantages in long and super long
distances. This is because airway has the fastest speed. Meanwhile, few passengers prefer airway when
traveling at short and medium distances because of its high cost and long waiting time. As the trip
distance increases, the advantages of airway gradually emerge.

Table 3. Dominant trip distance range of intercity passenger transport modes.

Transport Mode Absolute Dominant Trip Distance Relative Dominant Trip Distance

highway 8–119 8–463
railway 119–1594 318–983
airway 1594–3000 2477–3000
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From the perspective of dominant trip distance range shown in Figure 12, railway has the largest
dominant range both in the absolute dominant trip distance and relative dominant trip distance.
Airway and highway come next. Meanwhile, there is little difference in absolute dominant trip distance
between railway and airway. However, there is a huge gap between highway and the other two
modes. From the comparison of the two types of distance, the absolute dominant trip distance ranges
of railway and airway are larger than the relative dominant trip distance ranges, while the highway is
on the contrary. This indicates that the applicable travel distance of highway is more concentrated.
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5. Conclusions

In this study, absolute dominant trip distance and relative dominant trip distance were defined
based on the dominant trip distance of passenger transport mode. Furthermore, absolute dominant
trip distance model and relative dominant trip distance model were developed based on the transport
mode shares, and a method that quantifies and systematically compares the dominant trip distance of
transport modes was proposed. Additionally, big data of China intercity transport mode share was
obtained using a network data crawler. The mode share functions and curves were then established,
based on trip distance. Moreover, absolute dominant trip distance and relative dominant trip distance
values of highway, railway, and airway were obtained, based on the proposed models and data.

The results show that transport modes have their dominant trip distance. The absolute dominant
trip distances of highway, railway, and airway are 8–119 km, 119–1594 km, and 1594–3000 km,
respectively; while their relative dominant trip distances are 8–463 km, 318–983 km, and 2477–3000 km,
respectively. Highway has excellent advantages for short-distance trips while railway is mostly
preferred in medium-distance trips. When traveling at long and super long distances, passengers
usually prefer airway because it takes the least time.

Furthermore, the absolute dominant trip distance and relative dominant trip distance of
various traffic modes were quantitatively analyzed. By comparing the dominant trip distance of
the transport modes, intercity transport resources can be rationally allocated, thereby avoiding resource
surplus or resource shortage, improving the efficiency of intercity transport systems, and promoting
the coordinated development of regional integration.

In addition, some shortcomings need to be improved. The dominant trip distance of transport
modes is solved based on transport mode shares. However, other factors such as economy, region,
holidays, etc., also have an impact on transport mode choice. In the future, we will classify the data
based on the factors mentioned and solve the dominant trip distance under different types. Furthermore,
the influence of various factors on the dominant trip distance of transport modes will be explored by
studying the change of dominant trip distance.
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