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Abstract: Accurate, year-by-year crop distribution information is a key element in agricultural
production regulation and global change governance. However, due to the high sampling costs and
insufficient use of historical samples, a supervised classifying method for sampling every year is
unsustainable for mapping crop types over time. Therefore, this paper proposes a method for the
generation and screening of new samples for 2018 based on historical crop samples, and then it builds
a crop mapping model for that current season. Pixels with the same crop type in the historical year
(2013–2017) were extracted as potential samples, and their spectral features and spatial information
in the current year (2018) were used to generate new samples based on clustering screening. The
research result shows that when the clustering number is different, the number and structure of new
generated sample also changes. The sample structure generated in Luobei County was not balanced,
with the ‘other crop’ representing less than 3.97%, but the structure of southwest Hulin City was more
balanced. Based on the newly generated samples and the ground reference data of classified year,
the classification models were constructed. The average classification accuracies of Luobei County
in 2018 based on new generated samples and field samples were 69.35% and 77.59%, respectively,
while those of southwest Hulin City were 80.44% and 82.94%, respectively. Combined with historical
samples and the spectral information of the current year, this study proposes a method to generate
new samples. It can overcome the problem of crop samples only being collected in the field due to
the difficulty of visual interpretation, effectively improve the use of historical data, and also provide a
new idea for sustainable crop mapping in many regions lacking seasonal field samples.

Keywords: historical samples; new samples generation; crop mapping; clustering; GF-1

1. Introduction

Medium-high resolution crop mapping at regional scales can provide basic data for the more
precise regulation of agricultural production and global change governance [1–7], and it is an important
support for implementing sustainable agriculture [8]. At present, crop classification based on remote
sensing data mainly adopts the strategy of supervised classification [9–11], which means that sample
data must be used for the model training. Crop samples are difficult to obtain by visual interpretation,
so they can only be collected in the field. However, due to the limitations of severe weather, field
sampling safety, accessibility, time, and cost, it is difficult to collect sufficient and reliable ground
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samples. In addition, in existing crop classification studies, seasonal samples are often only used for
crop classification in the current season, and they are rarely used for the next season or even the next
few seasons, resulting in a low utilization rate of historical data [1,6,8]. The difficulty of sampling
and the low utilization of historical data have led to the high cost of year-by-year mapping. At the
same time, after collecting data every year, it is necessary to carry out complex operations such as data
preprocessing, and the final crop map is often obtained after the harvest, which leads to a lag of crop
mapping and its guiding role for farming being greatly weakened. Therefore, it is difficult to meet the
demand for crop mapping by sampling every year. The question of how to sustainably carry out crop
classification based on historical data has become a research hotspot.

There are three main methods for classifying crops based on historical data: One is to reuse the
spectral curve, the second is to reuse the training model, and the third is to generate “training samples.”

Reusing spectral curves is a method for classification based on the fact that the spectral similarity
of the same crop is greater than that of different crops between years [12]. The spectral curves of
inter-annual crops are often extracted from historical samples and image data, and the similarity
between pixels and curves is calculated to classify crops in the current season. Examples include
using the initial fitting curve based on the simple interpolation method [13], using the smoothing
curve through wavelet and Savitzky–Golay (S–G) filters [14–16], using Roy’s [17] use of linear and
nonlinear harmonic functions to fit a normalized difference vegetation index (NDVI) curve, and the
evaluation of the optimal time phase number of curves fitted by different functions. However, the
function in Roy’s [17] paper has more than five parameters, and the effective observation requires
three times of the parameters; as such, at least 15 time-phase images are required, which is difficult to
satisfy for large-scale mapping and even small-area mapping in many areas. Therefore, many scholars
use the asymmetric double-sigmoid function method proposed by Soudani [18] to fit the crop curve
for classification [19–22]. In addition, machine learning algorithms are gradually being applied to
the fitting of spectral curves [23]. However, due to environmental factors such as moisture, light,
temperature, crop varieties, the inter-annual variation of planting time, and regional differences, the
growth and spectral curves of the same crops are inconsistent, which affects the accuracy of identifying
crop types based on spectral similarity.

Reusing a training model involves classifying multiple times using a constructed classification
model. It is necessary to train a model with a strong inter-annual generalization ability, based on
multi-year historical samples, to classify seasonal crops. For example, in terms of county and provincial
scales, Zhong [24,25] implemented a method of multi-time classification by one time training based
on historical data in Doniphan County, Kansas and Paraná, Brazil, which reduced sampling cost and
improved the classification efficiency; Muhammad [26] trained a classification model by using the
ground reference data of adjacent years and then classified other years, and they finally obtained the
main crop classification results from 2005 to 2013 in Kansas, with an accuracy of 74.4%–81.9%; Cai [27]
used CDL (Cropland Data Layer) and Landsat data to train a model based on historical samples by the
deep neural network (DNN) method and then applied it to the classification of seasonal crops in the
American corn belt to achieve a better classification accuracy. On multi-state and even national scales,
based on the idea of time-migration, Wang [28] used random forest classifiers to achieve crop mapping
in nine states in the Midwestern United States; dos Santos Luciano AC [29], based on the Google Earth
Engine (GEE) platform, used a multi-year historical data training model to identify the sugarcane
distribution in Brazil from 2009 to 2016, with an average precision of 91%. However, this method
generally requires a balance of image information between years. Due to the influence of cloud and
shadow, it is difficult to achieve the balance of inter-annual images when there are a large number of
historical years. Currently, the basic method is to complement the image by interpolation, although a
decline in data quality is caused by this method, which then affects the subsequent classification.

The generation of “training samples” is the method that uses historical data to create the current
year’s samples and then constructs the classification model. According to the auxiliary information,
such as the stability of the crop planting structure, the pixels with unchanged crop type in the historical
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year are extracted as the “training samples” for the crops in the current season. Then, based on this
sample, the current year is classified. For example, Hao [30] used the historical year CDL data of
Kansas in the United States to extract hypothetical samples based on the Artificial Antibody Network
(ABNet) method to screen hypothetical samples, and obtained “training samples” to classify the current
crops with an overall accuracy of 90%.

These seasonal crop classification methods based on historical samples focus on the use of historical
information, but they lack an effective use of information in the current year. Due to environmental
differences such as inter-annual light and warmth, as well as differences in crop varieties [31], relatively
stable classification features such as the spectral curves of the same crops, phenological characteristics,
and the statistical parameters of key phases will continue to fluctuate during the inter-annual period;
in particular, the generated training samples are prone to a large amount of noise, which reduces
classification accuracy, and it is necessary to further improve the purity of the generated samples by
combining auxiliary information. In addition, most of the “training samples” generated at present
are based on CDL data, but in regions lacking CDL data, the effectiveness of this method remains to
be verified. From the above analysis, it can be concluded that if the newly generated samples can be
screened based on historical samples and combined with auxiliary information such as local planting
structures and the spectral characteristics of the classification year; this can create an improved way to
use historical samples for crop classification in the current season.

Therefore, based on China’s GF-1 data, which is a remote sensing satellite launched by the Chinese
government in 2013, this study takes the crop planting areas in Luobei County and Hulin City in
Heilongjiang Province of China as examples (no CDL data, only a small number of historical samples).
First, using information of historical crop planting structure and the current year’s spectral data, we
explore new samples’ generation and screening methods based on spatial clustering analysis; second,
using the newly generated samples to build a seasonal crop classification model, we perform the
classification and provide a new method for crop classification when there are a lack of sample data in
the classified year.

2. Materials

2.1. Study Area

In this paper, two study areas in Heilongjiang Province of China were selected, namely Luobei
County of Hegang City and the southwest of Hulin City. The length was about 60 km from east to west
and 50 km from north to south, with a total area of about 3000 km2. Luobei County is located in the
east of Hegang City, between 130◦36′18”–131◦22′26” E and 47◦17′38”–47◦44′56” N based on WGS84,
and it belongs to the cold temperate continental monsoon climate [32]. The south is low-lying and
boggy, with an annual average temperature of 1.57 ◦C, a frost-free period of 128 days, and an annual
precipitation of 549.1 mm. The southwest of Hulin City is located in the southeastern plain area, with
the ground span of 132◦25′1.2”–133◦12′18” E, 45◦35′24”–46◦1′22.7” N based on WGS84, and it belongs
to the middle temperate continental monsoon climate, which is a mild and humid climate area in the
Sanjiang Plain [33]. Spring is windy and dry, summer is short and rainy, autumn is waterlogging
with early frost, and winter is cold and long. The annual average temperature is 3.5 ◦C, the annual
average relative humidity is 70%, and the annual average precipitation is 566.2 mm. The precipitation
is mainly concentrated in June, July and August, accounting for 53% of the annual total precipitation.
The sunshine is about 2274.0 h, and the frost-free period is 141 days. Most of the melting of the snow
occurs at the end of February, and the freezing period is about 180 days.

The planting calendars in the study area are relatively stable with little inter-annual differences.
The growing season of the main crops is basically from March to October, among which maize is sown
from late April to early May, matures in September, and is harvested around October; rice is sown in
April and ripens in September, later than the maturation date of maize; and the growth period of other
crops or melons is basically from March to October.
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The reasons for the selection of the study area are as follows: First, Heilongjiang Province is
an important major grain-producing area in China, and the selected area is located in the major
grain-producing counties of Heilongjiang, with less interference. Second, the selection of two regions
can better verify the feasibility of this method and allow for the comparison of regional differences.

2.2. Data Sources

2.2.1. Remote Sensing Data

In view of the characteristics of many acquisition years, the large coverage area and the high
spatial and temporal resolution of images required by this study, the Chinese GF-1 satellite launched
on 26 April 2013 was selected. The four wide-width multispectral cameras (called WFV) on the
GF-1 satellite can reach a width of 800 km and generate four bands, including blue (0.45–0.52 µm),
green (0.52–0.59 µm), red (0.63–0.69 µm), and near-infrared (0.77–0.89 µm) bands, which can meet the
calculation of a common vegetation index. The spatial resolution is 16 m, and the revisit period is
4 days; with this high spatial and temporal resolution, the satellite can obtain more remote sensing
images of the key growth periods of cloudless crops. In this paper, GF-1 WFV data in the growing
season of maize and rice (April–September) with the percentage of cloud less than 10% were selected as
remote sensing data sources. The data were derived from the China Centre for Resource Satellite Data
and Application (CRESDA) and were the level-one product (L1). Taking 2013–2017 as the historical
years and 2018 as the year to be classified and obtaining the multi-temporal GF-1 WFV data during the
growth period of 2013–2018, Figure 1 lists the details of these scenes. As can be seen from Figure 1, the
inter-annual imbalance of cloudless images is very obvious. The number of images in Luobei County
has at least 9 phases in 2013 and up to 15 phases in 2015; the number of images in the southwest of
Hulin was less than that in Luobei County, with a minimum of 7 temporal phases appearing in 2016
and a maximum of 11 temporal phases appearing in 2015.
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Figure 1. Description of GF-1 data used in this study. 

2.2.2. Field Sample Data 

In order to obtain the main types of crop mapping in the study area, a ground-based field survey 
was conducted in 2013–2018. The latitude and longitude coordinates of the labels were measured 
using a handheld GPS (global positioning system) based on the principle of wide area difference, 
named MM9, and the vegetation types and photographs were recorded. The year with the largest 
number of samples in Luobei County of Hegang City was 2014, with a total of 553 samples, and the 
lowest number was 237 samples in 2018; the largest sample size in the southwest of Hulin City was 
455 in 2017, and the year with the lowest number was also 2018, with a total of 206. Due to the large 
plot of Heilongjiang, most of the sampling was carried out along the roadside of the field, which can 
help to save costs as much as possible. The sample size and spatial distribution are shown in Table 1 
and Figure 2, respectively: 

Table 1. Statistics on the ground reference samples. 

Year Luobei County Southwest Hulin City 
Maize Rice Other Total Maize Rice Other Total 

2013 224 102 58 384 77 17 162 256 
2014 284 146 123 553 131 36 75 242 
2015 234 91 50 375 163 105 47 315 
2016 234 91 49 374 146 102 45 293 
2017 137 99 160 396 111 194 150 455 
2018 128 32 78 237 122 37 47 206 

Figure 1. Description of GF-1 data used in this study.
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2.2.2. Field Sample Data

In order to obtain the main types of crop mapping in the study area, a ground-based field survey
was conducted in 2013–2018. The latitude and longitude coordinates of the labels were measured using
a handheld GPS (global positioning system) based on the principle of wide area difference, named
MM9, and the vegetation types and photographs were recorded. The year with the largest number
of samples in Luobei County of Hegang City was 2014, with a total of 553 samples, and the lowest
number was 237 samples in 2018; the largest sample size in the southwest of Hulin City was 455 in
2017, and the year with the lowest number was also 2018, with a total of 206. Due to the large plot of
Heilongjiang, most of the sampling was carried out along the roadside of the field, which can help
to save costs as much as possible. The sample size and spatial distribution are shown in Table 1 and
Figure 2, respectively.

Table 1. Statistics on the ground reference samples.

Year
Luobei County Southwest Hulin City

Maize Rice Other Total Maize Rice Other Total

2013 224 102 58 384 77 17 162 256
2014 284 146 123 553 131 36 75 242
2015 234 91 50 375 163 105 47 315
2016 234 91 49 374 146 102 45 293
2017 137 99 160 396 111 194 150 455
2018 128 32 78 237 122 37 47 206Sustainability 2019, 11, x FOR PEER REVIEW 6 of 19 
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3. Methods

The research workflow is shown in Figure 3 and can be divided into five parts: Data
preprocessing, historical year classification, potential sample extraction and sample screening, current
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year classification, and accuracy assessment. First, the GF-1 WFV automatic processing and sharing
platform developed by our team was used to preprocess the images and sample data. Second,
the random forest classifier was used to classify 10 times per year from 2013 to 2017 to obtain the
classification results of historical years. In the third step, according to the result of the second step,
the pixels with the same type in all historical years were extracted as potential samples, and the new
samples were generated based on spectral similarity by spatial k-means clustering. The fourth step
was to classify 2018 based on the new generated samples and current year samples and to obtain two
classification results. Finally, the accuracy of the two classification results was verified to verify the
feasibility of the proposed method.Sustainability 2019, 11, x FOR PEER REVIEW 7 of 19 
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3.1. Data Preprocessing

Both the GF-1 images and the field samples were stored using the Raster Dataset Clean and
Reconstitution Multi-Grid (RDCRMG) grid system developed by China Agricultural University [34].
The RDCRMG is a multisource raster data organization and management logic framework that is
similar to the Military Grid Reference System (MGRS) data organization framework [11]. Currently,
the implementation of the RDCRMG is mainly based on code and includes some basic functionality
based on the graphical user interface (GUI), such as the preprocessor. According to the RDCRMG
system, three levels of square grids (100, 10, and 1 km) with different grid sizes, strictly nested
relationships, and specific codes are used as consistent RS image partition units. The GF-1/WFV L1
product does not provide geometric correction, so it cannot be directly used for crop classification.
The GF-1 WFV automated processing and sharing platform developed by our team can achieve
automated pre-processing, including traditional radiation calibration, atmospheric correction and
orthorectification, as well as cloud detection, geometric registration, projection conversion, clipping
and cleaning based on the RDCRMG [34]. In order to best preserve the original spectral characteristics
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of each pixel, the nearest neighbor sampling method was used in the geometric registration and
atmospheric correction, with a 6-S radiative transfer model. The sample data in the RDCRMG
underwent the following steps: Rasterization, project conversion, clipping, and cleaning.

3.2. Historical Year Crop Classification and Sampling Procedures

The main crops in Heilongjiang Province are maize, rice and soybean, but the field survey showed
that the main crops in the study area were maize and rice, with few other crops. Therefore, the final
classification categories were maize, rice, and other.

The quality of the training and test data directly affects the results of the supervised classification.
There are several sampling strategies available, including single pixel, seed, and block or polygon. In
areas that are spectrally homogeneous, single-pixel training can obtain better classification results [35].
Due to the large size of the plots in Heilongjiang Province and the strong homogeneity of the spectrum
in the same plot, the single-pixel random sampling method was adopted in this paper, and the collected
samples were divided into training and test samples according to the ratio of 2:1. All samples were
sourced from the field survey to ensure the accuracy of the samples.

3.3. Classification Feature Selection and Calculation

Considering the differences in phenology, seasonal differences, as well as the significance and
anti-saturation degree of different vegetation indexes (VIs), the commonly used VIs can be divided into
four categories. (1) To reflect the comprehensive change in crop growth: The normalized difference
vegetation index (NDVI) and the enhanced vegetation index (EVI). (2) To reflect crop greenness: The
triangle vegetation index (TVI), the ratio vegetation index (RVI), and the green normalized difference
vegetation index (GNDVI). (3) To reflect crop soil background: The difference vegetation index (DVI)
and the soil regulation vegetation index (SAVI). (4) To reflect the canopy moisture content of crops:
The normalized difference water index (NDWI). Among them, several vegetation indexes are strongly
correlated [36]. Therefore, six vegetation indexes with weak correlation coefficients, namely the NDVI,
the EVI, the RVI, the TVI, the DVI and the NDWI, were selected in this paper. The formula is as follows:

NDVI = (NIR − R)/(NIR + R) (1)

EVI = 2.5 ∗ (NIR − R)/(NIR + 6R − 7.5B + 1) (2)

RVI = NIR/R (3)

TVI = 60 ∗ (NIR − G) − 100 ∗ (R − G) (4)

DVI = NIR − R (5)

NDWI = (G − NIR)/(G + NIR) (6)

where NIR, R, G, and B are the reflectance values of the near-infrared, red, green, and blue spectral
bands, respectively.

Time series NDVIs can effectively reflect changes in crop growth period. Figure 4 shows the
time-series curves of six VIs during the growth periods of maize and rice in Luobei County, Hegang
City in 2015. As can be seen from Figure 4, the growth period of maize and rice was very close, and
each vegetation index curve had a high similarity. However, it can be seen that the NDVI and the
NDWI differed greatly in the early growth stage, but there was almost no difference in the middle and
late stages; this may be due to the fact that the NDVI reached saturation in the middle and late growth
stages and could not respond to biomass very well. NDWI is sensitive to water, so the paddy field
filled with water in May made the NDWI of the rice field and the maize field different. The difference
in the RVI is obvious in the middle growth stage. This is because the RVI is very sensitive when the
vegetation coverage is high, and the sensitivity is significantly reduced when the vegetation coverage is
less than 50%. Therefore, when the vegetation biomass was high in the middle growth period, the RVI
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distinguished between corn and rice more significantly. The TVI, the DVI and the EVI were different
in the whole growth period, and these vegetation indexes could effectively reflect the differences in
biomass and eliminate the influence of background values such as soil.
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3.4. Random Forest Classification

Random forest (RF) is an integrated algorithm which belongs to the bagging type. By combining
multiple weak classifiers, the final result is obtained by voting, which gives the overall model result a
higher precision and generalization ability. The classification and regression trees (CART) decision tree
is used as a weak classifier in the random forest algorithm. When training the model, multiple trees are
generated, and the features selected by each tree are only a few of the features selected at random [37].

Because of its strong randomness, the random forest algorithm can achieve better generalization
and anti-overfit ability, meaning that it is generally not necessary to do additional pruning. At the
same time, random forests can process high-dimensional data well, and this method has significant
advantages when there are many samples and features. In this paper, a large number of samples was
generated in the process of using historical data, and the use of six time series VIs led to a large number
of features. Therefore, the random forest method was adopted for classification and identification,
and a total of 150 trees were generated. The number of features of each tree was the square root of the
number of input features, and the sample size selected for each tree was the same as the number of
training sets.

3.5. New Sample Generation and Screening

In this study, the classification results of maize and rice from 2013 to 2017 were generated first. On
this basis, new samples were extracted and screened, and then the classification map was constructed
for the years with insufficient ground data.

The more stable the planting structure is, the smaller the inter-annual change in crop types in
each plot is. This paper used this idea to design a new sample extraction and screening method, as
shown in Figure 5. First, the classification results of historical years were superimposed to calculate
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the occurrence frequency of different crop types for each pixel. When the crop type of a pixel remained
unchanged from 2013 to 2017, that is the occurrence frequency was 50 times (10 classification results
per year for a total of five years), then the pixel was extracted as a “potential sample,” and given the
label of this crop type. Then, according to the spectral characteristics and spatial information of the
current year (2018), the potential samples were clustered. Next, the proportion of maize, rice and other
in each cluster item was calculated, and the crop type with the largest proportion—one exceeding
0.67—was selected as the label of this cluster item so that all the items were divided into corn, rice
or other, and the clustering result was divided into three groups. Finally, the clustering results with
the three categories were superimposed with the “potential samples,” and the pixels with the same
labels were extracted as the new samples that were finally used for the current year’s classification.
The number of clusters was repeated from 3 to 20. If no crop class accounted for more than 0.67 in
an experiment, the results of this clustering were not used. Meanwhile, the effects of the number of
clusters on the structure and classification accuracy of newly generated samples were compared. This
method not only made use of the stable planting structure of local crops but also took into account
the spectral features of the current year. It integratds the empirical data and remote sensing data to
generate new samples sustainably and conduct crop classification for the current year on this basis.
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3.6. Accuracy Assessment

One third of the field samples of corn, rice and other of every year were used as verification
samples, and the specific quantity is shown in Table 2. Then the confusion matrix and F-score were
used to assess the classification results. By constructing a confusion matrix, five accuracy assessment
indexes could be obtained: Overall accuracy (OA), producer accuracy (PA), user accuracy (UA), kappa
coefficient (K) and F-Score. Kappa analysis provided a measure of the magnitude of agreement
between the predicted and actual class membership [38]. A kappa value of 0 represents a total random
classification, while a kappa value of 1 corresponds to a perfect agreement between the reference and
classification data. The calculation formula for each indicator is as follows:

OA =
TP + TN

N
, (7)

PA =
TP

TP + FN
, (8)

UA =
TP

TP + FP
, (9)

K =
OA− Pe

1− Pe
, (10)
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Pe =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

N2 , (11)

F− Score =
2(UA ∗ PA)

UA + PA
, (12)

where TP and FN, respectively, refer to the true category of samples as positive examples and the
model prediction results as positive examples and negative examples. TN and FP refer to the negative
examples of the true category of samples, which are predicted by the model as negative examples and
positive examples. N is the total number of real samples.

Table 2. Statistics on the validate reference samples.

Year
Luobei County Southwestern of Hulin City

Maize Rice Other Total Maize Rice Other Total

2013 75 34 19 128 26 6 54 85
2014 95 49 41 184 44 12 25 81
2015 78 30 17 125 54 35 16 105
2016 78 30 16 125 49 34 15 98
2017 46 33 53 132 37 65 50 152
2018 43 11 26 79 41 12 16 69

4. Results

4.1. Classification Results of Historical Years and Potential Sample Extraction

The RF classifier was classified using 150 CART trees. The number of features in 2013–2017 varied
according to the phase, and the number of phases was positively correlated with the classification
accuracy. In general, the number of time phases in Luobei County of Hegang City was higher than that
in southwest Hulin City, and the accuracy of the former was generally higher than that of the latter, as
shown in Table 3. The number of features of Luobei County in Hegang City was 54–90, among which
the number of features was the highest in 2015. It is also reflected in Table 3 that the F-Score of maize
and rice reached the maximum in 2015. The feature number of southwest Hulin City was the lowest at
36 in 2016 and the highest at 66 in 2015. The overall accuracy of 2015 and the F-Scores of maize and
rice all reached their maximum value in Table 3, which also indicates that feature number and time
phase number have a certain influence on classification accuracy.

Table 3. Accuracy of historical years’ classification.

Luobei County Southwest Hulin City

2013
Overall Accuracy (OA) 85.77% ± 2.69% 85.06% ± 4.60%

F-Score of Maize 89.55% ± 2.28% 76.31% ± 8.31%
F-Score of Rice 87.78% ± 3.40% 76.15% ± 16.15%

2014
OA 87.17% ± 2.67% 86.42% ± 6.17%

F-Score of Maize 88.74% ± 2.45% 88.64% ± 4.55%
F-Score of Rice 88.93% ± 2.91% 90.00% ± 10.00%

2015
OA 86.22% ± 4.33% 88.68% ± 3.77%

F-Score of Maize 89.81% ± 2.96% 89.57% ± 4.12%
F-Score of Rice 89.28% ± 5.64% 94.50% ± 4.09%

2016
OA 85.32% ± 2.78% 80.50% ± 5.50%

F-Score of Maize 89.04% ± 1.98% 82.15% ± 5.23%
F-Score of Rice 88.60% ± 4.73% 88.11% ± 5.04%

2017
OA 76.49% ± 2.61% 81.91% ± 3.62%

F-Score of Maize 75.80% ± 3.80% 70.97% ± 6.18%
F-Score of Rice 82.66% ± 5.47% 91.04% ± 5.93%
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The classifications and accuracy verifications were carried out 10 times in each historical year for the
two regions, which eliminated the contingency of results that may have resulted from one classification
and simultaneously extended the validation sample size to prevent deviations in verification results
due to too few verification samples. The result in Table 3 shows that the average classification accuracy
was about 80%, of which the highest appeared in the 2015 classification of southwest Hulin City and
was 92.45%. The better the classification results of historical years are, the higher the accuracy of
using them to extract samples are. The experiments of historical years in this paper meet the basic
requirements of classification accuracy and have the conditions to extract samples from them.

4.2. Effect of Clustering Number on New Sample Structure and Classification Accuracy

The potential samples were extracted from the classification results of the historical years 2013–2017.
However, these samples were obtained based on the assumption that the crop types of pixels remain
unchanged every year, i.e., that the regional planting structure was stable. However, there are
uncertainties, and this uncertainty can be reduced by combining the spectral consistency information of
crops in the current year. Therefore, this study introduces the idea of clustering, based on the spectral
features of the current year and then screening potential samples to improve the purity of the sample.
Multiple clustering is carried out on the potential samples. The clustering method is k-means, and the
number of clustering is 3–20. By calculating the ratio of clustering items to categories, it was found that
only when a type has at least 10 clustering items does it meet the maximum selection ratio, and maize,
rice and the other three types can be assigned to each pixel. When the clustering number is 10–20, the
final classification accuracy presents a steady trend, so the results of clusters with 10–20 items were
finally selected for analysis. The proportion of samples obtained after screening is shown in Table 4. It
can be seen that the sample structure in southwest Hulin City was more uniform than that in Luobei
County, with their lowest values at 8.95% and 3.44%, respectively. In addition, the proportion of maize
samples in southwest Hulin City was relatively low, the proportion of other samples in Luobei County
was relatively low, and the highest proportion of this type was only 3.97%.

Table 4. Proportion of all types of samples.

Luobei County Southwest Hulin City

Other Maize Rice Other Maize Rice

10 3.93% 33.91% 62.16% 52.91% 16.04% 31.05%
11 3.94% 33.86% 62.21% 70.54% 15.56% 13.90%
12 3.97% 30.01% 66.02% 54.31% 14.58% 31.11%
13 3.97% 30.01% 66.02% 54.89% 14.18% 30.93%
14 3.97% 30.01% 66.02% 51.15% 9.08% 39.77%
15 3.97% 30.01% 66.02% 51.55% 8.95% 39.50%
16 3.97% 29.97% 66.06% 47.81% 14.76% 37.43%
17 3.84% 35.72% 60.44% 50.39% 12.30% 37.31%
18 3.71% 36.44% 59.85% 48.46% 14.42% 37.13%
19 3.44% 26.44% 70.12% 48.62% 14.42% 36.96%
20 3.44% 26.44% 70.12% 48.57% 14.48% 36.95%

According to the statistics of sample sizes of different clusters, it was found that the sample size
changes when the clustering number is different. The sample size of Luobei County in Hegang City
was the lowest at 1,892,129 pixels and the highest at 2,180,153 pixels when the clustering number was
19. Meanwhile, the sample size in southwest Hulin was at least 125,719 and the maximum number was
147,515 pixels when the number of clusters was 20. The sample size of the two regions varied greatly,
mainly because the crop planting information in Luobei County was more stable and the planting
mode in the past five years was basically unchanged, so the sample size obtained by superposition was
large. The distribution of crops in southwest Hulin City in 2013 was quite different from that of other
years. Therefore, when the data of five years were superimposed, fewer samples were extracted. The
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distribution of the new sample generated is shown in Figure 6. In addition to reflecting the difference
in quantity between the two regions, it can be seen that there were significant differences in the sample
structure between Luobei County and southwest Hulin City, which is similar to the statistical results in
Table 4.
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Figure 6. Distribution map of the new sample.

Using the sample in Figure 6 for classification, the accuracy is shown in Figure 7. It can be seen
that when the sample structure is out of balance, the overall accuracy of the classification is reduced,
so the accuracy of Luobei County in Figure 7 was generally lower than that of southwest Hulin City.
Meanwhile, in the southwest of Hulin City, when the proportion of maize samples was less than 10%,
the accuracy was greatly affected. When the clustering number was 14 or 15, the proportion of maize
was 9.08% or 8.95%, respectively, leading to a low value of classification accuracy.

4.3. Accuracy Assessment and Analysis

The classification result of the newly generated sample was verified 10 times. The sample used
for each accuracy verification was one third of the randomly assigned samples in the field, which
was consistent with the verification sample for classification in the current year. The overall accuracy
verification results are shown in Table 5. From this table, we can see that the accuracy of southwest
Hulin City was higher than that of Luobei County. The accuracy of Hulin City based on the current
year’s sample and historical data was 82.94% and 80.44%, respectively. Though the results based on
historical data were still lower than the classification accuracy of the current year, the classification
accuracy could meet the basic requirements in the years lacking samples, and the user accuracy and
producer accuracy of corn and rice reached a high level. The classification accuracy of Luobei County
based on the samples of the current year was 77.59%, while the classification accuracy based on
historical data was only 69.35%, and the ‘other’ type were misclassified into maize, which shows a
strong relationship with the fact that the proportion of the ‘other’ type is too small. The imbalance of
the sample structure led to a decline in accuracy.
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Table 5. Confusion matrix.

Predictive Value

Other Maize Rice Producer
Accuracy (PA) (%) Other Maize Rice PA (%)

South of Luobei County Southwest Hulin City

Using Sample of 2018, OA: 77.59%, Kappa: 0.61 Using Sample of 2018, OA: 82.94%, Kappa: 0.71

Other 20 7 0 72.22% 11 4 1 67.36%
Maize 6 38 1 85.23% 4 37 1 89.15%
Rice 0 4 7 61.67% 2 1 11 82.05%
User

Accuracy
(UA) (%)

76.77% 76.53% 86.05% 65.54% 88.22% 88.07%

Using sample of historical data, OA: 69.35%, Kappa: 0.42 Using sample of historical data, OA: 80.44%,
Kappa: 0.65

Other 8 19 0 28.89% 10 6 0 59.72%
Maize 1 42 1 94.78% 5 37 1 87.04%
Rice 1 3 8 66.91% 2 0 11 84.62%

UA (%) 80.78% 65.31% 85.11% 58.90% 85.01% 63.40%

The construction of a confounding matrix based on field samples is a traditional accuracy
assessment method. However, due to the small sample size, it is not comprehensive to evaluate
classification accuracy only by considering the data in the confounding matrix. Therefore, it is necessary
to evaluate the classification results by combining crop mapping. The crop map in the southwest of
Hulin City is shown in Figure 8. In this figure, a is based on the classification results of the current
year’s samples and b is the distribution of crops with historical data. The maps are superimposed
with false color images in the area. It can be seen that both methods could better distinguish water
and forests from maize and rice, but the magnified area shows that the misclassification of buildings
and roads as maize was more serious based on the classification of samples in the current year, and
there was also a phenomenon of misclassifying rice into corn. However, buildings could be better
distinguished when classification was based on historical data, and the outline of rice plots was also
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clear. This also suggests that when basing on historical data, the classification performed slightly
worse in terms of overall accuracy based on the real samples, but on the feature map, this method
could achieve a better classification effect. This may be due to the fact that the sample size generated
by historical data was greater than the field samples taken; while there were some errors in these data,
the random forest algorithm had some fault tolerance, so a better map was obtained.Sustainability 2019, 11, x FOR PEER REVIEW 16 of 19 
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5. Discussion

The method proposed in this study involves selecting pixels with unchanged crop type for five
years as potential samples, according to historical samples and classification results (2013–2017), and
then producing new samples by the superposition of pixel spectral information in the year to be
classified (2018) before finally constructing the classification model. Different from Hao [30]’s spectral
curve screening method based on historical data, this paper screened potential samples based on
the clustering of the current year’s spectral features and spatial information. Due to differences in
inter-annual environment, inter-annual spectral curves of the same crop can be inconsistent, and the
application of the classified year’s data to this link can avoid the influence caused by differences in
spectral curves. Additionally different from Hao [30] is that the method proposed in this study can be
widely used to most of the world without CDL data, which are only abundant in the USA. Therefore,
this method can provide a new idea of classification for regions lacking samples in classified year and
save the expensive financial and labor cost of sampling, which is of great significance for sustainable
crop mapping.
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Compared with the method of reusing the spectral curve, our method can avoid the influence
of environmental factors on spectral curve differences in the same crop. Compared with the method
of reusing the training model, our method does not need a balance of image information between
years, which is difficult to satisfy in most areas due to cloud and shadow. Compared with the method
of generating “training samples” based on historical information, our method uses both the spectral
information of historical samples and the current year to ensure that the generated samples are more
accurate. However, the new generated samples in this paper were large and beyond the requirements
of classification, and they contained a lot of noise. If the membership degree of each cluster pixel is
used to constrain samples screening, the purity of new samples should be improved, and the number
of new samples can be reduced.

6. Conclusions

In order to improve the utilization efficiency of historical samples, reduce the dependence of
crop distribution mapping on year-by-year sampling, and produce crop distribution maps sustainably
at a lower cost, a new method for generating and screening new crop samples based on historical
data was proposed and used for current season crop classification in this paper. The basic idea is to
obtain potential samples by extracting pixels with the same crop type in all historical years, clustering
each pixel with the spectral features and position information of the current year, superimposing with
potential samples, and filtering to generate new samples.

Through the research in Luobei County and the southwest of Hulin City, Heilongjiang Province,
the results showed that: First, a large number of samples were generated based on historical data
combined with the spectral data and location information clustering method of the current year. When
the number of clusters was different, the number and structure of new generated sample changed.
Luobei County generated a sample size of 1,892,129–2,180,153 pixels, and the sample size of southwest
Hulin City was 125,719–147,515 pixels. Due to the stable crop structure from 2013 to 2017, more new
samples were generated in Luobei County, but the sample structure generated by this county was
not balanced, with the maximum of the ‘other crop’ being only 3.97%. Meanwhile, the structure of
southwest Hulin City was relatively balanced. The new sample clustering screening criteria with a
relatively stable classification accuracy can be obtained as follows: The type with the largest proportion
in each cluster term should be greater than 0.67, and the type with the smallest proportion in the final
sample should account for at least 15%. Second, it is feasible to map crop types based on the generated
new samples. The classification accuracies based on the new generated samples and the field samples
in Luobei County were 69.35% and 77.59%, respectively, while those in southwest Hulin City were
80.44% and 82.94%, respectively, which basically meets the mapping requirements.

This study proposed a method of generating high-purity samples combined with historical
samples and spectral information of the current year. This method overcomes the problem of crop
samples only being collected in the field because they are difficult to visually interpret. The proposed
method effectively improves the utilization efficiency of historical data and provides a new idea for
sustainable crop mapping in many areas lacking crop samples.
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