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Abstract: The improvement of accuracy of short-term passenger flow prediction plays a key role
in the efficient and sustainable development of metro operation. The primary objective of this
study is to explore the factors that influence prediction accuracy from time granularity and station
class. An important aim of the study was also in presenting the proposition of change in a
forecasting method. Passenger flow data from 87 Metro stations in Xi’an was collected and analyzed.
A framework of short-term passenger flow based on the Empirical Mode Decomposition-Support
Vector Regression (EMD-SVR) was proposed to predict passenger flow for different types of stations.
Also, the relationship between the generation of passenger flow prediction error and passenger flow
data was investigated. First, the metro network was classified into four categories by using eight
clustering factors based on the characteristics of inbound passenger flow. Second, Pearson correlation
coefficient was utilized to explore the time interval and time granularity for short-term passenger
flow prediction. Third, the EMD-SVR was used to predict the passenger flow in the optimal time
interval for each station. Results showed that the proposed approach has a significant improvement
compared to the traditional passenger flow forecast approach. Lookback Volatility (LVB) was applied
to reflect the fluctuation difference of passenger flow data, and the linear fitting of prediction error
was conducted. The goodness-of-fit (R2) was found to be 0.768, indicating a good fitting of the data.
Furthermore, it revealed that there are obvious differences in the prediction error of the four kinds
of stations.

Keywords: metro station; passenger flow prediction; time granularity; forecast error;
lookback-volatility

1. Introduction

The rapid development of urban rail transit leads to the rapid growth of its passenger volume.
However, capacity of the metro system could not meet the requirements of the large passenger flow.
In order to ensure the sustainable development of rail transit, and to promote the development of the
metro network passenger flow forecast, the refine development of metro passenger flow prediction has
become a mainstream trend. Therefore, the prediction of short-time passenger flow plays an important
role in metro operation management. It can provide the basis of control measures and technical support
to the metro operation department, and adjustment of the operation organization [1,2].

In the aspect of short-term passenger flow prediction method, the autoregressive integrated
moving average (ARIMA) model has been widely used because it does not need to consider the
diversity of variables [3]. And WILLIAMS, et al. [4] proposed a SARIMA model by incorporating
the influence of seasonal factors into the ARIMA model. On the other hand, Karman filtering model
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is applied to traffic flow prediction because it is not affected by its own data noise [5]. The variance
invariance of the traditional Kalman filtering model process is improved, an adaptive Karman filter
approach is provided, and the feasibility prediction is carried out by 15 min time granularity [6]. With
the maturity of neural network technology, automatic adjustment of the neural network has also been
applied to passenger flow prediction direction due to its own error feedback. A highway traffic flow
prediction model based on the neural network has been proposed by Li and Lu [7]. The performance
of the neural network model was verified by the measured data of Beijing third Ring Road Expressway.
Based on the neural network model, a multi-pattern deep fusion (MPDF) method was proposed by Bai
et al. [8] which classifies the passenger flow distribution of different clusters to adapt to different types
of prediction models. In order to analyze nonlinear traffic data more effectively, machine learning
was highlighted by its advantages of efficient self-training, which can avoid overtraining in neural
networks [9,10]. An online learning weighted support vector regression model was proposed in
short-term traffic passenger flow prediction based on the Support Vector Regression (SVR) model [11].
With the rapid development of computer technology, deep learning shows the ability to predict traffic
flow under the background of big data [12,13]. Wu et al. [14] proposed a deep neural network capable
of making full use of the temporal and spatial characteristics of traffic flow to improve prediction
performance. Polson and Sokolov [15] proposed an end-to-end deep learning structure in metro
passenger flow prediction.

The rationality of the prediction object and the validity of the prediction result should be fully
considered to forecast the passenger flow. Moreover, the selection of time granularity is the basic
issue in short-term passenger flow prediction, which affects the accuracy of the prediction results [16].
The Interactive Multi-Model based Pattern Hybrid (IMMPH) was developed to predict the bus
passenger flow in three different time scales of week, day, and hour, respectively [17]. A spinning
network (SPN) prediction method inspired by human memory was proposed to predict the number
of road vehicles in 15 min and 30 min, respectively [18]. Xia et al. [19] established several kinds
of passenger flow prediction methods for rail transit. The incoming quantity under different time
granularity in different time periods of the whole day was selected as the data sample, which showed
that the prediction accuracy of SVR model was high. Zhong et al. [20] studied the law of urban flow
model based on intelligent traffic card data in three international cities; namely, London, Singapore,
and Beijing, which was helpful to provide an analytical framework. Sun et al. [21] constructed a
Wavelet-SVM model to predict the incoming and outgoing stations, and to transfer passenger flow of
Beijing metro with a time granularity of 15 min, achieving satisfactory results.

To the authors’ best knowledge, most of the existing studies have been aimed to predict the overall
passenger flow of a metro station or a metro line. In general, the change of prior passenger flow data is
an important factor in determining the prediction accuracy. Thus, a lack of overall consideration of
the whole subway network, a certain station prediction method, and the selection of prediction time
granularity are not necessarily suitable for all types of stations. Due to the unsystematic study on the
basic problems of research on the Prediction of the Passenger Flow, there is a gap in improving the
prediction accuracy just by varying the prediction method. In order to explore the difference of the
passenger flow prediction infrastructure system among the stations, the following problems need to
be solved:

Question 1: Is it possible to predict short-term passenger flow for all stations? What is the reason
for the difference in the error of passenger flow prediction results in different stations?

Question 2: Under which time granularity will the passenger flow show a strong regularity,
and will this regular difference affect the accuracy of the final prediction results?

Question 3: Is it reasonable to adopt the same time granularity for all stations, or select different
prediction time granularity for different stations?

Therefore, this study conducted a cluster analysis to classify the metro stations. Subsequently,
the correlation of the prior passenger flow for different types of stations was explored. Finally,
the difference of short-term passenger flow prediction for different types of stations was determined.
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Many previous studies have been conducted in the selection of station clustering methods. It
is a feasible research direction of station clustering analysis to classify stations by swiping credit
cards and making different operation policies for different stations [22]. Ma et al. [23] presented a
density-based spatial clustering of applications with noise (DBSCAN) algorithm and developed a data
mining program which could obtain the time and space characteristics of the transaction data of the
smart card. Wang et al. [24] used the smart card management system to study the difference between
directional traffic in different periods of time, and divided the typical stations in Hong Kong into three
categories. Based on the smart card payment system, Kim et al. [25] studied the passenger metro travel
characteristics by K-means method, and the stations were divided into five types according to the land
use properties around the metro. The results showed that there were obvious differences between the
travel characteristics of Seoul metro stations and other related characteristics.

In the following section, the study area and data collection were showed. In Section 3, the methods
of site classification and time granularity selection were systematically discussed. In Section 4, an
improved method of passenger flow prediction is proposed. The prediction results were compared
with other prediction methods, and the relation between the prediction error and the prediction data
was investigated. Finally, in Section 5 the main conclusions are summarized.

2. Study Area and Data

2.1. Study Area

Xi’an, located in the hinterland of China, is the capital city of Shanxi Province. Moreover, Xi’an is
an important cultural and educational city in China. By the end of 2018, the permanent population of
Xi’an is more than 10 million, where the built area of the urban area has exceeded 700 square kilometers.

Cut off of data statistical time, there were 4 metro lines in Xi’an, namely: line 1, line 2, line 3,
and line 4, with a total mileage of 126.35 km. There are 87 stations, including 6 transfer stations in
Xi’an. The first metro line 2 was operated on September 16, 2011 and the last metro line 4 was operated
on December 26, 2018, respectively. The passenger flow volume of the whole network reaches 3.1
million times every day, and the growing tendency is obvious. The passenger flow intensity of Xi’an
ranks first in China in 2018.

Therefore, it is very necessary to establish an efficient early warning mechanism of metro passenger
flow. This requires that the target of short-term ridership prediction should be attributed to keeping
the highest forecasting accuracy as much as possible in the selection of shorter time granularity.

2.2. Data Acquisition and Preliminary Analysis

The data in this study was provided by Xi’an Metro Operation Company. The Automatic Fare
Collection (AFC) system was used to collect the data from 87 stations from 1 January, 2019 to 15 March,
2019, a total of 74 all-day passenger inflow and outflow, with a minimum acquisition interval of 5
minutes collected.

In order to ensure the validity of the prior data of passenger flow prediction, the passenger flow
prediction time granularity and the prediction target are selected from 7:00 am to 23:00 pm. The data
of this stage consists of normal working days, general holidays, and statutory large-scale holidays
(Chinese Spring Festival), which could reflect the difference of station passenger flow in different time
periods, and provide a basis for the time selection of passenger flow prediction.

The following information is obtained through the preliminary analysis of the station entry
passenger volume of all-day statistical time period of each station:

(1) The passenger flow data from Tuesday to Thursday at each station are more stable than those
from the same period in the past. Monday and Friday are the first and the last day of the workday, so
the passenger flow data will fluctuate over a certain period of time.

(2) The characteristics of the peak hours in the morning and the evening of each station have a
certain deviation due to the land use of the surrounding areas. Yu et al. [26] found that there may be a
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deviation between station’s peak hours of the rail transit station and the peak hours of the city. For
some stations, the highest passage flow does not occur in the city peak hours. The reason for this
phenomenon is that the passenger flow of the station is determined by the land use of the surrounding
areas. Under normal circumstances, the early peaks of metro stations that are relatively far from the
urban area may appear earlier. This will provide a basis for the selection of the short-term passenger
flow prediction time range.

(3) If the passenger flow data of one week is taken as a unit, as the number of units increases,
the unit value will also increase. That is, the passenger flow of the metro shows a macro growth trend,
which is significantly different from other prediction fields. Moreover, Liu, et al. [27] pointed out that
most of the current passenger flow predictions are based on the latest time interval data and do not
account for the two main characteristics of the time series: period and tendency. This also provides
new ideas for subsequent prediction work.

3. Methodology

In the short-term passenger flow prediction of the metro station, we should first classify and
process the metro station based on passenger flow characteristics, and then analyze the prior passenger
flow data of each kind of station, including the analysis of passenger flow data in different weekdays
of one week, as well as the difference and stability of passenger flow in different time periods of the
same day. On this basis, the time period and time granularity that satisfy the passenger flow prediction
conditions are selected. The core idea of this paper is to investigate the relationship between prediction
error and prior data by using the improved passenger flow prediction method to predict passenger
flow. The relationship diagram is shown in Figure 1:
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3.1. Cluster Analysis of Station

3.1.1. K-means Clustering Method

K-means clustering method has a good effect on data partition, and is widely used in traffic data
division [28]. The core idea is to update the discrete variable factor data to each clustering center
iteratively, while the distance is used as the similarity index. Therefore, the given data is concentrated
into K class, and the center of each class is obtained according to the mean value of all the values in
the class, and each class is described by clustering center. The Euclidean distance is selected as the
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similarity index, and the clustering goal is to minimize the sum of squares of all kinds of clustering,
which is expressed as follows:

J =
k∑

k=1

n∑
i=1

‖xi − uk‖
2 (1)

where uk is the center of each cluster,xi is the distance of a single sample from the cluster, k is the
number of clusters into which the sample is divided, and n is the number of samples.

The sample iterates many times until the best clustering effect is obtained. The general steps of
the algorithm are as follows:

Step 1: The "initial value" of N clustering centers is selected. In our research, select a point as the
first initial cluster center point randomly, then select the point farthest from the point as the second
initial cluster center point, and then select the point with the largest distance from the first two points
as the third point, and so on, until the K initial cluster center points are selected.

Step 2: According to the principle of nearest distance from the center, all data points are assigned
to the nearest center, thus all data are divided into N clusters.

Step 3: Within each cluster, the average values of all individuals are calculated as the new Euclidean
distance center of each cluster.

Step 4: Repeat the above steps 2 and 3 until the ownership is unchanged, and the classification
is completed.

When using k-means mean clustering, the determination of clustering number needs to be paid
more attention. Different clustering numbers have great influence on the quality and degree of freedom
of clustering results. In order to evaluate the strength of this effect, Silhouettes analysis is used to
evaluate the quality of clustering effect. The definition of Silhouettes Coefficient is as follows:

s(i) =
b(i) − a(i)

max
{
b(i), a(i)

} (2)

where b(i) is the average distance between the sample and all points in the nearest cluster as the degree
of separation with the nearest cluster, a(i) is the average distance of the same data from all other data in
the same cluster. The value range of s(i) is from −1 to 1. When the degree of polymerization in the
cluster is equal to the degree of separation, the contour coefficient is 0 and the contour coefficient is
approximately 1. At this time, the clustering effect is the best. If the contour coefficient is negative,
the sample is moved to the adjacent cluster, the contour coefficient of all the data is obtained, and the
average contour coefficient of all the data can be obtained.

3.1.2. Selection of Clustering Factors

As the basis of short-term passenger flow prediction, passenger flow difference is the direct reason
that affects the prediction results. As such, the selection of station classification clustering factors must
also need passenger flow data difference as a support. In order to fully consider the station differences
caused by passenger flow differences, eight clustering factors are selected as the factors of station
clustering. It is worth noting that the selection of forecasting factors does not involve the impact of
passenger flow quantity. The definitions of eight clustering factors are as follows:

(1) Workday morning peak hour entrance flow/workday full-time entrance flow (F1), workday
morning peak hour exit flow/workday full-time exit flow (F2), workday evening peak hour entrance
flow/workday full-time entrance flow (F3), workday evening peak hour exit flow/Workday full-time
exit flow (F4). Through the data test, 7:30–8:30 is selected as the morning peak hour and 18:00–19:00 as
the late peak time. The selection of this kind of factor can reflect the characteristics of passenger flow
in the morning and evening of the station.

(2) Weekend entrance flow during 10:00–16:00/weekend full-time entrance flow (F5), weekend
exit flow during 10:00–16:00/weekend full-time exit flow (F6). These kinds of factors reflect the station
passenger flow characteristics during the non-peak hour.
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(3) Weekend full-time entrance flow/workday full-time entrance flow (F7), Weekend full-time
exit flow/workday full-time exit flow (F8). Such factors can reflect the differences in passenger flow
between workdays and Weekends at various stations.

3.1.3. Case Analysis of Station Clustering

Up to the date of data statistics, there are 4 metro lines and 87 stations in Xi’an. In order to
eliminate the influence of single data error on station classification, this paper takes the data from the
station in Xi’an rail transit network as the research basis, and selects the three weeks from 11 February,
2019 to 3 March, 2019. After screening and sorting, a total of 8 clustering factors from F1 to F8 were
extracted as the basis for station clustering. According to equation (2), when the clustering value k is 4,
the contour coefficient has an elbow point, the classification effect is considered to be the best. the
clustering factor weights corresponding to each cluster center after clustering are shown in Table 1.

Table 1. Weight of clustering factors for different types of stations.

Station Category Number F1 F2 F3 F4 F5 F6 F7 F8

I type 5 0.110 0.650 0.879 0.109 0.400 0.421 1.924 1.89
II type 50 0.174 0.104 0.100 0.138 0.378 0.341 1.049 1.07
III type 14 0.111 0.090 0.101 0.114 0.394 0.387 1.135 1.330
IV type 18 0.111 0.161 0.134 0.097 0.387 0.370 0.855 0.930

According to the difference of each clustering factor, the four types of stations in the above table
are defined as follows:

(1) Severe residential stations (I Type): most of these stations are concentrated in the first and last
stations of metro lines, the proportion of entrance flow at the morning peak is high, and the proportion
of exit flow is small (F1, F2), whereas the proportion of entrance/exit flow at evening peak is on the
contrary (F3, F4), and the entrance/exit flow on weekdays is higher than that on holidays, that is F7,
and F8 factor is larger. This kind of station is dominated by daily commuting passenger flow, so it is
defined as a severe residential station.

(2) Mild residential station (II Type): the number of such stations is the largest, the main function
is still residential, but it has both commercial and commercial functions. From Table 1, it can be seen
that the proportion of the weight of morning and evening peak factors is more severe than that of
residential stations.

(3) Consumption, tourism, and passenger terminal stations (III Type): the passenger flow
characteristics of such stations are consistent with the characteristics of general consumption, tourism,
and transportation hubs.

(4) Business work stations (IV Type): The characteristics and weight ratio of morning and evening
peak and holiday passenger flow in this kind of station are contrary to the passenger flow characteristics
and weight ratio of residential station. Considering that there are more commercial and official land
around this kind of station, it is divided into a commercial work station.

Table 2 shows the cluster types of 87 stations and the distance from the cluster centers. Figure 2
shows the relationship between the spatial location of stations and the type of stations more intuitively.
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Table 2. Characteristics of each station cluster.

Station
(Number)

Cluster Station
(Number)

Cluster Station
(Number)

Cluster

Class Distance Class Distance Class Distance

HWZ(#1) III 0.093 SQ(#2) I 0.078 ZH(#3) I 0.124

ZY(#4) I 0.095 HCL(#5) I 0.179 KYM(#6) I 0.128

LDL(#7) I 0.110 YXM(#8) IV 0.084 SJQ(#9) I 0.115

WLK(#10) III 0.154 CYM(#11) I 0.187 KFL(#12) IV 0.288

THM(#13) I 0.168 WSL(#14) I 0.088 CLP(#15) I 0.186

CH(#16) I 0.183 BP(#17) III 0.172 FZC(#18) I 0.185

BKZ(#19) III 0.175 BY(#20) I 0.134 YDGY(#21) III 0.148

XZZX(#22) I 0.095 FCWL(#23) I 0.125 STSG(#24) I 0.090

DMGX(#25) I 0.163 LSY(#26) I 0.141 AYM(#27) I 0.056

BDJ(#28) I 0.181 ZL(#29) III 0.045 YNM(#30) IV 0.152

NSM(#31) IV 0.084 TYC(#32) I 0.169 XZ(#33) III 0.403

WYJ(#34) I 0.062 HZZX(#35) I 0.076 SY(#36) III 0.193

FXY(#37) I 0.183 HTC(#38) III 0.137 WQN(#39) II 0.099

YHZ(#40) I 0.148 ZBBL(#41) I 0.232 YPM(#42) IV 0.240

KJL(#43) IV 0.269 TBNL(#44) IV 0.150 JXC(#45) IV 0.116

DYT(#46) III 0.309 BCT(#47) IV 0.212 QLS(#48) I 0.080

YXM(#49) I 0.098 XNL(#50) III 0.086 CLGY(#51) I 0.101

HJM(#52) I 0.201 SJJ(#53) I 0.137 XJM(#54) I 0.147

GTM(#55) I 0.159 THT(#56) I 0.123 CBZX(#57) IV 0.100

XHW(#58) II 0.274 WZ(#59) II 0.237 GJGW(#60) III 0.218

SZ(#61) I 0.094 XZ(#62) II 0.308 BSQ(#63) III 0.214

HTXC(#64) IV 0.207 HTDL(#65) IV 0.110 SZDD(#66) IV 0.312

DCAJ(#67) I 0.145 FTL(#68) I 0.127 HTDD(#69) II 0.122

JHT(#70) I 0.115 QJCX(#71) I 0.112 DTFR(#72) III 0.213

XAKJ(#73) I 0.279 JZKJ(#74) I 0.168 HPM(#75) I 0.121

DCS(#76) IV 0.091 HYD(#77) III 0.118 DMG(#78) IV 0.150

DMGB(#79) I 0.085 YJZ(#80) I 0.106 BHC(#81) I 0.111

CQL(#82) I 0.167 SZYY(#83) IV 0.133 WJL(#84) I 0.152

FCJL(#85) I 0.136 FCSE(#86) IV 0.174 YSL(#87) IV 0.133
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3.2. Time Granularity Study

3.2.1. Selection Range of Time Granularity

We should know that the significance of short-term passenger flow prediction is to guarantee
the service level of passengers. The most direct influencing factor is queue waiting time. Therefore,
for each station, when the passenger flow is the largest, making the most accurate passenger flow
prediction with the smallest time granularity can provide technical support for the operation planning
of the metro, and passengers can also have psychological expectations of the service level of the
station [29]. In choosing the prediction period, we should consider the following question: Can we use
the same time period to predict passenger flow for different types of stations? Is the determination of
the time period related to workdays and holidays? In order to solve these two problems, we select the
metro stations for a total of 21 days for three consecutive weeks to analyze the passenger flow law.

We choose four types of stations nearest to cluster center as the typical representatives of the
above four types of stations for analysis. WQN is selected for the first type of station, STSG for the
second type of station, ZL for the third type of station and YXM for the fourth type of station. Their
distance from the center of their clusters can be obtained in Table 2. These four types of stations can
effectively represent the difference of passenger flow characteristics of the four types of stations.

The effective operation time of Xi’an metro is determined to be a total of 17 hours from 06:00 to
23:00 for passenger flow analysis. Figure 3a indicates that the distribution of passenger flow in class I
station during the workday shows a bimodal curve, and the proportion of morning peak passenger
flow is at its highest during the day. The distribution of Type II and Type III of passenger flow also
shows a bimodal phenomenon, and the proportion of passenger flow in the evening peak period is
larger than the morning peak. The distribution curve of passenger flow in the IV type of station is
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unimodal, and the peak appears in the time range of 18:00–19:00. Figure 3b shows that the double
peaks of the type I stations still exist in the holidays, but the proportion of passengers at the evening
peaks exceeds the morning peaks. The passenger flow rate of the type II stations is close to that of the
peak period; the type III stations are still unimodal. The change of passenger flow in the type IV station
is similar to that of the type I station; that is, the morning and evening peak crossings are alternated.
It can be seen from Table 2 that the distribution of passenger flow at the station is highly consistent
with the station classification, and it is also consistent with other previous results on the changes of
passenger flow in Xi’an metro in morning and evening peak hours [26].
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Figure 3. Passenger flow sharing rate. The y-axis means entrance passenger flow burden rate.

Through the above analysis, and combined with the passenger flow to predict the actual demand,
the short-term time granularity selection range is initially set to 7:00–9:00 and 18:00–19:00 for morning
peak and evening peak, respectively.

3.2.2. Time Granularity Selection

To describe the station entrance passenger flow of station with an improved time series, the selected
time period is divided into 9 time granularities for comparison: 5 min, 10 min, 15 min, 20 min, 25 min,
30 min, 40 min, 50 min, and 60 min:

XN =


x1,1, x1,2, x1,3 · · · x1,n
x2,1, x2,2, x2,3, · · · x2,n

· · · · · · · · · · · · · · · · · · · · ·

x27,1, x27,2, x27,3, · · · x27,n

 (3)

where N is a sequence of consecutive days, N ∈ [1,27]; t ∈ (1,n), indicating that the effective morning
operating hours of the metro lines are divided into n segments at time granularity ∆t, n = 120/∆t
(morning peak) or n = 60/∆t (evening peak).

Stationarity is an important feature of time series. The mean and variance of stationary time
series will remain unchanged in the next period of time, while the unstable time series will produce
large structural changes, which will weaken the accuracy and reliability of the prediction results [30].
Therefore, judging the stability of continuous time series data is an important step in the selection of
time granularity. For data with continuity in time, Pearson correlation coefficient can discriminate the
correlation between data [31]. For example: Sun and Zhang [32] indicated that the traffic flow data is
incomplete and the data may be polluted by noise. The Pearson correlation coefficient is used to select
the predicted input variables. The original data is extracted and the data similarity is measured by
Pearson correlation coefficient method. It is assumed that the Pearson correlation coefficient r∆t

(
Xi, X j

)
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with the granularity ∆t of the time of day i and day j of the whole network is calculated as the coefficient
between the row vector of row i and line j in XN, respectively. The calculation method is as follows.

r∆t
(
Xi, X j

)
=

n∑
t=1

(
xN(i)t − xN(i)

)(
xN( j)t − xN( j)

)
√

n∑
t=1

(
xN(i)t − xN(i)

)2
√

n∑
t=1

(
xN( j)t − xN( j)

)2
(4)

In the formula, XN(i)t represents the inbound amount in the t-th time period in the Nth day. xN(i)
represents the average inbound of XN(i)t (N = 27). We divide the calculation process into weekdays
and weekends, and in order to increase the accuracy of data similarity, we make j = i + 1; that is to say,
the data of a certain period of a day is only compared with the same period of the next day, so that the
data can be used more reasonably and effectively. If the coefficient is greater than zero, it means that
there is a positive correlation between the entrance passenger flow for two consecutive days under the
selected time granularity. If the coefficient is less than zero, it means that the two-time series show a
negative correlation, which has no practical significance for the subsequent passenger flow prediction.

Figures 4 and 5 show the Pearson correlations of the weekday and weekend, respectively. It can
be concluded from the figures that no matter weekdays and weekends, the similarity coefficient of
passenger flow increases with the increase of granularity from small to large during the early peak
period. But it is worth noting that the growth rate of Pearson coefficient is faster in the process of
increasing time granularity from 5 min to 15 min, and when the granularity continues to increase,
the growth rate of Pearson coefficient slows down obviously. For the stations of I Type (WQN),
standing at the morning peak of the holiday, when the time granularity increased to 15 min and then
continued to increase, the similarity coefficient showed a certain degree of decline. For the evening
peak, the correlation coefficient with the time granularity is basically the same as the early peak, except
that the correlation coefficient at the same time granularity is lower than the early peak. The correlation
coefficient at the same time granularity is higher in the workday than in the same time period of
the weekend.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 19 
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3.2.3. Selection Range of the Optimum Time Period

Through the above analysis, we determined that the 15 min time granularity of the four types of
stations in the early peak hours of the workday is the sequence object of the passenger flow prediction,
but we need to find out which period of 15-minute time has the greatest correlation with the arrival
volume. Therefore, the 07:00–09:00 period is divided into eight periods for correlation comparison.
Equation 4 is used for correlation coefficient comparison, but the selection of data is adjusted as follows:
Taking the 8:00–8:15 time interval as an example, the data t1 of d1 day and the entrance passenger
flow t2 of the same time interval of the adjacent working day d2 are selected as a new set of data T1,
and then the data T2 is composed based on the data of day d2 and day d3. By analogy, 14 pairs of
contrast data are generated in each time interval, and Pearson coefficients are calculated at last. Data
consolidation process is shown in Figure 6.

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 19 

to increase, the similarity coefficient showed a certain degree of decline. For the evening peak, the 
correlation coefficient with the time granularity is basically the same as the early peak, except that 
the correlation coefficient at the same time granularity is lower than the early peak. The correlation 
coefficient at the same time granularity is higher in the workday than in the same time period of the 
weekend. 

3.2.3. Selection Range of the Optimum Time Period 

Through the above analysis, we determined that the 15 min time granularity of the four types of 
stations in the early peak hours of the workday is the sequence object of the passenger flow 
prediction, but we need to find out which period of 15-minute time has the greatest correlation with 
the arrival volume. Therefore, the 07:00–09:00 period is divided into eight periods for correlation 
comparison. Equation 4 is used for correlation coefficient comparison, but the selection of data is 
adjusted as follows: Taking the 8:00–8:15 time interval as an example, the data t1 of d1 day and the 
entrance passenger flow t2 of the same time interval of the adjacent working day d2 are selected as a 
new set of data T1, and then the data T2 is composed based on the data of day d2 and day d3. By 

Figure 6. Schematic diagram of time range selection data preprocessing. 

. 

Figure 7. Selection of four kinds of Station time periods by Pearson coefficient，Where, four points 
in the circle represent the maximum correlation coefficient of the passenger flow data of the station. 

It can be seen from Figure 7 that the regularity of passenger flow in the four types of stations 
presents different changes. 0.55 was selected as a threshold for the time period. The WQN station, 
STSG station and YXM station show the highest correlation at 07:45–08:00, and the correlation 
coefficient exceeds 0.55. Therefore, 07:45–08:00 time period is used as the best data selection time 
period for the passenger flow prediction of these three types of stations. Meanwhile, the maximum 

Figure 6. Schematic diagram of time range selection data preprocessing.

It can be seen from Figure 7 that the regularity of passenger flow in the four types of stations
presents different changes. 0.55 was selected as a threshold for the time period. The WQN station, STSG
station and YXM station show the highest correlation at 07:45–08:00, and the correlation coefficient
exceeds 0.55. Therefore, 07:45–08:00 time period is used as the best data selection time period for the
passenger flow prediction of these three types of stations. Meanwhile, the maximum correlation of
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passenger flow at the ZL station appears at 08:00–08:15. Therefore, 08:00–08:15 time period is selected
as the III Type station passenger flow prediction prior data.
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In order to verify the validity of the time series selection of different types of stations, we use
the (Autoregressive Integrated Moving Average) ARIMA model, which is more mature in passenger
flow forecasting, to predict the eight time periods above. By using the ARIMA model to determine
the closing and truncation criteria in the data autocorrelation and partial autocorrelation plots, WQN
station selects ARIMA (1,1,2) model, STSG station and ZL station to select ARIMA (1,1,1) model.
YXM station selects the ARIMA (2,1,3) model for prediction. In order to measure the magnitude
of the prediction error, formula (5) and formula (6) are proposed to calculate the magnitude of the
prediction error.

λ =
1
n

n∑
i=1

∣∣∣∣∣xi − xi
xi

∣∣∣∣∣ (5)

RMSE =

√√
1
n

n∑
i=1

(xi − xi)
2 (6)

where, xi is the actual flow of the entrance of each station,xi is the predicted flow of the entrance of
each station, the value of n is 49 and λ is the error value. This algorithm can accurately determine the
prediction errors of different stations and different model methods, and provide data support for the
subsequent error analysis. The prediction results of different types of sites using the ARIMA model are
shown in Table 3.

Table 3. Prediction results of ARIMA Model at different stations.

Station Time Forecast Error RMSE Station Time Forecast Error RMSE

WQN
(I Type)

07:00–07:15 5.18% 56.1

STSG
(II Type)

07:00–07:15 6.42% 41.2

07:15–07:30 5.72% 42.1 07:15–07:30 7.66% 32.7

07:30–07:45 4.71% 61.2 07:30–07:45 7.33% 33.4

07:45–08:00 3.41% 41.7 07:45–08:00 6.23% 27.6

08:00–08:15 4.24% 44.9 08:00–08:15 6.44% 22.3

08:15–08:30 6.22% 53.4 08:15–08:30 6.72% 32.9

08:30–08:45 4.32% 42.3 08:30–08:45 7.23% 28.5

08:45–09:00 4.82% 34.1 08:45–09:00 7.14% 22.7
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Table 3. Cont.

Station Time Forecast Error RMSE Station Time Forecast Error RMSE

ZL
(III Type)

07:00–07:15 8.22% 45.4

YXM
(IV Type)

07:00–07:15 6.43% 44.2

07:15–07:30 7.12% 35.2 07:15–07:30 6.22% 37.2

07:30–07:45 8.22% 44.2 07:30–07:45 5.72% 31.4

07:45–08:00 7.41% 36.2 07:45–08:00 5.33% 34.1

08:00–08:15 7.31% 34.4 08:00–08:15 5.43% 30.3

08:15–08:30 7.65% 36.2 08:15–08:30 6.14% 28.3

08:30–08:45 8.11% 33.2 08:30–08:45 6.53% 22.1

08:45–09:00 7.54% 37.4 08:45–09:00 5.44% 27.4

It can be seen from Table 3 that the time period with less error of the four types of stations is
directly related to the data correlation degree (the similarity coefficient of the time period with the
smallest prediction error is higher), and the mean values of prediction errors are WQN (I Type), YXM
(IV Type), STSG (II Type), ZL (III Type) in turn.

3.3. EMD-SVR Prediction Method

3.3.1. Process of Data De-noising

The composition of the metro passenger flow is complex and is always fluctuating, so it is difficult
to strip off the noise influence of the predicted prior data because it is not determined whether the
difference in the data is caused by an accidental difference or an empirically normal fluctuation. In order
to solve the influence of data fluctuation on prediction results, EMD (empirical mode decomposition)
is proposed to reduce data fluctuation caused by noise. EMD was originally proposed by E. Norden
and Huang et al. [33]. It is a method for non-linear and non-stationary time series analysis. In this
paper, the EMD method is used to perform the intrinsic mode function (IMF) reduction process on
the data. The original data is subjected to first-order difference, and the smooth envelope defined
by the local maximum and minimum values is selected based on the time series after the first-order
difference. Then, the average of the envelopes is subtracted by the first-order differential time series.
The value is obtained as a differential sequence after noise reduction, and finally the differential data is
restored. First, the purpose of first-order difference is to find sufficient data extremum points to reduce
the impact of raw data noise as comprehensively as possible. Second, it can ensure that the normal
trend of data itself will not be too much subtracted in the process of noise reduction.

∆yt = xt+1 − xt (7)

where ∆yt represents the t phase value after the first order difference, xt+1 represents the original t+1
data, and xt represents the original t phase data.

F(xn) = f (xn) −
n∑

i=1

ext∆yn + ext∆yn+1

2
(8)

where F(xn) denotes the n-phase sequence value after de-noising of the difference sequence, f (xn)
represents the n-phase value of the difference sequence, and ext∆yn is the n-th extreme value of the
difference sequence. After obtaining the de-noised differential sequence and performing inverse
difference, the original time series after noise reduction is obtained. Figure 8 shows a schematic
diagram of the noise reduction using this method for the 15 min of a station.



Sustainability 2019, 11, 5281 14 of 19

Sustainability 2019, 11, x FOR PEER REVIEW 13 of 19 

The composition of the metro passenger flow is complex and is always fluctuating, so it is 
difficult to strip off the noise influence of the predicted prior data because it is not determined 
whether the difference in the data is caused by an accidental difference or an empirically normal 
fluctuation. In order to solve the influence of data fluctuation on prediction results, EMD (empirical 
mode decomposition) is proposed to reduce data fluctuation caused by noise. EMD was originally 
proposed by E. Norden and Huang et al. [33]. It is a method for non-linear and non-stationary time 
series analysis. In this paper, the EMD method is used to perform the intrinsic mode function (IMF) 
reduction process on the data. The original data is subjected to first-order difference, and the smooth 
envelope defined by the local maximum and minimum values is selected based on the time series 
after the first-order difference. Then, the average of the envelopes is subtracted by the first-order 
differential time series. The value is obtained as a differential sequence after noise reduction, and 
finally the differential data is restored. First, the purpose of first-order difference is to find sufficient 
data extremum points to reduce the impact of raw data noise as comprehensively as possible. Second, 
it can ensure that the normal trend of data itself will not be too much subtracted in the process of 
noise reduction. 

1t t ty x x+Δ = −  (7) 

Where tyΔ represents the t phase value after the first order difference, xt+1 represents the original 
t+1 data, and xt represents the original t phase data. 

( ) ( ) 1

1 2

n
n n

n n
i

ext y ext yF x f x +

=

Δ + Δ= −  (8) 

Where F(xn) denotes the n-phase sequence value after de-noising of the difference sequence, f(xn) 
represents the n-phase value of the difference sequence, and extΔyn is the n-th extreme value of the 
difference sequence. After obtaining the de-noised differential sequence and performing inverse 
difference, the original time series after noise reduction is obtained. Figure 8 shows a schematic 
diagram of the noise reduction using this method for the 15 min of a station. 

 

Figure 8. Schematic diagram of noise reduction of original data. 

3.3.2. SVR Model Prediction 

Support Vector Machine (SVM) is a machine learning method for classification and nonlinear 
regression analysis. This method essentially avoids the traditional process from induction to 
deduction, and achieves a highly efficient method from training samples to forecasting samples. A 
small number of support vectors determine the final decision function. This feature not only helps 
researchers grasp key samples and eliminates a large number of redundant samples, but also makes 
the algorithm simple and has good "robustness". The principle is that :there is a training set{ },i ix y ,

D
ix R∈ (xi Contains class D vectors). For the problem of passenger flow prediction, the calculation 

formula of SVM objective function is defined in Equation (9) and (10). 

Figure 8. Schematic diagram of noise reduction of original data.

3.3.2. SVR Model Prediction

Support Vector Machine (SVM) is a machine learning method for classification and nonlinear
regression analysis. This method essentially avoids the traditional process from induction to deduction,
and achieves a highly efficient method from training samples to forecasting samples. A small number
of support vectors determine the final decision function. This feature not only helps researchers grasp
key samples and eliminates a large number of redundant samples, but also makes the algorithm simple
and has good "robustness". The principle is that: there is a training set

{
xi, yi

}
, xi ∈ RD (xi Contains class

D vectors). For the problem of passenger flow prediction, the calculation formula of SVM objective
function is defined in Equation (9) and (10).

minw,b =
1
2
‖w‖2 (9)

s · t · yi
(
wtxi + b

)
≥ 1, i = 1, 2 · · ·m (10)

where, w = (w1, w2, . . . wd) is the normal vector and b is the difference and determines the position of
the hyperplane. The SVR uses a non-sensitive function ξ, which means that the objective function is
considered to have no loss if the error range is within the acceptable range. If the error value is greater
than ξ, calculate its loss minus ξ. Therefore, the SVR problem is converted to:

minw,b
1
2
‖w‖2 + c

m∑
i=1

lξ( f (xi) − yi) (11)

where c is a regularization parameter and lξ is an insensitive function.

3.4. Prediction Result Analysis and Model Performance Comparision

3.4.1. Prediction Result Analysis

The data collected from each station from 1 January, 2019 to15 March, 2019 for 50 consecutive
working days were used to forecast the entrance passenger flow. According to the working principle
of SVR (Support Vector Regression) model, through the analysis of 50 data, it is found that the decision
function obtained by training the first 30 data has relatively less errors in the prediction. The results
are shown in Figure 9.
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Figure 9. Prediction results of four stations by EMD-SVR Model.

Based on the EMD-SVR method, the optimal time-granularity passenger flow of four representative
stations in the optimal period of 50 consecutive working days is predicted. The actual value and the
predicted value are shown in Figure 9. The actual value (the line indicated as color in the figure)
fluctuates near the prediction line, indicating that the proposed method can predict the selected
passenger flow data accurately.

3.4.2. BPNN Prediction Model Introduction

Back Propagation Neural Network (BPNN) is the most basic neural network, and its output uses
forward propagation. The error is transmitted by back propagation. Structurally speaking, the BP
network has an input layer, a hidden layer, and an output layer. In essence, the BP algorithm uses the
square of the network error as the objective function and uses the gradient descent method to calculate
the minimum value of the objective function.

The process of BP neural network is mainly divided into two stages. The first stage is the forward
propagation of the signal, from the input layer through the hidden layer, and finally to the output
layer. The second stage is the back propagation of the error, from the output layer to the hidden layer.
The layer is included, and finally to the input layer, which adjusts the weight and offset of the hidden
layer to the output layer, and the weight and offset of the input layer to the hidden layer.

3.4.3. Comparative Analysis of Predicting Results (EMD-SVR) and Other Methods

In order to verify the superiority of the EMD-SVR prediction method, the author considered SVR,
ARIMA, and BPNN methods and assumed as comparative parameters MAE and RMSE. Moreover,
the classical event sequence prediction method was compared under the same prior data conditions.
The BPNN method parameters are set to 7 nodes in the input layer, 1 node in the output layer, 5 nodes in
the hidden layer, a learning rate of 0.005, and a maximum number of iterations is 1000. The parameters
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of ARIMA model and SVR model are given in Sections 3.2.3 and 3.4.1, respectively. Table 4 shows the
comparison of prediction results at different sites.

Table 4. Performance criteria values of four model for prediction of passenger flow under optimal
time selection

Station Error EMD-SVR SVR ARIMA BPNN Station Error EMD-SVR SVR ARIMA BPNN

WQN
MAE 29.4 38.7 33.8 56.4

STSG
MAE 13.1 24.4 15.7 28.9

λ (%) 3.16 4.53 3.41 4.42 λ (%) 5.66 8.43 6.23 8.87

RMSE 46.4 62.5 52.4 82.7 RMSE 22.1 35.4 22.3 40.2

ZL
MAE 22.5 33.2 21.7 38.6

YXM
MAE 17.2 26.6 19.3 27.2

λ (%) 6.12 9.23 7.31 8.22 λ (%) 4.88 7.33 5.33 6.87

RMSE 32.2 48.3 34.4 57.3 RMSE 27.2 41.1 30.3 45.1

From Table 4, we can know that when four kinds of prediction methods are used to predict four
types of stations, the error and other prediction indicators are ranked in the same order. The prediction
errors are from small to large, respectively: WQN (I Type), YXM (IV Type), STSG (II Type); The EMD-SVR
method has a significant improvement over the other three methods, both in terms of prediction
accuracy and other indicators.

4. Results and Analysis

We use different methods to predict, but get the same trend of prediction error. From this, we can
infer that the difference of entrance passenger flow data of different types of stations is the root cause
of this error trend. In order to find out how this difference affects the prediction results, Lookback
Volatility (LBV) was used to describe the extent of passenger flow changes. Its definition is as follows:

bi = ln
(

xi
xi−1

)
(12)

µ =

√√
1
n

n∑
i=2

(
bi − b

)2
(13)

where xi is the entrance passenger flow of the i-th station; n is the number of data periods, and 20 is
chosen here as the same amount of predicted data.

The calculated values of WQN, STSG, ZL, and YXM entry data are 4.618%, 6.713%, 9.835%,
and 6.124%, respectively. The results show that there is a significant positive correlation between the
magnitude of the lookback reverge value of each station and the fitting prediction error. In order to
obtain as much data as possible for data fitting and minimize the impact of accidental errors, 21 stations
with less than 100 in the optimum forecast period are excluded. The purpose of eliminating these
stations is to ensure a better fitting effect. Finally, 66 stations are selected to analyze the relationship
between the error of passenger flow model and the fluctuation of entrance passenger flow data.
Figure 10 is a plot of the prediction error obtained by using the EMD-SVR model and the data look
back volatility.



Sustainability 2019, 11, 5281 17 of 19

Sustainability 2019, 11, x FOR PEER REVIEW 16 of 19 

( )2

2

1=
n

i
i
b b

n
μ

=

−  (13) 

where xi is the entrance passenger flow of the i-th station; n is the number of data periods, and 20 is 
chosen here as the same amount of predicted data. 

The calculated values of WQN, STSG, ZL, and YXM entry data are 4.618%, 6.713%, 9.835%, and 
6.124%, respectively. The results show that there is a significant positive correlation between the 
magnitude of the lookback reverge value of each station and the fitting prediction error. In order to 
obtain as much data as possible for data fitting and minimize the impact of accidental errors, 21 
stations with less than 100 in the optimum forecast period are excluded. The purpose of eliminating 
these stations is to ensure a better fitting effect. Finally, 66 stations are selected to analyze the 
relationship between the error of passenger flow model and the fluctuation of entrance passenger 
flow data. Figure 10 is a plot of the prediction error obtained by using the EMD-SVR model and the 
data look back volatility. 

 
Figure 10. Error rate and LBV fitting effect. 

In the figure above, we linearly fit all the data points and found that there is a close relationship 
between the prediction error rate and LBV. If error rate is the dependent variable y and LBV is the 
independent variable x, then the relationship can be fitted to y = 0.498x+ 0.3053, and the R-square of 
the fitted linear equation reaches 0.762, indicating that the fitting effect is better. We also mark the 
location of different types of sites in the figure. The number of sites in the first type of circle accounts 
for 100% of the number of sites in the first category; the second category is 82.5%, and the third 
category is 72.7%. The fourth category is 75%. It shows that there are significant differences in 
prediction errors between different types of stations. The average prediction error of the I type 
stations is 3.12%, and the standard deviation is 0.402. The average prediction error of the II type 
stations is 4.21%, and the standard deviation is 1.242. The mean error of the III type stations is 
predicted. It is 6.39% with a standard deviation of 2.142; the average error of the IV type station is 
3.64%, and the standard deviation is 1.252. 

5. Conclusions 

This paper takes Xi'an metro as the research object, classifies 87 metro stations in the whole 
network, and conducts research on the best time granularity and time period selection. On the basis 
of this, and by predicting the passenger flow of different types of stations, we have come to the 
following conclusions: 

 The metro stations are classified by the changing law of passenger flow as the influencing 
factors of station clustering. When the stations are classified into four categories, the effect 
of classification results are in good agreement with reality. According to the proportion of 

Figure 10. Error rate and LBV fitting effect.

In the figure above, we linearly fit all the data points and found that there is a close relationship
between the prediction error rate and LBV. If error rate is the dependent variable y and LBV is the
independent variable x, then the relationship can be fitted to y = 0.498x+ 0.3053, and the R-square of the
fitted linear equation reaches 0.762, indicating that the fitting effect is better. We also mark the location
of different types of sites in the figure. The number of sites in the first type of circle accounts for 100%
of the number of sites in the first category; the second category is 82.5%, and the third category is 72.7%.
The fourth category is 75%. It shows that there are significant differences in prediction errors between
different types of stations. The average prediction error of the I type stations is 3.12%, and the standard
deviation is 0.402. The average prediction error of the II type stations is 4.21%, and the standard
deviation is 1.242. The mean error of the III type stations is predicted. It is 6.39% with a standard
deviation of 2.142; the average error of the IV type station is 3.64%, and the standard deviation is 1.252.

5. Conclusions

This paper takes Xi’an metro as the research object, classifies 87 metro stations in the whole
network, and conducts research on the best time granularity and time period selection. On the basis of
this, and by predicting the passenger flow of different types of stations, we have come to the following
conclusions:

• The metro stations are classified by the changing law of passenger flow as the influencing factors
of station clustering. When the stations are classified into four categories, the effect of classification
results are in good agreement with reality. According to the proportion of clustering factors,
the stations can be defined as severe residential stations, mild residential stations, consumption,
tourism and passenger transport terminal stations, and working stations. The classification results
are in accordance with the actual situation.

• The proportion of passenger flow varied from different time periods in different days of the
week was analyzed, and the most practical time study range was determined. The improved
Pearson coefficient method was used to determine the optimal time granularity of different types
of stations. The range of predicted time: type I, II, and IV stations are 07:45–08:00 on weekdays,
and type III stations are 08:00–08:15 on weekdays.

• An EMD-SVR prediction method is proposed. The advantage of this prediction method lies in the
effective de-noising of prior data, which not only ensures the removal of white noise in time series,
but also effectively preserves the characteristics of its own data variation law. The prediction
results are compared with the traditional ARIMA, SVR, and BPNN methods, when the accuracy
is improved to varying degrees.
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• After the selection and processing of the original data, the prediction accuracy of the four types of
stations is different. The average prediction error of the four types of stations is 3.12%, 4.21%,
6.39%, and 3.79%, respectively. The fluctuation of passenger flow data is measured by LBV index,
and the prediction error of 66 stations in the whole network is linearly fitted with LBV, and the R2

is 0.762.

Through the error study of prediction accuracy, the relationship between error size and data
fluctuation is determined. However, there are still many studies that need to be done in the future.
First of all, the feasibility of prediction should be examined for large holidays (National Day holiday,
Spring Festival, Mid-Autumn Festival, etc.), and no special holidays have been discussed in this paper.
Secondly, for special stations, such as transfer stations, high-speed rail connection stations because
of the particularity of their passenger flow sources, its passenger flow fluctuations are large, for this
special station should be more detailed research, should not be limited to the accuracy of passenger
flow prediction. Finally, this paper only considers the number of stations, but there are still many other
factors affecting the service level of a station. In future work, the impact of outbound and transfer
passenger flow on the station passenger flow should be considered. Meanwhile, the sudden change of
station passenger volume caused by sudden bad conditions should also be taken into account.
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