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Abstract: Due to earthquakes and large-scale exploitation of oil, gas, groundwater, and coal energy,
large-scope surface deformation has occurred in Songyuan City, Jilin Province, China, and it is
posing a serious threat to sustainable development, including urban development, energy utilization,
environmental protection, and construction to improve saline–alkali land. In this study, we selected
the Chagan Lake region, which is located in Songyuan City, as our research area. Using temporarily
coherent point synthetic aperture radar interferometry (TCPInSAR), we obtained a time series of
land surface deformation and the deformation rate in this area from 20 ALOS PALSAR images from
2006 to 2010. The results showed that the deformation rate in the Chagan Lake region ranged from
−46.7 mm/year to 41.7 mm/year during the monitoring period. In three typical land cover areas of the
Chagan Lake region, the subsidence in the wetland area was larger than that in the saline–alkali area,
while the highway experienced a small uplift. In addition, surface deformation in lakeside areas with
or without dykes was different; however, as this was mainly affected by soil freeze–thaw cycles and
changes in groundwater level, the deformation showed a negative correlation with temperature and
precipitation. By monitoring and analyzing surface deformation, we can provide a data reference and
scientific basis for sustainable ecological and economic development in the Chagan Lake region and
adjacent areas.

Keywords: ALOS PALSAR; TCPInSAR; Chagan Lake; land surface deformation; sustainable
development

1. Introduction

Surface deformation manifests as land subsidence (due to groundwater or oil and gas exploitation,
a mining area collapse, etc.), landslides, glacial flows, active volcanic uplift or sinking, crustal fault
movements, etc. These surface deformation phenomena are closely related to sustainable development
issues, such as urban planning, economic development, and geological hazard prevention and
control, so it is particularly important to continuously monitor surface deformation. At present,
the traditional methods that are commonly used to monitor land surface deformation include leveling,
GPS, etc. [1–3]. However, these traditional monitoring methods have some shortcomings, such as
being time-consuming, laborious, high-cost, slow to update data, and limited in monitoring scope,
that make it difficult to use them to meet the scale and timeliness requirements of surface deformation
monitoring at present.

As satellite earth observation technology has become more mature, synthetic aperture radar
interferometry (InSAR) has been further developed [4,5]. InSAR technology plays an important role in
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monitoring surface deformation caused by energy exploitation, climate change, volcanic movement,
glacier drifts, landslides, earthquakes, etc., and can make up for the shortcomings of the low resolution
of traditional methods [6–9]. Compared to traditional deformation monitoring methods, such as
leveling and GPS, InSAR has the advantages of high accuracy, a wide range, all-day operation,
and a lesser influence of climate conditions on the observation results. Standard InSAR technology
is based on the information that two SAR images in the same region provide for interferometric
processing, and information on elevation in the target region can be obtained [10]. Differential InSAR
(DInSAR) is a further development of standard InSAR. It uses two SAR images taken at different times
in the same area to produce an interferogram by differential interferometry and introduces a digital
elevation model to eliminate the influence of terrain factors on the interferogram to obtain information
on surface deformation during the acquisition of the two images in the area. DInSAR can supplement
the traditional land surface deformation monitoring methods and has some advantages and prospects
for application [11–14]. However, if the tropospheric temperature and humidity change during the
acquisition of the two SAR images, the spatial baseline and the change in the scattering characteristics
of targets caused by long observation intervals can easily lead to the phenomena of atmospheric phase
delay and decorrelation, which can affect the DInSAR monitoring results. Moreover, it is not easy to
use DInSAR to obtain time-series deformation monitoring results for the same region, which limits its
application to a certain extent.

In order to compensate for the limitations of DInSAR in land surface deformation monitoring,
time-series InSAR methods, such as persistent scatter InSAR (PSInSAR) [15,16] and small-baseline
subset InSAR (SBAS) [17–19], have been proposed. PSInSAR chooses one SAR image as a reference
image from N SAR images that cover the same area with different acquisition times, and the rest of
the images are used as subimages. Through interference processing, N − 1 interference pairs can be
obtained. Target points with a high degree of coherence during the monitoring period (e.g., corners of
walls, roofs of buildings, or exposed rocks) are selected as PS points. The effect of atmospheric phase
delay is eliminated through a filtering method, the PS points are analyzed by a time series, and then
multitemporal surface deformation information is obtained. PSInSAR technology is suitable for
monitoring surface deformation in urban areas with a high degree of overall coherence [20,21]. In view
of the fact that only one reference image in PSInSAR is prone to spatiotemporal decorrelation, SBAS
has made further improvements in this respect. By setting the time and spatial baseline thresholds of
the selected interference image pairs, interference pairs based on different reference images that cover
the same area can be obtained, and several small baseline subsets can be formed. However, the SBASes
used to monitor multitemporal surface deformation are susceptible to atmospheric delay, and a phase
unwrapping error can occur in the “island” region [22]. In contrast, temporarily coherent point InSAR
(TCPInSAR) [23], which has been developed in recent years, effectively combines the advantages of
PSInSAR and SBAS. There is no need to perform phase unwrapping during the solution process, which
effectively mitigates the effect of atmospheric delay on the surface deformation results. By choosing
shorter time baselines and smaller spatial baselines, more target points can be selected as temporarily
coherent points, and then high-resolution deformation monitoring results for the study area can be
obtained. The accuracy of the land surface deformation monitoring results that have been obtained
using the TCPInSAR method has been verified in volcanic activity monitoring and land subsidence
monitoring studies [24,25].

In this paper, we take the Chagan Lake region in Jilin Province, China, as our research area.
In view of the fact that there are fewer target points with a high degree of temporal coherence in the
Chagan Lake region and that vegetation cover is liable to cause decorrelation in some lakeside areas,
we used the TCPInSAR method and L-band ALOS PALSAR images with strong penetration as a data
source to monitor land surface deformation in the Chagan Lake region from 2006 to 2010 and analyzed
the causes of deformation by combining local meteorological data.
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2. Materials and Methods

2.1. Study Area and Experimental Data

Chagan Lake is the largest natural lake in Jilin Province and has a maximum area of 347.4 square
kilometers. It is located in Songyuan City and Baicheng City, western Jilin Province. It contains an
abundance of water and fishery resources [26]. However, the land cover of the Chagan Lake region is
complex, as there are large areas of saline land and wetland [27]. The water storage in the lake and the
climate conditions vary significantly with the seasons. Besides this, the land in the Chagan Lake region
is affected by freeze–thaw cycles, earthquakes, and mineral exploitation all year long, and the surface
is prone to deformation, which may cause damage to roads and electricity, hydraulics, and other
public facilities. This has an impact on the irrigation function of Chagan Lake and on sustainable
ecological and economic development in Songyuan City. Therefore, it is necessary to perform long-term
monitoring of land surface deformation in the Chagan Lake region [28].

In this study, the Chagan Lake region in Songyuan City and Baicheng City, Jilin Province, China,
was selected as the study area, as shown in Figure 1. Chagan Lake extends from the southeast to
the northwest and has a narrow overall shape. It is located at the junction of Heilongjiang Province,
Jilin Province, and the Inner Mongolia Autonomous Region and the overlapping areas of the Horqin
Grasslands, the Songnen Plain, and the Northeast Plain, where the Nenjiang River and the Songhua
River meet. The geographical coordinates of Chagan Lake are 45◦09′ N to 45◦30′ N and 124◦03′ E
to 124◦34′ E.
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Chagan Lake is relatively flat on the whole, with a higher elevation in the southeast region and
a lower elevation in the central and northeastern regions. It has a length of approximately 38 km in
the east–west direction and 14 km in the north–south direction. It has a circumference of 104.5 km.
The lake’s maximum water storage capacity is 415 million m3. The Chagan Lake area has a temperate
continental monsoon climate, with an average annual precipitation of 300–500 mm and an average
annual temperature of 5–7 ◦C [29]. The geological conditions of the lakeside are complex, and there are
many kinds of landforms. In some areas, there are artificial concrete dykes. In the area without dykes,
there is a staggered distribution of saline–alkali land with almost no vegetation cover and wetland
with dense vegetation cover.

The experimental data that we selected for this study were PALSAR images of the ALOS satellite,
which was launched by the National Space Development Agency (NASDA) of Japan in 2006. The radar
is a phased-array L-band synthetic aperture radar with a wavelength of 23.6 cm and a revisit period of
46 days. Compared to C-band images, ALOS PALSAR image can penetrate vegetation better because
of the ALOS satellite’s longer band. ALOS PALSAR images are suitable for deformation monitoring in
areas with complex topography and landforms [30].

Twenty ALOS PALSAR images that covered the study area from 2006 to 2010 were selected for
the experiment. The polarization mode of the images was horizontal–horizontal (HH) polarization.
The imaging modes included fine-beam single polarization (FBS) and fine-beam dual polarization
(FBD). Table 1 shows the specific parameters.

Table 1. The specific parameters of the ALOS PALSAR images that were selected for the experiment.
FBS: fine-beam single polarization; FBD: fine-beam dual polarization.

Image Number Imaging Time
(yyyymmdd) Imaging Mode Image Number Imaging Time

(yyyymmdd) Imaging Mode

1 20061206 FBS 11 20081211 FBS
2 20070608 FBD 12 20090126 FBS
3 20070724 FBD 13 20090729 FBD
4 20070908 FBD 14 20090913 FBD
5 20071024 FBS 15 20091214 FBS
6 20071209 FBS 16 20100129 FBS
7 20080124 FBS 17 20100501 FBD
8 20080425 FBD 18 20100616 FBD
9 20080610 FBD 19 20100916 FBD
10 20080910 FBD 20 20101217 FBS

In addition, a digital elevation model from the shuttle radar topography mission (SRTM DEM)
provided by the United States Geological Survey (USGS) with a resolution of 30 m was selected
to weaken the influence of the topographic phase on the deformation results during the solution
process [31]. Meteorological data provided by the National Oceanic and Atmospheric Administration
(NOAA) were combined with the deformation results to determine the influence of temperature
and precipitation on the deformation and analyze the causes of deformation [32]. An example of
what meteorological data look like is shown in Table 2. The meteorological station that provided the
meteorological data is located in the Qianguoerros Mongolian Autonomous County of Songyuan City,
approximately 30 km away from Chagan Lake. Its geographical coordinates are 45◦04′59” N and
124◦52′01” E. The temperature that is shown in Table 2 was the average temperature for that month,
and the precipitation that is shown in Table 2 was the total precipitation for that month.
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Table 2. Temperature and precipitation data for the study area from 2006 to 2010.

Number Time (yyyymm) Temperature (◦C) Precipitation (mm)

1 200601 −16.7 5.84
2 200602 −11.3 0.00
3 200603 −1.7 6.35
4 200604 5.8 5.08
5 200605 17.2 14.73
6 200606 21.2 118.36
...

...
...

...
58 201010 7.0 13.97
59 201011 −3.2 19.81
60 201012 −16.7 17.53

2.2. Data Processing Using TCPInSAR

2.2.1. Basic Theory of TCPInSAR

TCPInSAR is a multitemporal InSAR technique that was developed by Hong Kong Polytechnic
University’s InSAR Group [33–35]. TCPInSAR is characterized by several advanced TCP identifications,
TCP networking, and parameter estimation. TCPInSAR distinguishes itself from other methods in two
main respects, i.e., its observation model and its parameter estimation. In order to precisely mitigate
orbit error and stratified atmospheric delays, TCPInSAR employs a joint model that establishes the
relationship between wrapped phases and signals together with parameters of interest. During the
parameter estimation stage, by taking phase ambiguities as outliers, TCPInSAR can retrieve deformation
parameters without the need for phase unwrapping, which is a challenging and time-consuming task
in multitemporal InSAR processing. Figure 2 shows a flowchart on TCPInSAR.
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In this section, we introduce the key steps in the TCPInSAR technique that we used to process the
ALOS PALSAR images over the Chagan Lake region.
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Observations

To reduce decorrelation noise, coherent points in interferograms with short baselines (spatial and
temporal baselines and the Doppler centroid difference) were used as observations in the TCPInSAR
processor. We then conducted a differential operation among the selected points to generate dense
arcs (i.e., coherent point pairs) to reduce the spatially correlated atmospheric signals [36]. Given M
differential interferograms generated from N SAR images, the wrapped phase at coherent point p in
the ith interferogram can be written as

φi
p= W{φi

topo,p + φi
de f o,p + φi

atmo,p + φi
orbit,p + φi

noise,p}, i = 1 · · ·M, (1)

where W{ } is the wrapping operator; φi
topo,p is the phase that is related to the topographic error; φi

de f o,p is

the phase component that is due to ground motion; φi
atmo,p is the phase that is due to atmospheric delay;

φi
orbit,p is the phase that is due to the orbital error; and φi

noise,p is the noise (due mainly to decorrelation
effects). For an arc that is constructed by two neighboring coherent points (say, p and q), the phase
difference between p and q can be expressed as

∆φi
p,q= W

{
∆φi

topo,p + ∆φi
de f o,p + ∆φi

atmo,p + ∆φi
orbit,p + ∆φi

noise,p

}
, i = 1 · · ·M. (2)

If there are G arcs in the ith interferogram, the observations can be written as

∆Φi =
[
∆φi

1, ∆φi
2, · · · , ∆φi

G

]T
, i = 1 · · ·M. (3)

The setting vector ∆Φ contains all of the observations of the proposed model, which can be
expressed as

∆Φ =
[
∆Φ1, ∆Φ2, · · · , ∆ΦM

]T
. (4)

Modeling Orbit Errors

We assumed that the orbit errors in one of the images (i.e., the reference image) were negligible.
The following polynomial was used to represent the relative orbital error of pixel p with coordinates
(X, Y) with respect to the reference image:

φ
j
orb,slc,p = a jX + b jX + c jXY, j = 1 · · ·N − 1, (5)

where a j, b j, and c j are the unknown coefficients to be estimated. A constant term is not needed, since
it has the same effect on all of the pixels in the image and will be canceled out during the differencing
operation. The relative orbital errors of all of the arcs in a single-look complex (SLC) image can be
written as

∆Φ j
slc = a jdX + b jdY + c jdXY, j = 1 · · ·N − 1, (6)

where dX, dY, and dXY are vectors of the pixel coordinate differences between the points that form the
arcs. Equation (6) can be written in the following matrix form:

∆Φ j
slc = D jP j

slc,orb, j = 1 · · ·N − 1, (7)

where D j = [dX, dY, dXY] and P j
slc,orb = [a j, b j, c j

]T
. It should be noted that a higher-order polynomial

with more coefficients can also be considered according to the orbital error pattern. Let A be a matrix
for the differencing operation to generate M interferograms from N SLC images, and let the column
corresponding to the reference image be removed, which has the following form:
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A =


−1 0 1 · · · 0
0
...
0

−1
. . .
0

· · ·

−1

1 0

· · · 1

. (8)

The design matrix that relates the observations in Equation (4) to the orbit error parameters in
Equation (7) at the arcs is

Dorb = A
⊗

D, (9)

where
⊗

denotes the Kronecker tensor product. The phase components that are due to the orbital
errors in all of the arcs of the interferograms can then be obtained:

∆Φorb = DorbPorb, (10)

where Porb contains all of the polynomial coefficients of the relative orbital errors with respect to the
reference image.

Modeling Deformation Rates and Digital Elevation Model (DEM) Errors

For a given point p, the topographic error ∆hp and the linear deformation rate vp also contribute to
the differential phase. Given M interferograms in total, the differential phase that is due to deformation
and the topographic error at p can be expressed as

Φtopo+de f o,p = B
[

∆hp

vp

]
, (11)

where B is the design matrix that relates the topographic error and the linear deformation rate to the
phase observations. Let C be an index matrix that indicates the relationship between the G arcs and
the coherent points P, where the column corresponding to the point with a known DEM error and
deformation rate (i.e., the reference point) has been removed. The phase differences in the arcs in the
ith interferogram (due to topographic errors and deformation rates) have the following expression:

∆Φi
topo+de f o =

(
C

⊗
Bi

)
Ppar, i = 1, · · ·M. (12)

The phase differences in the arcs in all of the interferograms due to topographic errors and
deformation rates can then be expressed as

∆Φtopo+de f o = DparPpar, (13)

where Dpar = [C
⊗

B1, C
⊗

B2, · · · , C
⊗

BM
]T

.

Observation Equation and Initial Solution

The final observation equation that reflects the relationship between the phase differences in the
arcs and the unknowns (i.e., the orbital error polynomial coefficients, the topographic errors, and the
deformation rates) can be expressed as

∆Φ = DP + W, (14)

where D = [D orb, Dpar
]T

and P = [P orb, Ppar
]T

. W is a vector that contains all of the unmodeled
phases in the arcs due to, e.g., spatially uncorrelated atmospheric delays and the decorrelation noise.
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Phase Ambiguity Detection and Final Solution

Since the observations in Equation (14) are wrapped-phase, a number of observations might
contain phase ambiguities, which can result in abnormally large least squares residuals. The initial
solution obtained without considering the phase ambiguities should be updated by detecting and
removing the observations with modulo −2π. Therefore, the residuals of the initial solution can be
used to identify observations with phase ambiguities. Accordingly, a phase ambiguity detector can be
constructed as follows:

Max
(∣∣∣vg

∣∣∣) > Γ, g = 1, · · · , G, (15)

where Max ( ) denotes the maximum value of the vector; vg is the vector of the phase residuals of the gth
arc; and Γ is the threshold that is set according to the variance or the histogram of the phase residuals.
When the condition in Equation (15) is satisfied, the arc will be removed from the final solution.

After the arcs with phase ambiguities are detected and removed, sparse-matrix least squares is
performed again on the remaining arcs to obtain the unknowns. Finally, we can obtain the solution of
the observation model, which includes the relative orbital phase errors at the SAR image acquisition
dates with respect to the reference image, the DEM errors, and the deformation rates at all of the
coherent points.

2.2.2. Data Processing

In this study, we used 20 ALOS PALSAR images that covered the study area from 2006 to 2010.
By synthetically analyzing such factors as the best distribution of the temporal baseline and the spatial
baseline and the best coherence of the sequential coherence image, the image that was acquired on
11 December 2008 was selected to be the reference image. During data processing, images in FBD
format were first converted into FBS format. Secondly, TCPInSAR employs a conventional intensity
correlation method to coregister SAR images acquired under Stripmap mode, with enhancement for
image pairs with relatively big distortions or large incoherent areas at the same time [37]. Nineteen
subimages were registered relative to the reference image such that they were in the same spatial
coordinate system and the coordinates of the corresponding pixels were the same in the reference
image and subimages. In addition, in order to suppress speckle noise, increase the signal-to-noise ratio,
and improve the data processing speed, multilook processing of images was needed [38]. According to
the original azimuth resolution, range resolution, and incidence angle of the ALOS PALSAR images,
the azimuth look was set to 5 and the range look was set to 2 in multilook processing.

In the differential interferometry process, an SRTM DEM with a resolution of 30 m was introduced
to remove the influence of the terrain phase. In addition, in order to identify the TCPs in an efficient
way, instead of using offset statistics, which is a default point selection algorithm in TCPInSAR [33],
we employed an unbiased coherence estimator to calculate the coherence for each pixel [39]. We set
0.08 as the coherence threshold, which was determined according to the mean values over a water
body. It is worth noting that the coherence threshold was only used for the initial selection of TCPs,
and further removal of low-quality points was performed during the parameter estimation procedure.

The grid interval and searching radius thresholds were selected with the purpose of constructing
dense arcs and mitigating at least partially the atmospheric delay. It is generally accepted that the
atmospheric delay in interferometric phases is spatially correlated, with dimensions ranging from
several tens of meters to kilometers [40]. To balance the computational burden and the atmospheric
mitigation performance, we selected 500 m and 700 m as the grid interval and searching radius
thresholds, respectively.

Using the TCPInSAR method, the 20 ALOS PALSAR images that covered the study area were
preprocessed by registration and multilooking. Considering the interference effect of the image pairs,
the spatial–temporal baseline distribution, and the weather conditions, 24 of the 37 interference image
pairs were selected for subsequent data processing. Figure 3 shows the connection mode of the selected
image pairs.
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3. Results

3.1. Deformation Results on the Basis of TCPInSAR

On the basis of the TCPInSAR method and the use of the ALOS PALSAR images, time-series
cumulative deformation results in the line-of-sight (LOS) direction in the time span from December
2006 to December 2010 in the Chagan Lake region were obtained, as shown in Figure 4.
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From the time-series deformation results in Figure 4, it can be seen that there were some
time-series deformation areas in the Chagan Lake region. In order to further analyze the change in
surface deformation with time in the study area, the land surface deformation rate of each temporarily
coherent point (TCP) during the monitoring period was obtained from the time-series cumulative
deformation results, as shown in Figure 5 and Table 3. The maximum subsidence rate and uplift rate in
the study area were −46.7 mm/year and 41.7 mm/year, respectively.
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Figure 5. (a) The land surface deformation rate in the study area; (b) an example of a land surface
subsidence area; (c) an example of an area with less land surface deformation; (d) an example of an
area with surface uplift.

Table 3. Statistics of the deformation rate. TCP: temporarily coherent point.

Deformation Rate (mm/year) Number of TCPs Percentage of Total TCPs (%)

−5–5 278,618 76
−10–10 349,081 95
−46.7–41.7 367,691 100

As can be seen from Table 3, 367,691 temporarily coherent points were selected in the study area,
of which 278,618 temporarily coherent points with an absolute annual deformation rate of less than
5 mm accounted for 76% of the total, and 349,081 temporarily coherent points with an absolute annual
deformation rate of less than 10 mm accounted for 95% of the total. This shows that the land surface
deformation in most areas of the study area was not large between December 2006 and December 2010.
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3.2. Analysis of Land Surface Deformation Results

In order to study the differences in surface deformation between the three typical land types in
the area (i.e., saline–alkali land, wetland, and highway), we used a Gaofen-2 (GF-2) image with a
resolution of 0.8 m from the China Center for Resources Satellite Data and Application [41] to identify
a saline–alkali area, a wetland area with dense vegetation cover, and two highways in the Chagan
Lake region. Their specific locations in the study area are shown in Figure 1.

The deformation rate and the average cumulative time-series deformation of TCPs in the
saline–alkali land and wetland areas were obtained by experiments, as shown in Figure 6. “Average
cumulative time-series deformation” refers to the mean of the cumulative deformation of all TCPs in
the area during the period from the first image’s acquisition to that image’s acquisition.
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Figure 6. Differences in surface deformation between saline–alkali land and wetland areas. (a) The surface
deformation rate in the saline–alkali area; (b) the surface deformation rate in the wetland area;
(c) the average time-series deformation of temporarily coherent points (TCPs) in the saline–alkali area;
(d) the average time-series deformation of TCPs in the wetland area.

Figure 6 reflects the difference in deformation between the saline–alkali land and wetland areas
in the study area. From Figure 6a,b, it can be seen that the positive and negative deformation rates
in the saline–alkali area were roughly the same, while the deformation rate in the wetland area was
predominantly negative, which indicated that most of the wetland area was in a subsidence state.
Figure 6c,d shows that the average surface deformation of the saline–alkali land area and the wetland
area was in a subsidence state between December 2006 and December 2010. The maximum subsidence
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of the wetland area was −15.5 mm in September 2007, and the final subsidence of the wetland area was
larger than that of the saline–alkali area.

The surface deformation of two highways in different locations in the study area was analyzed,
and the location and number of sampling points are shown in Figure 7a,b, respectively. Figure 7c,d
shows the maximum and mean surface cumulative deformation of the sampling points on the two
highways from December 2006 to December 2010, respectively. It can be seen that both Highway 1 and
Highway 2 showed a certain uplift trend during the monitoring period. The maximum uplift of the
sampling points was 33.7 mm and 20.4 mm for Highway 1 and Highway 2, respectively.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 20 
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Figure 7. Differences in surface deformation between two highways. (a) The position distribution of
Highway 1’s deformation sampling points; (b) the position distribution of Highway 2’s deformation
sampling points; (c) the maximum and mean time-series deformation of Highway 1’s sampling points;
(d) the maximum and mean time-series deformation of Highway 2’s sampling points.

Taken together, Figures 1 and 5 show that there were some differences in the land surface
deformation rates between regions with and without dykes around Chagan Lake. In order to more
accurately analyze the influence of concrete dykes on the surface deformation results, we separately
selected sampling points in the area with dykes and without dykes near the lake, of which 40 points
were selected in the area with dykes and 66 points were selected in the area without dykes. The specific
locations of the selected points are shown in Figure 8.
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The average deformation at the selected sampling points in the areas with and without dykes
was calculated, and then the average cumulative time-series deformations of the different areas were
obtained. The cumulative curves are shown in Figure 9.
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Figure 9 shows that the land surface of the areas with or without dykes eventually presented a
trend of subsidence from December 2006 to December 2010. The cumulative subsidence in the area
with dykes was always smaller than that in the area without dykes, which shows that concrete dykes
played a buffering role in land surface subsidence. The average time-series deformation in the areas
with or without dykes showed a certain correlation with seasonal variation, i.e., the land surface
tended to subside in spring and summer every year, while the land surface tended to rise in autumn
and winter.

In order to verify the relationship between the seasonal variation and the land surface deformation
trend in the lakeside areas with and without dykes, temperature and precipitation data for the period
2006 to 2010 from the meteorological station in Qianguoerros Mongolian Autonomous County, which
is located approximately 30 km away from Chagan Lake, were obtained from the NOAA. We combined
the temperature and precipitation data with the deformation information, and the results are shown in
Figures 10 and 11. The temperature value shown is the average temperature of each month, and the
shown precipitation value is the sum of the precipitation in each month.
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Figure 11. The relationship between the average time-series deformation and the monthly total precipitation.
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In Figure 10, it can be seen that there was a clear relationship between temperature and the monthly
variation in the Chagan Lake region. The temperature rose from January to July and decreased from
July to January. The warmest month of each year was July, when the temperature was approximately
25 ◦C, and the coldest month was January, when the temperature was approximately −15 ◦C.

As can be seen from Figure 10, the trend of the average time-series deformation of the areas with
or without dykes near the lake was similar to the seasonal variation. As the temperature rose, the land
surface showed a subsidence trend, and the land surface showed an upward trend as the temperature
decreased. This phenomenon was mainly caused by seasonal frozen soil in the Chagan Lake region.
As the temperature decreased, soil freezing led to volume expansion, which raised the land surface.
As the temperature increased, the frozen soil gradually melted, and the volume shrank, resulting in
land surface subsidence [42,43].

It can be seen from Figure 11 that the monthly total precipitation in the study area changed
significantly with the month. Compared to other seasons, there was more precipitation in summer.
Land surface deformation and precipitation showed a certain degree of negative correlation with
the change in month, i.e., in months with more precipitation, surface subsidence appeared. This
was because the demand for irrigation for cash crops, such as in farmland and orchards, is large in
summer, which leads to a large amount of groundwater being exploited [44,45]. Although there is a
large amount of precipitation in summer, it takes a certain amount of time to convert the precipitation
into groundwater, i.e., there is latency between precipitation and groundwater recharge, and the
groundwater level remains in a declining state. Therefore, the surface of the lakeside areas with or
without dykes was in a state of subsidence. In winter, although there is less precipitation, agriculture is
in a fallow period at the same time, i.e., there is less exploitation of groundwater and the groundwater
level is increased by precipitation, so the land surface of the lakeside areas with or without dykes was
in a rising state.

Table 4 shows the relationship between the average cumulative time-series deformation of the
lakeside areas with or without dykes and the corresponding monthly meteorological data in different
time series.

Table 4. The relationship between the average cumulative time-series deformation in the lakeside areas
with or without dykes and meteorological data.

Image
Acquisition Date
(yyymmdd)

Deformation of
the Area with
Dykes (mm)

Deformation of
the Area without
Dykes (mm)

Meteorological
Data Acquisition
Date (yyyymm)

Temperature
(◦C)

Precipitation
(mm)

20061206 0 0 200612 −10.6 0.51
20070608 −2.8 −8.3 200706 24.2 37.85
20070724 −1.9 −10.3 200707 23.7 62.99
20070908 −2.0 −10.5 200709 17.7 11.94
20071024 −0.6 −9.4 200710 8.2 17.02
20071209 1.9 −6.7 200712 −9.9 5.59
20080124 2.2 −3.4 200801 −16.4 0.00
20080425 −0.6 −8.5 200804 11.5 32.00
20080610 −5.0 −14.0 200806 22.5 81.28
20080910 −3.3 −9.9 200809 16.6 56.64
20081211 0.9 −6.9 200812 −10.0 1.52
20090126 −0.2 −0.5 200901 −14.0 1.27
20090729 −5.6 −8.8 200907 23 94.49
20090913 −3.8 −8.7 200909 15.9 32.51
20091214 1.1 −7.7 200912 −15.9 4.83
20100129 1.6 −3.2 201001 −16.6 2.03
20100501 −1.3 −6.4 201005 16.2 119.13
20100616 −5.7 −9.5 201006 25.1 6.86
20100916 −3.5 −10.3 201009 17.7 6.10
20101217 −1.9 −7.3 201012 −16.7 17.53
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In order to further quantitatively analyze the relationship between the average cumulative
time-series deformation and the meteorological data, we studied the correlations between the average
cumulative time-series deformation and the monthly mean temperature and monthly total precipitation
in the lakeside areas with or without dykes at different times, obtaining linear fitting equations and
correlation coefficients (R), as shown in Figure 12.
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From Figure 12, it can be seen that the average cumulative time-series deformation in the lakeside
areas with or without dykes was negatively correlated with the monthly average temperature, and the
correlation coefficients (R) were −0.822 and −0.734, respectively. The average cumulative time-series
deformation of the lakeside areas with or without dykes also showed a negative correlation with the
monthly total precipitation, and the correlation coefficients (R) were −0.513 and −0.431, respectively.
Compared to precipitation, the correlation between average cumulative time-series deformation and
monthly mean temperature was higher.

4. Discussion

In this study, the Chagan Lake region was taken as a study area. Using ALOS PALSAR images with
strong penetration and the TCPInSAR method, the deformation rate and the time-series cumulative
deformation in the study area from December 2006 to December 2010 were obtained.

During the monitoring period, the surface deformation rate in the study area was not large on
the whole; however, the deformation in different areas was different. In this study, saline–alkali land,
wetland, and two highways were selected as representative land types. Through experiments, it was
found that both the saline–alkali land area and the wetland area were in a state of subsidence during
the monitoring period, while the land surface of the highway areas slightly rose, which shows that the
highways could buffer land surface subsidence to a certain extent. Further, by comparing the difference
in subsidence of the lakeside areas with or without dykes, it was found that the subsidence of the area
with dykes was smaller than that of the area without dykes, which proved once again that artificial
structures could restrain surface subsidence.

On the basis of an analysis of the relationship between lakeside land surface deformation and
meteorological data, it was found that both temperature and precipitation had a negative correlation
with surface deformation. Using this phenomenon, we further analyzed the effect of soil freezing and
thawing on surface deformation and explained that the variation trend of surface deformation with
groundwater circulation was affected by precipitation and groundwater overexploitation.
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Monitoring and analyzing the surface deformation in the Chagan Lake region can (i) provide a
data reference for saline–alkali land improvement projects [46], environmental protection in wetlands,
ecological and geological environment improvement projects, and earthquake monitoring and
prediction in mining areas of Songyuan City; (ii) improve the degree of monitoring and control
of disasters caused by surface deformation; and (iii) lay a foundation for sustainable ecological and
economic development.

5. Conclusions

In this study, surface deformation in the Chagan Lake region in Songyuan City from 2006 to 2010
was determined, and the deformation in areas with three typical types of land cover was compared.
Combining meteorological data and taking lakeside areas as an example, we analyzed the factors that
had an influence on surface deformation. Our conclusions are as follows:

• During the monitoring period, the maximum land surface subsidence rate and the maximum uplift
rate in the Chagan Lake region were −46.7 mm/year and 41.7 mm/year, respectively. There were
278,618 temporarily coherent points in the study area whose absolute annual average deformation
rate value was less than 5 mm, accounting for 76% of the total, and 349,081 points whose absolute
value was less than 10 mm, accounting for 95% of the total, which shows that most of the study
area experienced little deformation during the monitoring period;

• Through an analysis of the deformation of a wetland area with dense vegetation cover,
a saline–alkali land area without vegetation cover, and two highways in the study area, it
was found that both the wetland area and the saline–alkali land area experienced a certain degree
of subsidence, but the subsidence of the saline–alkali area was far less than that of the wetland
area, and the surface of the highways remained relatively stable during the monitoring period,
showing a slight upward trend. In addition, by selecting sampling points to observe the time-series
deformation, it was found that the lakeside area was in a state of subsidence during the monitoring
period. Compared to the lakeside area without dykes, the average time-series subsidence of the
lakeside area with concrete dykes was smaller, which indicated that the concrete dykes had a
certain buffering effect on the lakeside land surface’s subsidence;

• Using meteorological data and analyzing surface deformation in the lakeside areas, we found
that surface deformation was negatively correlated with temperature and precipitation to a
certain extent. In winter, agriculture is in a fallow period, the groundwater is supplemented by
precipitation, the groundwater level rises, and the decrease in temperature causes soil frost heaving,
so the land surface was in a state of uplift. In summer, the demand for irrigation for agriculture is
high, there is latency between precipitation and groundwater recharge, the groundwater level
decreases, and the increase in temperature leads to the thawing of frozen soil, so the land surface
was in a state of subsidence;

• Using the TCPInSAR method (which does not require phase unwrapping and can effectively
mitigate the orbital error and atmospheric phase delay) and L-band ALOS PALSAR images
with strong penetration, we could obtain time-series surface deformation results in the study
area quickly. By analyzing the difference in surface deformation in areas with three typical
types of land cover and the negative correlation between surface deformation in lakeside areas
and meteorological data, we have helped provide a basis for making decisions on sustainable
development issues, such as in economic development, urban planning, and geological disaster
prevention, in the Chagan Lake region.
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