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Abstract: Optimal spare parts management strategies allow sustaining a system’s availability,
while ensuring timely and effective maintenance. Following a systemic perspective, this paper
starts from the Multi-Echelon Technique for Recoverable Item Control (METRIC) to investigate the
potential use of a Weibull distribution for modelling items’ demand in case of failure. Adapting
the analytic formulation of METRIC through a Discrete Weibull distribution, this study originally
proposes a METRIC-based model (DW-METRIC) to be used for modelling the stochastic demand in
multi-item systems, in order to ensure process sustainability. The DW-METRIC has been tested in a
case study related to an industrial plant constituted by 98 items in a passive redundancy configuration.
Comparing the results via a simulation model, the outcomes of the study allow defining applicability
criteria for the DW-METRIC, in those settings where the DW-METRIC offers more accurate estimations
than the traditional METRIC.

Keywords: inventory control; inventory management; supply chain management; maintenance
management; METRIC; Discrete Weibull

1. Introduction

In the current competitive industrial scenario, equipment requires optimum inventory
management, especially in those sectors (e.g., aviation, defense, oil and gas, nuclear power plants, etc.)
where any failure may have critical consequences on both productivity and safety. Considering the
supply chain’s organization of these systems as a complex network structure (multi-echelon) with
multiple items related through different levels of the bill of materials (multi-indenture), spare parts
require accurate, sustainable and cost-effective management strategies.

Traditionally, an individual optimization approach—item-approach [1]—has been used for
optimizing spare parts allocation. However, due to the modern supply chain’s complexity
(i.e., high number of items, tight functional inter-relationships, highly-interacting logistic network
structure, differentiated maintainability), it has progressively started falling short for modelling
real operating conditions. On the other hand, approaches aimed at optimizing the system’s
parameters jointly—system-approach [1]—allow for defining an overall cost-availability function,
with an increasing interest in a number of industrial case studies. The METRIC (Multi Echelon
Technique for Recoverable Item Control) can be considered the most common approach for defining
a system-approach optimization process. Starting from a previously published pivotal study [2],
the METRIC allows developing a mathematical model of a base-depot supply system. In the METRIC,
the item demand assumes Poisson values with a mean value estimated by a Bayesian procedure.
The METRIC’s target consists of defining a sustainable solution to optimally allocate spare parts in

Sustainability 2019, 11, 5180; doi:10.3390/su11195180 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-5299-9993
https://orcid.org/0000-0001-9241-9121
https://orcid.org/0000-0002-6648-9350
http://www.mdpi.com/2071-1050/11/19/5180?type=check_update&version=1
http://dx.doi.org/10.3390/su11195180
http://www.mdpi.com/journal/sustainability


Sustainability 2019, 11, 5180 2 of 15

warehouses at different levels of the logistic network, ensuring minimum holding and backorder
cost, subject to an availability constraint. Due to the non-stationarity of item demand in logistic
operations [3], a Poisson process does not necessarily model demand behavior accurately. As has
emerged in the literature, the traditional Poisson METRIC remains the most used approach, even if
there are several alternative distributions proposed to deal with some peculiar demand patterns,
(e.g.,) Refs. [4–6].

This study aims at further exploiting the mathematical formulation of METRIC, substituting
the Poisson pattern with a Weibull distribution, which is largely used in reliability analysis. Even if
mathematically it is more complicated, the Weibull distribution may be more appropriate to model
items with a low failure rate, as theoretically argued by Sherbrooke himself [1] (p.89). This conceptual
approach has not been further exploited in the literature yet, lacking both an analytical formulation
and empirical evidence from industrial case studies.

Traditionally, reorder point strategies were used to control and manage spare parts inventories,
optimizing the material costs and utilization. For this reason, several inventory management studies
have focused on forecasting the time of future failures based on available failure observations [7,8] and
addressed the determination of the ordering amount of spares [9]. Nevertheless, an effective model
should be able to determine how many spares must be stocked in a warehouse to satisfy systemic
availability requirements, while minimizing costs. The model should also support the decision-maker
at addressing the relationships between budget allocations and availability requirements. The METRIC
has been conceived to support the optimization of stock levels in multi-echelon multi-indenture
systems for recoverable items in a (S-1, S) replenishment policy [1]. Adopting a managerial perspective,
the METRIC requires simple input variables (e.g., demand values, Ordering Time, Repairing Time,
repair time) and constraints (e.g., site or system availability, budget, warehouse available volume) to
provide manageable outcomes (stock level for each item, for each site). The relevance of METRIC
has been confirmed by a number of applications in a variety of systems, mainly aviation, naval
operations and defense, proving that its structure allows for parametric assessment of order costs,
stock levels and back-orders [10–14]. Motivated by the large number of industry examples, this paper
aims to further investigate the METRIC theory and the usage of Weibull distribution to model item
demands. Inspired by the large number of reliability studies adopting the Weibull distribution
to model failures, in this research, the Weibull distribution has been exploratively substituted to
the traditional Poisson distribution. The Weibull distribution is well-known in the field of failure
analysis [15–17]. In the literature, it is possible to find applications in formulations aligned with
traditional item-approaches, (e.g.,) prediction on the time of future failures [18], or determination of the
stock level for a continuous-review system [19]. Nevertheless, for the adoption of Weibull distribution
in METRIC to model an item’s demand, it is necessary to refer to a Discrete Weibull distribution,
coherent with the physical dimensions of the spares, which assume obviously discrete values. In this
paper, the Discrete Weibull introduced by Nakagawa and Osaki [20] has been adopted, which has been
used in reliability engineering, because failure data are measured through discrete variables such as
cycles, blows, shocks, or revolutions, (e.g.,) Ref. [21–23]. The analytical METRIC-based formulation
proposed in this paper, i.e., the DW-METRIC, encompasses a Discrete Weibull (DW) distribution to
model the item’s pipeline. The results of the DW-METRIC have been compared to real demand patterns
(and to METRIC-based estimations) through a simulation approach.

Based on these observations, the objectives of this study are: (i) to develop an optimization
METRIC-based model for recoverable spare parts management using a Discrete Weibull distribution
for the demand; (ii) to test the results of the model with a traditional Poisson-based METRIC model
via a simulation approach; and (iii) to identify decision criteria for the practical adoption of the
proposed method.

The remainder of the paper is organized as follows. Section 2 presents the relevant mathematical
formulation for the Discrete Weibull process. Section 3 details the proposed method, i.e., the Discrete
Weibull METRIC (DW-METRIC). Section 4 clarifies the results of the DW-METRIC in a 98-item case
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study, with a comparison of the results shown by the traditional METRIC, as further discussed in
Section 5. Lastly, the conclusions summarize the outcomes of the proposed approach and pave the
way to future research.

2. Materials and Methods: About the Discrete Weibull Distribution

Parameters

Atarget Target availability of the system at site
Cbudget Budget constraint of the system at site
I Total number of items for each machine in the system
M Minimum required number of the machines at site
N Number of the machines at site
Pi Market value of the i-th item
Psw Probability of stand-by switching for a cold machine at site
Ti Repair time at site of the i-th item.

Variables

α Continuous Weibull scale parameter
β Standard Discrete Weibull shape parameter
βi Discrete Weibull shape parameter of the i-th item
β∗ Estimator of Discrete Weibull shape parameter
δi Marginal allocation ability gene of the i-th item
∆EBOP Difference between analytic and simulated Expected Backorder for METRIC
∆EBODW Difference between analytic and simulated Expected Backorder for DW-METRIC
A Machine availability at site
Ai Availability of the i-th item at site
ASYS Availability of the system
BOi Number of LRUi in back order of the i-th item because of a stock-out at site
DIi Number of LRUi of the i-th item Due-In from repair at site
Ei[X] Expected value of the Discrete Weibull distribution for the ith item
EBOi(si) Expected Backorder for the i-th item at site, with respect to stock level si
EBO ∗i (si) Simulated backorder for the i-th item at site, with respect to stock level si
F(x) Discrete Weibull cumulative distribution function
K Integer number for the estimation of Discrete Weibull’s mean value
OHi Number of LRUi on hand of the i-th item, i.e., currently available at site
S (x) Continuous Weibull cumulative distribution function
I(xi) Indicator function for the random variable xi for the method of proportions
Y Total number of zeros (0) in the sample
Z Total number of ones (1) in the sample
dt

i Weekly demand of item i-th at time t
f (x) Discrete Weibull probability function
fi(x) Probability distribution of x-th stock Due-In, from repair of the i-th item at site
i Item number, i = 1, . . . , I
mi Yearly demand mean value of the i-th item
n Total number of observations for a sample demand
p(0) Probability distribution of zeros in the sample demand
p(1) Probability distribution of ones in the sample demand
q Standard Discrete Weibull scale parameter
qi Discrete Weibull scale parameter of the i-th item
q∗ Estimator of Discrete Weibull scale parameter
s Array of stock level for each item at site, s = (s1, . . . , sI)

si Stock level of the i-th item at site
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From the pivotal work of Nakagawa and Osaki [20], the Discrete Weibull (DW) is defined to
correspond with the continuous Weibull distribution. The respective probability mass function (pmf)
can be expressed as follows (1):

f (x) = qxβ
− q(x+1)β


0 < q < 1,
β > 0,

x = 0, 1, 2, . . . , ∞
(1)

Where:

q is the scale parameter
β is the shape parameter
β is supposed to be the same one as the continuous Weibull distribution [24]. The cumulative
distribution function is defined as [25]:

F(x) = 1− qxβ (2)

A way to compute q and β is to use the existing relationship between the Discrete Weibull
parameters and the continuous ones, see Refs. [20,24]. In detail, the cumulative distribution function
(2) is obtained from the survival function of continuous Weibull (3), replacing the exponential term in
(3) by a different parameter that is q:

S(x) = 1− e−[(
x
α )
β]


α > 0,
β > 0,

x ∈ (0,+∞)

(3)

q = e−(
1
α ) (4)

For estimating the parameters of the Discrete Weibull, it would be possible to apply the maximum
likelihood estimator (MLE) method [26]. Nevertheless, since the value zero is not defined for a random
continuous Weibull variable, the MLE method remains inapplicable in the case of a dataset which
includes null value(s), i.e., null demand in a time period. Such a restriction can be critical for the
applicability of the proposed model, especially for high-availability items, which are subject to low
failure rate.

Nevertheless, it is possible to find several Discrete Weibull parameters estimation methods, like the
method of moments [24] and MLE for Discrete Weibull [27]. However, since the respective analytical
formulations include infinite series, they cannot be solved by ordinary techniques. To overcome
this limitation, an efficient method to estimate q and β, the so-called method of proportions is
presented [24], which is here preferred to reduce computational and analytical efforts in evolving the
METRIC formulation.

2.1. Method of Proportions

Let x1, x2, . . . , xn be a random sample from the distribution with pmf given by (1). Firstly, it is
necessary to define the indicator function I(xi) (5):

I(xi) =

{
1 i f xi = 0
0 i f xi > 0

(5)

Secondly, Y is computed as the total number of zeros in the sample (6):

Y =
n∑

i=1

I(xi) (6)
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The proportion Y/n estimates the probability that the random variable of the distribution assumes
the null value (7):

p(0) = Y/n (7)

Considering q∗ as an empirical estimate of Pr{x > 0} and consistent estimator of q, q∗ can be defined
as follows (8):

q∗ = 1−Y/n (8)

Similarly, the probability p(1) is estimated by the proportion Z/n, where Z denotes the total
number of ones in the sample (9).

p(1) = Z/n (9)

Consequently, β is expressed as (10) and can be estimated by (11):

β =
ln

{
ln(Pr{X>2})
ln(Pr{X>l})

}
ln2

(10)

β∗ =
ln

{
ln(q−Z

n )
lnq

}
ln2

(11)

Since q∗ and β∗ share the main properties of their respective values q and β, they are consistent
estimators, and thus, can be used for modelling the Discrete Weibull distribution.

3. Materials and Methods: DW-METRIC

This section details the analytical formulation to be used for introducing the Discrete Weibull into
the METRIC, i.e., for generating the DW-METRIC. Adopting the general assumptions of basic METRIC
theory, the proposed formulation was analytically contextualized in a single-site single-indenture
multi-item system, in order to clarify the mathematical procedure. In line with traditional METRIC
theory [1], an (S-1, S) policy is considered appropriate for each item at each level; and any item in a site
is always repaired when there is the capability of doing it. Lateral supply is not taken into account.

3.1. Single Site Model

The assumptions for single site systems used for both the analytical formulation and the case
studies can be summarized as follows (see also Figure 1). Note that LRU (line replaceable unit) is
used to refer to items at the first level of indenture (single-indenture model), in line with inventory
management terminology.

- There is only one site, with its own inventory of spare items and its own workshop
- There is only one organization level (single-echelon)
- There are I > 1 different LRUs, LRU1, . . . ., LRUI (multi-item)
- The failure of a specific LRUi happens independently of any other LRU j functioning state
- An infinite repair capacity is assumed for each item at the site
- The repair time for LRUi are independent and equally-distributed stochastic variables with

expected value Ti
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3.2. Mathematical Formulation

The stock level si represents the number of LRUi in the inventory when there is no defect LRUi in
the workshop. At a randomly chosen time, the expression of si must consider any situation where there
are units undergoing repair, which results in less than si on the shelf. Furthermore, when no units are
on the shelf, any request generates a backorder. The stock balance assumes the generic expression (12):

s = (s1, s2, s3 . . . , sI) (12)

and, in detail (13):
si = DIi + OHi − BOi (13)

where:

si represents the number of spare parts of LRUi in the site;
OHi is the number of units on hand OHi, i.e., spare parts currently available in the site;
DIi is the number of units of stock Due In in base repair;
BOi (BackOrders) is the number of stocks that is requested but not available on the shelf because of
a stock-out.

The variables in (13) can only acquire non-negative integer values, and thus, at each time, at least
one of BOi and OHi is zero:

BOi = (DIi − si)
+ = max{ 0, DIi − si} (14)

OHi = (si −DIi)
+ = max{0, si −DIi} (15)

The expected value of backorders for the i-th LRU can be estimated by (16):

EBOi(si) = E[BOi] = E
[
(DIi − si)

+
]

(16)

Specifying (16), EBOi(si) can be calculated as (17):

EBOi(si) =
∞∑

x=si+1

(x− si) fi(x) (17)

Further expanding (17), it is possible to write (18):

∞∑
x=si+1

(x− si) fi(x) =
∞∑

x=si+1

x fi(x) − si

∞∑
x=si+1

fi(x) (18)

where the first term of (18) is (19):

∞∑
x=si+1

x fi(x) =
∞∑

x=0

x fi(x) −
si∑

x=0

x fi(x) (19)

and the second term of (18) can be written as follows (20):

si

∞∑
x=s+1

fi(x) = si

1−
s∑

x=0

fi(x)

 (20)

Eventually, the expression of (17), taking into account (1), can be written as (21):

EBOi(si) =
∞∑

x=0

x
(
qxβi

i − q(x+1)βi

i

)
−

si∑
x=0

x
(
qxβi

i − q(x+1)βi

i

)
− si q(si+1)βi

i (21)
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The first term on the right side of (21) is the expected value of the Discrete Weibull distribution for
the i-th item (22):

Ei[X] =
∞∑

x=0

x
(
qxβi

i − q(x+1)βi

i

)
(22)

where x represents the Discrete random variable of the distribution. Furthermore, for estimating the
mean value, it is necessary to update the formulation by [20] (23):

E[X] =
∞∑

x=0

qxβ (23)

which has been corrected by Englehardt & Li [25] (24):

∞∑
x=0

x(qxβ
− q(x+1)β) == 0 + 1q1β + 2q2β + 3q3β + 4q4β ..− 0− 1q2β

− 2q3β
− 3q4β . . . ==

∞∑
x=1

qxβ (24)

Nevertheless, (24) cannot be written in a closed form but it can be computed as (25):

E[X] �
K∑

x=1

qxβ +

∫
∞

K+1
qxβdx (25)

where K is a large integer value [25].
The second term of (25) can be computed by applying the incomplete gamma function (26):

∫
∞

K+1
qxβdx =

Γ
[

1
β , (K + 1)β(− ln q)

]
β(− ln q)

1
β

(26)

where, observing that for si = 0 EBOi(si = 0), (17) becomes (27):

EBOi(si = 0) = Ei
[
(DIi − si)

+
]
= Ei[X] (27)

Equation (27) implies that for null stock, the Expected Backorder for the i-th item is equal to the
expected value of the Discrete Weibull distribution. Such a demonstration supports the standard
iterative calculation of the distribution’s parameters, as for METRIC formulation [6].

Finally, the total Expected Backorders for a number I of LRUi can be expressed by (28):

EBO(s) =
I∑

i=1

EBOi(si) (28)

3.3. Optimization Process

The principal objective of the optimization process in METRIC is to compute the optimal stock
level s∗ =

(
s∗1, . . . , s∗I

)
for a group of LRUs at a site that satisfies a target value of system availability.

This target is achieved developing an availability versus backorders curve that shows the system’s
availability as a function of the expected backorders of the LRUs. This approach is valid since the
minimization of the sum of the backorders on all items is equivalent to maximizing the system
availability. Analytically, it is necessary to firstly evaluate the availability for each LRUi at site as (29):

Ai =

(
1−

EBOi(si)

N

)
(29)
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where N indicates the number of machines at the site; and the following mathematical constraint (30)
has to be valid to make the availability values significant:

EBOi(si) ≤ N (30)

The individual machine availability A can be evaluated as (31), on the simplified assumption of a
series system for all the I LRUs:

A =
I∏

i=1

Ai (31)

Assuming that the site has a minimum required number of machines, a failure on a machine
reduces the availability of the system only when the number of available machines is lower than the
minimum required M. In the case of passive redundancy of the machines, the system availability
can be modelled by a redundant system with (N −M) stand-by machines, in which M of N must be
operating (32):

ASYS = AM

1 + Psw

N−M∑
k=0

[
−lnAM

]k

k!

 (32)

where A is the equipment availability and Psw is the probability to successfully use one of the cold
stand-by equipment. Psw is less than one in order to model an imperfect switching action (e.g., due to
overlapping maintenance plans), but it is generally high (Pswitch equal to, or greater than 0.8) [14].

At this step it is possible to define the optimal stock allocation by the adoption of a marginal
allocation algorithm, as usually done for the METRIC [1]. Since the marginal analysis is based on a
heuristic, it offers an approximate solution (potentially, a local minimum), which, however, has been
confirmed to be reasonably accurate for the type of problems at hand [28,29]. The algorithm starts from
an initial condition of null stock for each item and iterates a marginal (one piece more) allocation with
the objective of finding the optimal level of the stock that satisfies the system availability constraint,
defined by (33):

ASYS ≥ Atarget (33)

For each iteration, the heuristic iterates testing the I possible allocations of a new item at site.
The algorithm relies on a marginal ability gene δi (34) that considers the marginal benefit to add one
item to the stock in the i-th position:

δi =
EBO(si) − EBO(si + 1)

Pi
(34)

In (34), δi represents the reduction of the system’s Expected Backorder due to the increase of one
unit in stock of the i-th item, in relation to its market value. If the allocation does not satisfy the cost
constraint, the algorithm rejects the allocation and the second best is tested. Only when the availability
constraint (33) is satisfied, the marginal analysis allocates in stock the selected item and then it checks
ASYS, otherwise the algorithm continues iterating to find a feasible point.

4. Results

This section illustrates the application of the DW-METRIC in an illustrative case study to ensure a
sustainable spare parts allocation for an industrial plant.

4.1. Description of the Scenario

The problem refers to spare parts management in a hypothetical industrial plant for hydraulic coal
transport, whose functioning requires N = 35 pumping stations, while the items correspond to different
LRUs of the pumping station (e.g.,: pump, feed tank, heat exchanger, pipe, differential pressure gauge,
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sedimentation tank, etc.). The system can be modelled as a single-site, with a dedicated inventory to be
optimized and a workshop capable of repairing the defect units. The optimal stock levels have to satisfy
the target value of the system availability, Atarget = 0.97. Adopting the DW-METRIC and optimizing
the model through a marginal allocation algorithm, this section details the optimal stock found by
the DW-METRIC, then comparing the results with a traditional Poisson-based METRIC. The system
availability is modelled by a passive redundant system with three stand-by machines, i.e., the number
of contemporarily required pumps has to be greater or equal to M = 32. The value of Psw represents
the probability to use one of the cold pumping stations as a stand-by station if successfully reassigned,
and it is assumed to be 0.91, based on previous experience in plant maintenance processes. These input
parameters are summarily listed in Table 1.

Table 1. Input parameters for the model.

Parameter Value

N 35

M 32

Psw 0.91

I 98

Atarget 0.97

Cbudget $20,000,000

The database used for the analysis consists of a monthly demand trend of 98 LRUs (Table 1).

4.2. Application Steps of the DW-METRIC

The application of DW-METRIC in the case study at hand can be briefly summarized into four
fundamental steps:

(1) Demand clustering based on Ti. Adapting the Palm theorem, the items demand patterns for
each item dt

i are firstly clustered in Ti, with the purpose of estimating how many requests might
contemporarily arrive to the workshop and thus could generate queues.

(2) Estimation of Discrete Weibull parameters q and β. Starting from the clustered data, the Discrete
Weibull distribution parameters, i.e.,qi and βi, have been estimated through the method of
proportions (see Section 2.1).

(3) Computation of the expected backorder for all LRUs. An estimation of the expected value has
been done following the formulation described in (25). To guarantee the effectiveness of this
estimation, Englehardt & Li [25] proposed K = 1000, which is generally much higher than the
stock level that is expected for the system at hand (average annual demand 11.9 ± 2.5 piece/year).
As a consequence, for the case study at hand, the second term of (25) can be neglected, allowing
the following approximation (35):

Ei[X] �
K∑

x=1

qxβi
i (35)

Eventually, the expression of EBO (21) becomes (36):

EBOi(si) =
M∑

x=1

qxβi
i −

si∑
x=0

x
(

qxβi
− q(x+1)βi

)
− si q(si+1)βi

i (36)

(4) Optimization process. The marginal allocation heuristic originally developed in MATLAB has
been used to compute the optimal stock allocations. The input data for the METRIC are the
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system parameters in Table 1, the repair time Ti of LRUs, and the Discrete Weibull parameters
qi and βi. The algorithm computes the expected backorders based on the best stock allocations
of each LRU: a higher contribution to decreasing the expected backorder, compared to the cost
required to achieve the result. The heuristic stops only when the system availability has attained
the target value Atarget, and if respecting the Cbudget. The outcomes of the METRIC optimization

process are the optimum stock allocations s∗ =
(
s∗i
)
, which satisfies the availability constraint

Atarget and the budget constraint Cbudget.

4.3. Simulation Model

The results have been verified through a simulation model, developed in MATLAB. The simulation
model aims at calculating the actual number of Back Orders (BOs), by means of the demand dataset,
and by a week-by-week calculation of relevant inventory variables, following the simple logic
summarized in (13). The purpose of this phase is understanding whether the DW-METRIC may
actually be more accurate than the traditional Poisson-based METRIC. Such an analysis is delivered
comparing the EBO estimated by the analytic model with the actual EBO calculated by the simulation
model (and as such, being a BO), as shown in Figure 2. Operationally, the input variables and
parameters for the simulation model are the proposed optimum stock level s∗, the repair times (Ti),
the cost of the spare (Pi), and other system parameters (M, N, Psw, as included in Table 1). Note
that the METRIC needs only the average value of demand mi, while the DW-METRIC required the
historic demands pattern of each item dt

i , from which we can calculate the DW parameters (βi and qi,
by using the method of proportions, cf. Section 2.1). Both the simulation models inherently require
dt

i . The total number of evaluated t time intervals is 144 weeks, i.e., 36 months (3 years). For the
sake of representation, the output variables of METRIC and its simulation model are respectively
addressed as sP,i EBOP,i EBO ∗

P,i, where the subscript P stands for Poisson distribution (referring to
traditional METRIC).
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5. Discussion

The results of the joint analytical/simulative analysis sketched in Figure 2 are summarized in
Figure 3, where the 98 LRUs of the pumping stations are represented as dots colored differently
according to the best fitting model: black dots, P, for METRIC; green dots, DW, for DW-METRIC;
and yellow, DW-P, for equally fitting. In Figure 3, the threshold represents the bisector of the
(∆EBOP − ∆EBODW) plane: Above the threshold it is possible to find the items for which the traditional
METRIC is preferable, and below it, the ones for which DW-METRIC is preferable. The items lying on
the threshold present the same errors regardless of the analytic approach (i.e., the two models assign
the same stock levels).
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One subsequent point of the analysis is related to exploring analytical parameters of items and
identifying potential thresholds of applicability for the DW-METRIC. After multiple analyses which
aimed at classifying the demand patterns through different variables, an interesting result is represented
in Figure 4. Figure 4 summarizes the 98 LRUs in an (α − β) plane, where the bubble size is related to
the respective differences between the analytic and simulated EBO (green bubble for ∆EBOP, and black
bubble for ∆EBODW). This representation allows depicting those items for which the DW-METRIC is
preferable (green bubble visible means that ∆EBOP is larger than ∆EBODW , and thus DW-METRIC is
less biased than METRIC) and vice versa. As such, it is interesting to note that for the items with lower
β (and α as well, but limited in scope) values, DW-METRIC is certainly preferred.

It could be interesting to further explore the representation of the Discrete Weibull functions
for the 98 LRUs, based on the best fitting model (Figure 5a). The joint representation (Figure 5b)
provides further evidence of the applicability of DW-METRIC for those items with lower β values:
The lower the β, the higher is the variability in the variable of the distribution (i.e., in the item demand),
also confirming a general tendency of the item to be characterized by rare failures (β remains generally
low). For the sake of clarity, the same logic is represented for a single item in Figure 6.

It could also be possible to argue further that the most precise results are related to β < 1,
ideally showing that the DW-METRIC would be preferred for those items usually characterized
by “infantile failures”, or (in case of β approximately equal to 1) for items with random failures.
Even if the 98 items in the sample provided too basic knowledge to start assuming such behaviors,
these hypotheses, as well as further classifications of demand based on the values of α, should be
grounded on bigger samples.
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6. Conclusions

Starting from the large applications of Weibull distribution in reliability engineering, this paper
presents the results of substituting the Poisson distribution for the pipeline with a Discrete Weibull
distribution. The outcomes of this research demonstrate that traditional METRIC models based on
Poisson distributions do not necessarily represent the best modelling framework for some types of
demand patterns. This result has been achieved comparing the outcome of the traditional analytic
METRIC, and of an innovative METRIC based on Discrete Weibull distribution (DW-METRIC) via a
simulation model. The analyses have been conducted in an industrial plant scenario, constituted by
35 pumping stations, with 98 LRUs each.

Nevertheless, to overcome the limitations for estimating the parameters of the Discrete Weibull
distribution in the case of zero values in the variable (i.e., the item demand), this research creatively
adopts the method of proportions, which allows for a simple integration into the traditional METRIC.
The main outcome of this paper consists of the development of an operational analytic model for
system-wide optimization of spare parts, i.e., the DW-METRIC. The results of its application in an
industrial context prove that for certain combinations of values in the variables defining the Discrete
Weibull distribution (α − β), the DW-METRIC outperforms the METRIC. Even if these results do
not cover all the possible combinations of (α − β), it is worthy observing how for lower β values
(β < 1.2), the DW-METRIC is generally performing better than the METRIC. This result, which shall be
further explored with different databases, is aligned with the limitations of Poisson distribution to
capture highly variable demand patterns. The most important research direction shall focus on larger
applications to verify the generalizability of the applicability thresholds and their validity to ensure
parametric sustainable solutions. A frank consideration about the proposed model refers to its simple
structure, i.e., single-site single-indenture. Advancing this originally presented an analytic formulation;
the model should be validated for more complex networks, (e.g.,) multi-echelon, multi-indenture,
also introducing more complex variables, (e.g.,) cannibalization, alternative redundancy, and routing
strategies. Note that limited attention has been devoted to cost estimation, since in this phase,
the purpose of the paper consisted of defining the model and proving its effectiveness with respect
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to METRIC, correctly estimating backorders and availability in operating scenarios. When adding
a cost analysis, it could be thus beneficial to refine the optimization strategy with more advanced
approaches, (e.g.,) genetic algorithm, pattern search, and particle swarm optimization. In this way,
the risk of under-stocking or over-stocking could be assessed more precisely, adding a quantitative
dimension of the estimation’s error referring to the different algorithms.

As a long-term research path, this paper also highlights the benefits which should arise from a
multi-method comparison, i.e., exploring the threshold of applicability for a series of METRIC-like
models, (e.g.,) VARI-METRIC, MOD-METRIC, ZIP-METRIC, in order to guide a priori analysts and
researchers in selecting and developing the most suitable expert system for the system being analyzed.
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