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Abstract: Due to anthropogenic activities within watersheds and riparian areas, stream water 
quality and ecological communities have been significantly affected by degradation of watershed 
and stream environments. One critical indicator of anthropogenic activities within watersheds and 
riparian areas is forest fragmentation, which has been directly linked to poor water quality and 
ecosystem health in streams. However, the true nature of the relationship between forest 
fragmentation and stream ecosystem health has not been fully elucidated due to its complex 
underlying mechanism. The purpose of this study was to examine the relationships of riparian 
fragmented forest with biological indicators including diatoms, macroinvertebrates, and fish. In 
addition, we investigated variations in these relationships over multiple riparian scales. 
Fragmentation metrics, including the number of forest patches (NP), proportion of riparian forest 
(PLAND), largest riparian forest patch ratio (LPI), and spatial proximity of riparian forest patches 
(DIVISION), were used to quantify the degree of fragmentation of riparian forests, and the trophic 
diatom index (TDI), benthic macroinvertebrates index (BMI), and fish assessment index (FAI) were 
used to represent the biological condition of diatoms, macroinvertebrates, and fish in streams. 
PLAND and LPI showed positive relationships with TDI, BMI, and FAI, whereas NP and DIVISION 
were negatively associated with biological indicators at multiple scales. Biological conditions in 
streams were clearly better when riparian forests were less fragmented. The relationships of NP and 
PLAND with biological indicators were stronger at a larger riparian scale, whereas relationships of 
LPI and DIVISION with biological indicators were weaker at a large scale. These results suggest 
that a much larger spatial range of riparian forests should be considered in forest management and 
restoration to enhance the biological condition of streams. 

Keywords: forest fragmentation; biological indicators; landscape metrics; RDA model; multi-scale 
approach 

 

1. Introduction 

Land use patterns with strongly fragmented forests or no forests located in stream riparian areas 
have significant negative impacts on water quality and aquatic ecological communities [1–4] due to 
alteration of stream environments and sediment run-off mechanisms, pollution, and nutrient loading 
[5–9]. Thus, land use within riparian areas has become a key concern for stream management and 
restoration [10]. Previous research has shown that streamside forests affect aquatic ecosystems by 
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providing substantial amounts of energy and woody debris [11–15]. Some previous studies have 
demonstrated that land use within riparian areas threatens ecosystems through fragmentation of 
forests and degradation of soil and water properties [16–19]. Therefore, it is evident that riparian 
forests play an important role as corridors connecting fragmented forests and stream habitats. 
Furthermore, forest fragmentation within riparian areas has been directly linked with degraded 
water quality and stream ecosystem health [8,11,20–22], and spatiotemporal changes in land use, 
logging, intensive forest management, and rapid economic development have played significant 
roles in accelerating forest fragmentation [23–27]. Human activities in forested areas affect various 
stream characteristics, such as the microclimate, local air temperature, stream water temperature, 
humidity, wind speed [28,29], and concentrations of nutrients, sediments, and pollutants in streams, 
as well as ecological conditions [8,11,30–36]. However, the main characteristics of the relationship 
between forest fragmentation and stream ecosystems remain poorly understood, because they are 
associated through complex mechanisms involving numerous other factors (e.g., climate, geology, 
topography, and hydrological processes) [37–40]. 

Many previous studies have focused on a particular aspect of watershed forests (i.e., proportion 
of forested area), and have fallen short of identifying which aspects of fragmentation have the 
strongest impacts on stream biota. For example, Allan (2004) [41] showed that a greater proportion 
of forest cover within a watershed was positively linked with various stream conditions. Roy et al. 
(2003) [42] reported that decreased forest cover was related to degradation of biotic integrity in 
streams. Furthermore, Kim et al. (2014) [43] reported that the effects of forests at large spatial scales 
(i.e., forest width) are more important to fish than at small scales. Fragmentation can be characterized 
as a function of the patch number within a given area, patch size, patch shape, and the spatial 
distribution of patches [44–46]. Specifically, forest fragmentation can be characterized as forest loss, 
increased edge areas, decreased size and core area, non-contiguous splitting of large forest areas into 
smaller fragmented forest patches, and increased distance between patches [47,48]. 

When investigating the relationships of various land uses and their spatial patterns in riparian 
areas with stream organisms, identifying the optimal spatial scale is one of the most critical and 
fundamental issues. In landscape ecology, scale can be defined by two factors, extent and grain size, 
which vary in time and space. In cross-sectional studies, extent defines the spatial range of the 
investigation, whereas grain size refers to the unit of analysis. Scale has been a central concept in 
landscape ecology, as landscape structure and function are scale dependent [49,50]. Often, scientists 
have preferred to use multiple spatial scales (i.e., extents) to examine relationships between land use 
types and stream health, as there is no known scale of the relationship [51–53]. Allan et al. (1997) [54] 
discussed how human activities at various spatial scales impact the stream environment and 
organisms in streams. The extent of fragmentation is critical to understanding the relationship 
between forest fragmentation and local ecological processes in streams and surrounding areas [55]. 
In part, this importance is due to the extent of fragmentation negatively affecting biological integrity 
by increasing the exposure of streams to light and wind and increasing stresses on aquatic ecosystems 
caused by temperature fluctuations. Therefore, this work is essential to clarify the extent to which 
forest fragmentation affects stream environments and organisms in streams. For example, forests 
hundreds of meters away from streams are associated with the supply of coarse sediments and 
organic matter, whereas shade from riparian forests can lower water temperatures [56]. Arguably, 
forest fragmentation in riparian areas may have more significant impacts on stream ecosystems than 
in other forest types throughout the watershed simply due to stream proximity [2,57,58]. Rich 
evidence indicates that riparian forests have positive effects, including stream bank stabilization [59], 
decreasing nutrient and sediment loads from riparian areas [60,61], lowering stream water 
temperature [62], providing habitat [63], and enhancing biodiversity in streams [64]. Recently, Yirigui 
et al. (2019) [8] reported that forest fragmentation within a 500-m buffer zone has significant negative 
effects on biological indicators in streams. According to their study, fragmentation of riparian forests 
may lower their efficiency for filtering and absorbing nutrients, sediments, and pollutants, resulting 
in poor stream water quality and biological condition. However, the extent to which riparian 
fragmented forest affects the biological condition of streams remained unclear. Answering this 
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question is essential for planners and managers to make critical decisions regarding effective stream 
management and restoration strategies. 

In this study, we investigated the relationships of forest fragmentation with biological indicators 
including diatoms, macroinvertebrates, and fish over multiple riparian scales. In addition, we 
examined the variation in relationships between riparian forest fragmentation and biological 
indicators for streams over different spatial scales (i.e., extents). The degree of forest fragmentation 
in riparian areas was assumed to impact the effectiveness of various mechanisms (e.g., filtering, 
absorbing, and up-taking) of riparian forests, as well as hydrological and biochemical runoff 
processes [8,65–68], resulting in degraded stream environments (e.g., high levels of pollutants, 
nutrients, and sediments) and poor biological indicators [37,69–75]. Additionally, we hypothesized 
that the negative influence of forest fragmentation on biological conditions in streams may vary with 
riparian buffer size due to the proximity of streams. 

2. Materials and Methods 

2.1. Study Areas 

The Korean peninsula is located between 33°7′ and 43°1′ N latitude, and 124°11′ and 131°53′ E 
longitude. The area of the Korean Peninsula is 221,000 km2, and approximately 45% is within South 
Korea. The Nakdong River Basin is located between 35°03′and 37°13′ north latitudes and between 
127°29′ and 129°18′ east longitudes, accounting for about 25% of South Korea’s total geographical 
area. The Nakdong River system, one of the major river systems in South Korea, occupies the 
southeastern region and its basin area is 23,702 km2; the Nakdong is also the longest river in Korea, 
with a length of 511 km [76]. The study area is composed of four major land cover types: commercial 
(0.2%), agricultural (23.5%), industrial (0.5%), and forest (70.3%). Korean forests were badly degraded 
during the first half of the 20th century due to watershed urbanization processes, the transition from 
forest to farmland, dam building, and other processes. These land uses gradually led to increasingly 
serious degradation of aquatic ecosystems. Total annual precipitation in the basin is 1200 mm, and 
about 60% of the annual precipitation falls in summer (June to September). The mean depth and flow 
velocity of the Nakdong River are 47.41 cm and 39.19 cm/s, respectively [43]. The Nakdong river 
basin has been the focal area of investigation for relevant study areas because the river has been 
experiencing serious changes in biochemical and physical conditions, such as degraded water 
quality, increasing algal blooming frequency, decreased flow speed, increased water temperature, 
increased residence time, and changes in species composition of diatom, macroinvertebrate, and fish 
in the river since Korean government placed 8 large weirs in 2012 (https://en.wikipedia.org/wiki/Four 
Major_Rivers_Project, accessed on 13 August 2019). 

2.2. Sampling Sites 

In this study, biological indicators were extracted from MOE (Ministry of Environment) datasets 
maintained under the National Aquatic Ecological Monitoring Program (NAEMP). NAEMP has been 
used to monitor biological conditions of streams in Korea since 2007 [77]. Three assemblages 
(diatoms, macroinvertebrates, and fish) were extensively surveyed in the Nakdong River system and 
sampled twice annually [78,79]. We used biological indicator datasets collected in 2014 that aligned 
with land use data released by MOE for this study. To compute fragmentation metrics, we selected 
sampling sites with at least two riparian forest patches, resulting in 79 monitoring sites (Figure 1). 
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Figure 1. Distribution of monitoring sites in the Nakdong River system. 



Sustainability 2019, 11, 5060 5 of 25 

2.3. Biological Indicators and Fragmentation Metrics 

In this study, we used diatoms (trophic diatom index, TDI), macroinvertebrates (benthic 
macroinvertebrates index, BMI), and fish (fish assessment index, FAI) as indicators of the biological 
condition of streams in the study area. TDI is an index used for monitoring trophic condition in 
freshwater ecosystems based on the percentages of benthic diatom taxa, estimating periphyton 
condition in streams based on species abundance and sensitivity [53,74,80,81]. BMI describes the 
condition of benthic macroinvertebrate assemblages based on changes in habitat and environmental 
condition [82–84]. BMI uses a number assigned to each species, the unit saprobic value, and the 
frequency as weighting indicators for the species. As part of their long-term monitoring program, 
MOE developed BMI and then applied weighting factors and saprobic values to the 
macroinvertebrate index [79]. Fish are especially good indicators of environmental quality [85]. The 
NAEMP analyzed properties related to the ecological characteristics of Korean fish assemblages and 
adopted eight metrics into the Fish Assessment Index (FAI) [86]. TDI, BMI, and FAI scores (see Table 
1 for the method used to compute scores for each index) ranged from 0 to 100 and were classified into 
four classes: Class A (excellent), Class B (Good), Class C (Fair), and Class D (Poor) [79]. 

Table 1. Equations for computing biological indicators, from National Aquatic Ecological 
Monitoring Program (NAEMP) [87]. 

Biological Indicators Equations 

Trophic diatom index 
(TDI) 

TDI = 100 − {(WMS × 25) – 25} 
WMS: weighted mean sensitivity WMS = ෍ A୨ ∙ S୨ ∙ V୨∑ A୨ ∙ V୨ 
where, 
j = species 
Aj = abundance (proportion) of species j in the sample (%) 
Sj = pollution sensitivity (1 ≤ S ≤ 5) of species j 
Vj = indicator value (1 ≤ V ≤ 3)  

Benthic macroinvertebrates index  
(BMI) 

BMI = ቐ4 − ෍ S୨H୨G୨/ ෍ H୨G୨୬
୨ୀଵ

୬
୨ୀଵ ቑ × 25 

where, 
j = number assigned to species 
n = number of species 
Sj = unit saprobic value of species j 
Hj = frequency of species j 
Gj = indicators weight value of species j 

Fish assessment index 
(FAI) 

FAI = sum of 8 metrics. 
Metric 1 (M1): number of Korean native species  
Metric 2 (M2): number of rifle benthic species 
Metric 3 (M3): number of sensitive species 
Metric 4 (M4): percentage of tolerant species 
Metric 5 (M5): percentage of omnivores 
Metric 6 (M6): percentage of insectivores 
Metric 7 (M7): the amount of collection native species 
Metric 8 (M8): percentage of fish abnormalities 

2.4. Multi-scale Measurements 

Stream biota were not only affected by the amount of forested area but also the width (i.e., scale) 
of riparian areas adjacent to streams [88.89]. Various landscape indicators are known to have differing 
effects at different scales, suggesting that stream ecosystem management requires the application of 
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multi-scale analysis [90]. Multi-scale applications are widely employed for watershed land use 
management, allowing different landscape perspectives to be assessed by applying landscape metrics 
to assess fragmentation and its effects [91,92]. We utilized the buffer width required for drinking 
water protection under Korean MOE regulations. Since 1999, the Korean MOE has used two buffer 
widths (500 m in developed areas and 1 km in rural and semi-natural areas) to preserve riparian areas 
and protect drinking water quality [11,43]. Because most of the sampling sites used in the study were 
located in rural and semi-natural areas, we used a 1-km buffer as the base riparian scale. Recently, 
Kim et al. (2014) [43] studied the relationship between land use and fish by analyzing land use types 
within a 5-km buffer around the river. Based on these factors, we selected two scales (1 and 5 km) 
and one intermediate scale of 2 km to investigate the relationships among biological indicators. 

2.5. Measuring Forest Fragmentation 

The proportions of urban, paddy field, dry field, forest, grass, wetland, and bare soil were 
extracted from a digital Korean land use land cover map (LULC) using ArcGIS software version 10.1. 
This map was generated using Landsat Thematic Mapper (TM; 30-m resolution) and Indian Remote 
Sensing (IRS)-1C pan-chromatic (5.8-m resolution) images [93]. The LULC map was categorized into 
forests and non-forests in a grid format (resolution = 50 m). Riparian forest grids for each sampling 
site were extracted at three riparian scales, and then the selected fragmentation metrics were 
computed using FRAGSTATS 4.3, a spatial pattern metrics computing program [94]. The pattern 
metrics selected to quantify the degree of forest fragmentation included the largest patch index (LPI), 
the number of patches (NP), the proportion of forest (PLAND), and the division index (DI) at the 
class level [95–99]. 

Both patch area and patch density metrics are important, as they provide essential information 
about fragmentation [46,96]. The simplest fragmentation metric is the number of forest patches (NP), 
which describes whether the forest area is currently fragmented. PLAND quantifies the percentage 
of the entire buffer that is composed of forest patches. PLAND is a fundamental measure of landscape 
composition, showing the scope of the landscape that is made up of riparian forest patches. For this 
study, it was important to clarify how much forest was present within the riparian areas. LPI is a 
measure of dominance and is computed as the percentage of the largest forest patch over the total 
buffer area. Large undivided forest areas must be considered when planning land use in streamside 
areas. DIVISION represents the proportion of the riparian area composed of forest patches, and it 
decreases as distance among forest patches increases. In general, the values of PLAND and LPI are 
negative metrics, as higher values indicate low fragmentation. Conversely, NP and DIVISION are 
positive metrics, with greater values indicating higher degrees of fragmentation (Table 2). Figure 2 
illustrates differences among fragmentation metrics, including NP, PLAND, LPI, and DIVISION, 
with conceptual diagrams of less and more fragmented riparian vegetation areas. 

Table 2. Metrics to quantify forest fragmentation [101]. 

Fragmentation 
Characteristics 

Acronym Equation Remarks 

Number of 
riparian patches NP ni 

• NP ≥ 1, without limit. 
• High NP value = greater degree of 
fragmentation. 

Proportion riparian 
forest PLAND (෍ a୧୬

୧ୀଵ /A) × 100 • 0 < PLAND ≤ 100 
• 0 = no riparian forests.  

Largest riparian 
forest patch ratio 

LPI max୧ୀଵ (a୧ )/A × (100) 
• 0 < LPI ≤ 100 
• 0 = greater degree of 

fragmentation. 
Spatial proximity 
of riparian forest 

patches 
DIVISION ൝1 − ෍(a୧/A)ଶ୬

୧ୀଵ ൡ • 0 ≤ DIVISION < 1 
•0 = a single forest patch. 
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n = number of forest patches, ai = size of riparian forest patch i, and A = total buffer size. 

  

(a) More fragmented riparian buffer (b) Less fragmented riparian buffer 

Figure 2. Examples of fragmentation metrics with conceptual diagrams of riparian vegetation. 

2.6. Data Analysis 

Confirmation of the normality of the observed variables was conducted using the z-score 
normality test method, which resulted in Zskewness and Zkurtosis values of 3.92 for medium-sized 
observation datasets (50 < # of observation < 300) [101,102]. In this test, Zskewness or Zkurtosis values 
exceeding 3.92 indicate that the distribution of an observed variable differs significantly from the 
normal distribution (p < 0.05). Because preliminary analysis using the z-score normality test indicated 
that the distributions of some of the variables used in the study were non-normal, we adopted the 
non-parametric Spearman’s rho rank correlation test to account for non-normal distributions using 
the cor.test() function and ggpubr package in R. Then, to visualize these correlations, we applied the 
base R “pairs” function to create matrices of scatterplots. We utilized the bootstrapping resampling 
method to compute confidence intervals for the estimated correlations due to the relatively small 
number of observations collected over large study areas [103]. Bootstrapping was carried out using 
the boot package in R using 1000 resamples (for more details about the bootstrap resampling method 
and statistics, see [104,105]). Bootstrap techniques have been used in related fields, such as hydrologic 
processes (e.g., [106]), material transport (e.g., [107,108]) and water quality (e.g., [109–111]). The 
significance of bootstrap correlation coefficients between biological indicators and fragmentation 
metrics at various scales was tested using the Z-value method [112]. Redundancy analysis (RDA) was 
conducted to evaluate the relationships of TDI, BMI, and FAI with fragmentation metrics using the 
vegan, ggplot2, and ggrepel R packages. Redundancy analysis (RDA) is a method combining 
regression and principal component analysis (PCA). RDA is a direct gradient analysis method for 
evaluating linear relationships between multiple dependent and independent variables. RDA 
complements hierarchical partitioning by allowing for exploration of associations among all response 
and explanatory variables [113–115]. 

3. Results 

3.1. Descriptive Statistics of Biological Indicators 

NAEMP defines poor values as 0 ≤ TDI < 30, 0 ≤ BMI < 45, and 0 ≤ FAI < 25. The study area 
exhibited minimum TDI, BMI, and FAI values of 7.80, 13.70, and 12.50, respectively. This result means 
that some sampling sites have very poor biological conditions. Meanwhile, NAEMP defines excellent 
values as 60 ≤ TDI ≤ 100, 80 ≤ BMI ≤ 100, and 87.5 ≤ FAI < 100. The corresponding maximum values 
of the biological indicators were 76.30, 91.90, and 90.70, respectively. Descriptive statistics of the 
biological indicators suggest that the biological condition of Nakdong River varies among sites (Table 
3). Most TDI values were distributed around the mean values. The patterns of TDI and FAI showed 
similar symmetric phenomena, suggesting that diatoms and fish were more frequently at the fair 
level than at the good level (45 ≤ TDI < 60, 25 ≤ FAI < 56.2) or poor level (0 ≤ TDI < 30, 0 ≤ FAI < 25). 
Poor values of TDI and FAI were observed at the majority of sampling sites. BMI showed a relatively 
normal distribution, and the maximum and minimum values of the biological indicators showed that 
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biological conditions are generally not good. The z-scores of skewness and kurtosis [101.102] 
indicated normal distributions for the observed biological indicators, despite the asymmetric 
distribution of BMI (Table 3). 

Table 3. Descriptive statistics of stream biological indicators. 

Biological Indicators Min. Max. Mean ± S.D. 
Z-Score Normality Test 1) 
Zskewness Zkurtosis 

TDI 7.80 76.30 46.22 ± 15.95 −1.17 −0.27 
BMI 13.70 91.90 68.21 ± 16.7 −3.54 * 1.23 
FAI 12.50 90.70 50.52 ± 18.99 0.90 1.23 

n = 79. S.D. = Standard Deviation. * p < 0.05. 1) p < 0.05, if Zskewness or Zkurtosis > 3.26. 

3.2. Descriptive Statistics of Forest Fragmentation Metrics at Multiple Scales 

Table 4 provides a descriptive statistical summary of forest landscape condition at spatial scales of 1 
km, 2 km, and 5 km. Mean values of the forest metrics showed consistent increases with increasing scale. 
For example, NP values for spatial scales of 1 km, 2 km, and 5 km are 7.92, 21.25, and 89.27, respectively, 
whereas PLAND values are 32.82, 43, and 53.57, respectively. However, the mean values of DIVISION 
(0.93, 0.91, and 0.91, respectively) and LPI (19.08 21.04, and 21.18, respectively) showed no notable 
differences among these three spatial scales. Meanwhile, the maximum values of NP (30, 67, and 272, 
respectively), PLAND (81.87, 88.78, and 89.45, respectively), and LPI (81.75, 87.49, and 85.24, respectively) 
indicate the very weak relationship between the mean value and maximum value of each scale. The 
DIVISION index is near 1, confirming extensive forest fragmentation in the study area. Meanwhile, the 
correlation of larger scales with a greater number of patches confirmed that larger forests exhibit more 
forest fragmentation. PLAND is made up of numerous forest area characteristics for the indicated 
fragmentation condition. Increasing patch numbers also supported a higher degree of fragmentation in 
the forest pattern. The decrease of LPI revealed a similar tendency. Thus, deforestation was likely 
responsible for the increase in forest fragmentation. High values of LPI suggest that the region is less 
fragmented [12,46]. These results revealed growing forest fragmentation in the Nakdong River watershed. 
The z-scores of skewness and kurtosis of the observed fragmentation metrics showed that the distribution 
of PLAND followed a normal distribution at all scales, whereas the distributions of NP, LPI, and 
DIVISION were inconsistent among scales. In particular, the relatively high Zskewness and Zkurtosis values of 
DIVISION indicated high asymmetry and strongly peaked shapes at scales of 2 km and 5 km (Table 4). 
The non-normal distributions of some of fragmentation metrics suggested that conventional parametric 
statistics might not be suitable for this study. 

Table 4. Descriptive statistics of forest fragmentation metrics at three spatial scales. 

Scale 
Biological 
Indicators 

Min. Max. Mean ± S.D. 
Z-Score Normality Test 1) 

Zskewness Zkurtosis 

1 km scale 

NP 2 30 7.92 ± 5.07 5.99 * 7.96 * 
PLAND 1.27 81.87 32.82 ± 20.47 2.08 −0.84 

LAI 0.58 81.75 19.08 ± 13.77 5.56 * 8.20 * 
DIVISION 0.33 1 0.93 ± 0.1 5.56 * 1.74 

2 km scale 

NP 2 67 21.25 ± 12.45 4.61 * 4.03 * 
PLAND 4.01 88.78 43 ± 10.92 0.73 * −0.98 

LAI 0.65 87.49 21.04 ± 14.61 7.55 * 1.70 
DIVISION 0.23 1 0.91 ± 0.12 −12.54 * 27.88 * 

5 km scale 

NP 9 272 89.27 ± 62.75 1.16 4.20 * 
PLAND 9.16 89.45 53.57 ± 16.22 0.41 −0.34 

LPI 1.87 85.24 21.18 ± 14.66 3.45 * 8.97 * 
DIVISION 0.27 1 0.91 ± 0.11 −11.47 * 23.62 * 

n = 79. S.D. = Standard Deviation. * p < 0.05. 1) p < 0.05, if Zsknewness or Zkurtosis > 3.26. 
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3.3. Correlations between Biological Indicators and Fragmentation Metrics 

Table 5 compares the relationships between biological indicators and forest fragmentation 
metrics at multiple scales. PLAND showed significant relationships with all biological indicators at 
all scales. Specifically, PLAND was positively correlated with TDI (r = 0.35), BMI (r = 0.40), and FAI 
(r = 0.43) at the 1-km riparian scale. These positive relationships of PLAND with biological indicators 
were consistent at 2-km and 5-km riparian scales. PLAND also showed positive relationships with 
TDI (r = 0.42, r = 0. 40), BMI (r = 0.42, r = 0.46) and FAI (r = 0.44, r = 0.44) at 2-km and 5-km riparian 
scales, respectively. Similarly, LPI showed positive correlations with TDI at 1-km (r = 0.33), 2-km (r = 
0.31), and 5-km (r = 0.24) scales. We observed similar relationships between LPI and BMI at multiple 
scales. LPI was positively associated with BMI at 1-km (r = 0.37), 2-km (r = 0.38), and 5-km (r = 0.36) 
riparian scales, which was consistent with FAI at scales of 1 km (r = 0.40), 2 km (r = 0.37) and 5 km (r 
= 0.25). DIVISION, a negative measure of fragmentation, was significantly negatively correlated with 
TDI at 1-km, 2-km, and 5-km scales (r = −0.34, r = −0.35, and r = −0.29, respectively). However, 
DIVISION showed significant negative relationships with BMI at all riparian scales (r = −0.38, r = −0.39 
and r = −0.36, respectively). Similarly, DIVISION was negatively correlated with FAI at the 1-km (r = 
−0.41), 2-km (r = −0.39) and 5-km (r = −0.32) scales. We also observed high variance in the confidence 
intervals (CI) of correlations between biological indicators and fragmentation metrics at multiple 
scales (Table 5). The highest upper limit of the correlation between TDI and NP was −0.5 at the 5-km 
scale. Similarly, the highest upper limit of the correlation between TDI and PLAND was 0.56 at the 
2-km and 5-km scales. The highest correlation coefficient between TDI and LPI was observed at the 
1-km scale (r = 0.5), and the strongest negative correlation between TDI and DIVISION was −0.45 at 
the 1-km scale. The correlations between BMI and NP showed relatively small CIs between the upper 
limit and lower limit compared to correlations of BMI with PLAND, LPI, or DIVISION. The highest 
correlation coefficients of BMI with PLAND and LPI with a 95% confidence interval were 0.56 (5-km 
scale) and 0.49 (2-km scale), respectively. Similarly, the strongest negative correlation between BMI 
and DIVISION was −0.47 at the 2-km scale. The upper limits of the correlations of FAI with PLAND 
and LPI were 0.59 (2- and 5-km scales) and 0.54 (1-km scale), respectively. The strongest negative 
correlation between FAI and DIVISION was observed at the 1-km scale (r = −0.48). A matrix of scatter 
plots for pairwise connections of all biological indicators and forest fragmentation metrics showed 
multicollinearity among variables, as shown in Figure 3 (1-km scale), Figure 4 (2-km scale) and Figure 
5 (5-km scale) at the three scales analyzed. The shape and stretch of the correlations among variables 
indicated strong correlations (except for NP and three biological indicators, which appeared to be 
weakly correlated). 

Table 5. Correlation coefficients and confidence intervals of correlations between biological indicators 
and forest fragmentation metrics at multiple scales. 

TDI 

Fragmentation 
Metrics 

1 km Scale 2 km Scale 5 km Scale 

Correlation 
Confidence 
Interval 1) 

Correlation 
Confidence 
Interval 1) 

Correlation 
Confidence 
Interval 1) 

NP 0.00 (−0.22, 0.18) −0.02 (−0.24, 0.15) −0.27 * (−0.50, −0.08) 
PLAND 0.35 ** (0.14, 0.54) 0.42 ** (0.15, 0.56) 0.40 ** (0.17, 0.56) 

LPI 0.33 ** (0.13, 0.50) 0.31 ** (0.02, 0.43) 0.24 ** (0.04, 0.40) 

DIVISION −0.34 ** (−0.45, 
−0.13) 

−0.35 ** (−0.43, 
−0.08,) 

−0.29 ** (−0.42, −0.11,) 

BMI 

Fragmentation 
Metrics 

1 km Scale 2 km Scale 5 km Scale 

Correlation Confidence 
Interval 1) 

Correlation Confidence 
Interval 1) 

Correlation Confidence 
Interval 1) 

NP 0.00 (−0.28, 0.19) −0.04 (−0.14, 0.23) −0.23 *. (−0.36, 0.12) 
PLAND 0.40 ** (0.13, 0.51) 0.42 ** (0.17, 0.53) 0.46 ** (0.21, 0.56) 
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LPI 0.38 ** (0.09, 0.47) 0.38 ** (0.14, 0.49) 0.36 ** (−0.03, 0.46) 

DIVISION −0.38 ** (−0.45. 
−0.14) −0.39 ** (−0.47, 

−0.13) −0.36 ** (−0.44, 0.02) 

FAI 

Fragmentation 
Metrics 

1 km Scale 2 km Scale 5 km Scale 

Correlation 
Confidence 
Interval 1) Correlation 

Confidence 
Interval 1) Correlation 

Confidence 
Interval 1) 

NP 0.04 (−0.12, 0.29) −0.02 (−0.18, 0.23) −0.20 * (−0.37, 0.00) 
PLAND 0.43 ** (0.29, 0.56) 0.44 ** (0.25, 0.59) 0.44 ** (0.26, 0.59) 

LPI 0.40 ** (0.15, 0.54) 0.37 ** (0.13, 0.49) 0.25 ** (0.07, 0.41) 

DIVISION −0.41 ** 
(−0.48, 
−0.08) 

−0.39 ** 
(−0.47, 
−0.10) 

−0.32 ** (−0.43, −0.08) 

Boot resamples = 1000. * p < 0.05, ** p < 0.01. 1) Confidence level of correlation = 95%. 

 
Figure 3. Scatter plots of biological indicators and fragmentation metrics at 1 km scale. 
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Figure 4. Scatter plots of biological indicators and fragmentation metrics at 2 km scale. 

 
Figure 5. Scatter plots of biological indicators and fragmentation metrics at 5 km scale. 
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bootstrap correlations between NP and TDI decreased significantly and in parallel, suggesting that 
the overall relationship between NP of riparian forest and TDI was likely stronger at a large scale 
than at small or intermediate scales. The relationships between PLAND and TDI at different scales 
showed an interesting pattern. Bootstrapped mean correlations over multiple scales fluctuated, 
whereas the upper and lower limits of the CI increased slightly as the observation scale increased. In 
contrast, the relationships between LPI and TDI, as well as the upper limits of their CIs, decreased as 
the observation scale increased. Thus, LPI and TDI were presumably more strongly related at a small 
scale than at intermediate and large riparian scales. The bootstrap mean correlation and the upper 
and lower limits of the CI for TDI-DIVISION were inconsistent. The mean correlation between TDI 
and DIVISION increased at the 5-km scale, whereas the upper limit of CI decreased at that scale. 

The bootstrap mean correlation and upper and lower CI limits of the relationship between NP 
and BMI showed somewhat complex behavior (Figure 7). The mean correlations between NP and 
BMI were not significant at small and intermediate scales, and the relationship decreased 
considerably at large scales. Meanwhile, the upper limit of CI weakened, while the lower limit of CI 
strengthened considerably (r = −0.36). Thus, the relationships between NP and BMI at small and 
intermediate scales were negligible, and these factors had a much stronger negative relationship at 
the large scale (i.e., 5-km scale). The mean correlations and upper and lower CI limits of the 
relationships between PLAND and BMI clearly showed that the relationship strengthened as the scale 
increased. The variance in the relationships of LPI with BMI at small and intermediate scales was 
minimal. Interestingly, the lower CI limit calculated at the immediate scale (r = 0.14) decreased 
considerably at the large scale (r = −0.03), whereas the mean correlation and the upper CI limit showed 
no considerable changes between the intermediate and large scales. These inconsistent variances of 
the mean and CI limits of the relationships between LPI and BMI among scales suggested that no 
considerable changes occurred in these relationships among the riparian scales tested. The 
relationship between DIVISION and BMI was generally the opposite of that between LPI and BMI. 
The mean correlation and lower CI limit weakened slightly as riparian scale increased. Meanwhile, 
the upper CI limit of the relationship between DIVISION and BMI at the intermediate scale (r = −0.13) 
changed radically, becoming a positive relationship (r = 0.02). 

The observed relationships between NP and FAI decreased as observation scales increased 
(Figure 8). The bootstrap mean correlation was not significant at the small (r = 0.04) or intermediate 
(r = −0.02) scales (Table 5), but the relationship was much stronger at large scale. This tendency was 
also observed with the upper and lower CI limits of this relationship between the intermediate and 
large scales. Thus, the negative relationship between NP and FAI was likely stronger at large scales 
(i.e., 5 km) than at small (i.e., 1 km) or intermediate scales (i.e., 2 km). The bootstrap mean correlation 
and the upper and lower CI limits of the FAI-PLAND relationship increased slightly but consistently 
as riparian scale increased. In contrast, the relationship between LPI and FAI consistently decreased 
as riparian scale increased. Thus, the relationship between LPI and FAI was stronger at the small 
scale than at intermediate or large riparian scales. The bootstrap mean correlations and upper and 
lower CI limits of the relationships between DIVISION and FAI showed slight but consistent 
decreases as riparian scale increased. 

Significance test using Z-score indicated that there were significant differences among 
correlations between fragmentation metrics and biological indicators over scales (Table 6). In specific, 
the correlation between TDI and NP at large scale (i.e., 5 km) was significantly different from those 
small (i.e., 1 km) and (i.e., 2 km) scales. However, a significant difference in correlations was not 
observed between small and intermediate scales. The correlation of TDI with PLAND at small scale 
was significantly different from the correlation at the intermediate scale. Similarly, the correlation of 
TDI with LPI at intermediate scale was different from the correlation at large scale. Also, we observed 
that the significant differences in correlations between TDI and DIVISION were observed between 
large scale and small or intermediate scales. Similarly, the correlation between BMI and NP was at a 
large scale was significantly stronger than those at small and intermediate scales. Also, the correlation 
between BMI and PLAND showed a significantly stronger than the correlation at small scale. In 
addition, the correlation between FAI and NP was significantly different from those at a small and 
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intermediate scales. Regarding the relationships between FAI and PLAND, we observed a significant 
difference in the correlation between small scale and large scale. The correlations of FAI with LPI and 
DIVISION at large scale was considerably weaker than those at small and intermediate scales (Table 
6). 

In summary, the relationships of NP with biological indicators TDI, BMI, and FAI were not 
significant at small and intermediate scales, but these relationships became much stronger at large 
scales. We also observed that the relationships between PLAND and biological indicators became 
stronger as riparian scale increased. Meanwhile, the relationship between LPI and biological 
indicators was stronger at small scales and became weaker as riparian scale increased. The strength 
of the negative relationship of DIVISION with biological indicators weakened as riparian scale 
increased. Overall, the relationships of NP and PLAND with biological indicators strengthened as 
riparian scale increased, whereas the relationships of LPI and DIVISION with biological indicators 
weakened as riparian scale increased, despite the inconsistent slopes of variances among biological 
indicators. Also, the variations of the relationships between biological indicators and fragmentation 
metrics were not consistent over different scales. Rather, the variations of the relationships over scales 
were dependent on the types of fragmentation metrics of riparian forest, which makes it difficult to 
implement the findings of this into practice. 

 
Figure 6. Variation in the correlations between fragmentation metrics and trophic diatom index (TDI) 
at different scales. Continuous lines represent the mean bootstrap correlations and dashed lines are 
the upper and lower limits of the confidence interval (95% level). 
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Figure 7. Variation in the correlations between fragmentation metrics and benthic macroinvertebrates 
index (BMI) at different scales. Continuous lines represent the mean bootstrap correlations and 
dashed lines are the upper and lower limits of the confidence interval (95% level). 

 
Figure 8. Variation in the correlations between fragmentation metrics and fish assessment index (FAI) 
at different scales. Continuous lines represent the mean bootstrap correlations and dashed lines are 
the upper and lower limits of the confidence interval (95% level). 
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Table 6. Significance test using Z-score among correlations between biological indicators and 
fragmentation metrics over different scales. 

Biological 
Indicators 

Correlation 
with 

Variable 1 

Correlation 
with 

Variable 2 

Z-Score of Two 
Correlations p Value 

TDI 

NP 1 km NP 2 km 0.447 0.327 
NP 1 km NP 5 km 6.182 0.00 ** 
NP 2 km NP 5 km 5.735 0.00 ** 

PLAND 1 km PLAND 2 km −1.836 0.03 * 
PLAND 1 km PLAND 5 km −1.3 0.09 
PLAND 2 km PLAND 5 km 0.537 0.29 

LPI 1 km LPI 2 km 0.498 0.30 
LPI 1 km LPI 5 km −0.251 0.40 
LPI 2 km LPI 5 km 1.692 0.04 * 

DIVISION 1 km DIVISION 2 km 0.253 0.39 
DIVISION 1 km DIVISION 5 km 14.572 0.00 ** 
DIVISION 2 km DIVISION 5 km −1.493 0.05 

BMI 

NP 1 km NP 2 km 0.894 0.18 
NP 1 km NP 5 km 5.229 0.00 ** 
NP 2 km NP 5 km 4.335 0.00 ** 

PLAND 1 km PLAND 2 km −0.537 0.29 
PLAND 1 km PLAND 5 km −1.645 0.05 * 
PLAND 2 km PLAND 5 km −1.133 0.13 

LPI 1 km LPI 2 km 0.000 0.5 
LPI 1 km LPI 5 km 0.517 0.30 
LPI 2 km LPI 5 km 0.517 0.30 

DIVISION 1 km DIVISION 2 km 0.262 0.39 
DIVISION 1 km DIVISION 5 km −0.517 0.30 
DIVISION 2 km DIVISION 5 km −0.78 0.21 

FAI 

NP 1 km NP 2 km 1.34 0.09 
NP 1 km NP 5 km 5.42 0.00 ** 
NP 2 km NP 5 km 4.8 0.00 ** 

PLAND 1 km PLAND 2 km −0.275 0.39 
PLAND 1 km PLAND 5 km −1.645 0.05 * 
PLAND 2 km PLAND 5 km −1.108 0.13 

LPI 1 km LPI 2 km 0.786 0.21 
LPI 1 km LPI 5 km 3.756 0.00 ** 
LPI 2 km LPI 5 km 2.97 0.00 

DIVISION 1 km DIVISION 2 km −0.532 0.29 
DIVISION 1 km DIVISION 5 km −2.321 0.01 ** 
DIVISION 2 km DIVISION 5 km −1.79 0.03 * 

n = 79. * p < 0.05. **p < 0.05 

3.5. Redundancy Analyses Variations 

RDA revealed that the relationships among fragmentation metrics and biological indicators 
could be better explained at larger riparian scales. Specifically, RDA showed that DIVISION and NP 
had negative impacts on the biological indicators. The first two RDA axes explained all the variation 
in variables at the tested scales (Figure 9). Because a multitude of forest fragmentation metrics used 
as explanatory variables were correlated with stream biota, we assessed relationships between 
biological indicators and other key explanatory variables using RDA at three riparian scales. At the 
1-km, 2-km, and 5-km buffer scales, forest fragmentation conditions provided an indication of 
biological function. RDA clearly showed that differences among the three buffer scales of forest 
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fragmentation metrics influenced the conditions of diatoms, macroinvertebrates, and fish in streams. 
The forest fragmentation metrics NP and DIVISION were negatively constrained at all scales, and 
PLAND and LPI were positively constrained. The RDA results were found to be statistically 
significant (p < 0.05). 

 
(a) Small scale (1 km) 

 
(b) Intermediate scale (2 km) 

 
(c) Large scale (5 km) 

Figure 9. Redundancy analysis showing associations between stream biological indicators and forest 
fragmentation metrics. 

4. Discussion 

Well-preserved streamside vegetation can prevent soil erosion and nutrient release into 
adjoining streams, as it stabilizes stream banks [116]. However, the effects of forest fragmentation on 
stream ecosystems have scarcely been explored [22]. In this study, we explored the relationships 
between riparian forest fragmentation and biological indicators, including diatom, 
macroinvertebrate, and fish assemblages at multiple spatial scales. Furthermore, this study examined 
the variance in these relationships over multiple riparian scales. According to the results of the study, 
communities of diatoms, macroinvertebrates, and fish measured through the biological indicators of 
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TDI, BMI, and FAI were significantly correlated with forest fragmentation conditions calculated 
using the landscape metrics of the NP, PLAND, LPI, and DIVISION indices. Specifically, TDI, BMI, 
and FAI were positively correlated with PLAND and LPI and negatively correlated with DIVISION 
at all riparian scales. On the other hand, NP did not show significant relationships with any biological 
indicators at small (i.e., 1 km) or intermediate (i.e., 2 km) scales. However, NP was negatively 
correlated with biological indicators at large (i.e., 5 km) scales. The consistent positive relationships 
observed between PLAND and all biological indicators at multiple scales suggest that biological 
conditions were better when riparian forests were less fragmented at all scales. In particular, PLAND 
had stronger relationships with BMI than with TDI or FAI. Based on a total class area, PLAND 
quantifies forest composition in riparian areas, which is critical for understanding the variations in 
patch size [117,118] in riparian areas. These results confirmed previous findings suggesting strong 
positive relationships between the presence of streamside forests and biological condition [41]. These 
positive relationships between LPI and biological indicators indicated that the biological condition in 
streams was better when a large forest patch was present in the riparian area. Thus, all biological 
indicators were likely to improve when riparian areas were dominated by a single large forest patch. 
LPI is a simple measure of patch dominance in which smaller values of LPI indicate a greater degree 
of forest fragmentation. Previous studies have confirmed that a landscape composition dominated 
by a large forest is associated with better biological condition [98, 119]. These results clearly showed 
that the FAI condition of streams was closely tied to the proximity of riparian forest patches. The 
closer riparian forest patches were to streams, the better the FAI condition of the streams. These 
results suggested that biological conditions in streams were better when riparian areas were covered 
with more forested area, contained larger forest patches, and the patches were located near riparian 
areas. These results confirmed the findings of a previous study, which suggested better biological 
condition with less fragmentation of riparian forests at a 500-m scale [8]. Thus, fragmentation of 
riparian forests was clearly negatively associated with biological condition of streams. The biological 
condition of a stream was generally better if riparian forests were less fragmented, regardless of 
riparian scale, in accordance with recent studies [1,3,8]. As discussed by Yirigui et al. (2019) and 
others (e.g., References [1,120]), more fragmented riparian forests may not provide the benefits of 
intercepting rainfall, lowering run-off speed, and increasing infiltration into soils and uptake time by 
plants typical of riparian areas. The results of the present study and previous findings emphasize the 
importance of forest fragmentation in riparian areas to the biological condition of streams and 
suggest that stream restoration projects should consider not only the amount of forest but also its 
spatial configuration in riparian areas. 

Comparison of the correlations between NP and PLAND and biological indicators over multiple 
scales suggested that forest fragmentation at a large scale was more strongly related to biological 
indicators than at a small scale. Specifically, the conditions of diatoms, macroinvertebrates, and fish 
were more susceptible to NP and PLAND over larger areas. These results were consistent with 
previous studies investigating the effects of land use types and their patterns on ecological 
communities, which reported that protection or restoration of smaller areas was not sufficient to 
maintain the ecological integrity of streams [121,122]. Due to their location, streamside forests are 
critical to stream water quality and biological condition in many ways, including stabilization of 
stream banks, filtering nutrients and sediments, lowering water temperature, providing habitat, and 
enhancing the biodiversity of streams [2,61–63,123,124]. However, our results suggested that the scale 
and spatial pattern of forested areas might be as important for biological communities as the presence 
of riparian forests. Some previous studies also reported that forests in riparian areas play significant 
roles in the condition of diatoms, macroinvertebrates, and fish at both the watershed and riparian 
scales [125,126]. Broadly, larger forested areas appeared to allow maintenance of biological integrity 
[60, 127]. However, we observed that LPI and DIVISION showed the strongest relationships with 
biological indicators at small scales, differing from the relationships of NP and PLAND with 
biological indicators. These results indicated that the effects of the presence of large riparian forest 
patches and the proximity of riparian forest patches might be important biological indicators in 
riparian areas around streams. Thus, managers and planners of river environments should consider 
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the structure of riparian forests to mitigate the negative effects of forest fragmentation on the 
biological condition of streams [128–130]. 

NP did not show significant relationships with biological indicators at small (1-km) or 
intermediate (2-km) scales in the present study. The insignificant relationships of NP with biological 
indicators at small and intermediate scales may have occurred because NP was unable to quantify 
the degree of fragmentation at the small scale [8]. NP simply measures the number of riparian forest 
patches within buffer areas [95] and does not account for the degree of fragmentation or area of 
riparian forests at a small spatial scale, corresponding to the variation observed in biological 
indicators. This finding was confirmed by the relatively small standard deviation obtained at small 
and intermediate scales compared to that at large scale (Table 4). Another aspect of the nature of NP 
to consider is that NP should be high when riparian forests are severely fragmented within given 
buffer areas, and low when they are not fragmented. However, NP could be small (i.e., less 
fragmented) when only one small forest patch occurred within a riparian area. In this case, NP 
indicates that the riparian forests of Nakdong River are fragmented, but few forests occur in riparian 
areas. From this perspective, NP can be considered a conditional metric of fragmentation given the 
same forest area, and NP should be used cautiously when measuring fragmentation of riparian 
forests and interpreting such results. To make up for the shortcomings of NP, it is reasonable to use 
NP along with the mean size of riparian forest patches [131]. 

5. Conclusions 

In this study, we investigated the relationships between riparian forest fragmentation and 
biological condition of diatoms, macroinvertebrates, and fish, and examined the variations in these 
relationships over multiple scales. We observed that the proportion of riparian forest (i.e., PLAND) 
and the largest riparian forest patch ratio (i.e., LPI) were positively correlated with biological 
condition of diatoms (i.e., TDI), macroinvertebrates (i.e., BMI), and fish (i.e., FAI), whereas the spatial 
proximity of riparian forest patches (i.e., DIVISION) showed significant negative relationships with 
biological indicators at multiple scales. These relationships also varied among riparian scales. Our 
results indicated that NP and PLAND were more important at large scales than at small scales, 
whereas LPI and DIVISION were more closely tied to biological indicators at small scales than at 
large scales. Thus, biological conditions in streams appeared better under less fragmented riparian 
forest conditions. Furthermore, variation in the correlations between fragmentation metrics and 
biological indicators over multiple scales revealed that the relationships of NP and PLAND with 
biological indicators became stronger as the observation scale increased, whereas LPI and DIVISION 
showed the opposite relationship. These results suggest that ecological communities in streams might 
be even more sensitive to the fragmentation of distant forests than the fragmentation of streamside 
forests. For river managers and planners, an ideal approach could involve restoring large riparian 
forest patches with high proximity among riparian forest patches in near-stream zones while 
maintaining more forested areas in zones that are distant from streams. These results also imply that 
stream corridor restoration and management that focuses on only streamside riparian forests might 
be insufficient for enhancing the integrity of stream ecosystems, despite numerous studies reporting 
positive effects of streamside riparian forests. Therefore, much larger spatial ranges of riparian forests 
should be considered during forest management and restoration to enhance the biological condition 
of streams. 
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