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Abstract: The agricultural ecosystem has dual attributes of greenhouse gas (GHG) emission and
absorption, which both influence the net amount of GHG. To have a clearer understanding of the net
GHG effect, we linked up the emission and absorption of the agricultural ecosystem, estimated the
net emissions of 30 provinces in China from 2007 to 2016, then explored the spatial correlation from
global and local perspectives by Moran’s I, and finally tested the convergence of the net emissions by
α convergence test, conditional β convergence test and spatial econometric methods. The results
were: (1) The average of provincial agricultural net GHG emissions was around 4999.916 × 104 t,
showing a fluctuating trend in the 10 years. Meanwhile, the gaps among provinces were gradually
widening, as the provinces with high emissions were mainly agglomerated in the middle reaches
of the Yangtze River, while those with less emissions mainly sat in the northwest. (2) The net
emissions correlated spatially in close provinces. The agglomeration centers were located in the
middle reaches of the Yangtze River and the northern coastal region, showing “high–high” and
“low–low” agglomeration, respectively. (3) The net emissions did not achieve α convergence or
conditional β convergence in the whole country, but the growth rate had a significant positive
spillover effect among adjacent provinces, and two factors, the quantity of the labor force and the
level of agricultural economy, had a negative impact on the rate. It is suggested that all provinces
could strengthen regional cooperation to reduce agricultural net GHG emissions.

Keywords: net greenhouse gas emissions; agriculture; spatial correlation; Moran’s I; α convergence;
conditional β convergence

1. Introduction

Global warming has become the most severe environmental issue of the world. As greenhouse
gas (GHG) is the main factor for temperatures rising, countries around the world have realized the
urgency of low-carbon development. As the largest emitter of GHG, China aims to reduce 60%~65%
GHG emissions per unit of GDP by 2030 compared to 2005. Emission mitigation should start with its
sources. Industry is recognized as the main source of GHG emissions, while agriculture also releases
significant amounts of CO2, CH4 and N2O to the atmosphere [1]. GHG emissions from agriculture
in China, accounting for 17% of the total amount [2] and predicted to increase by another 30% in
2050 [3], should not be neglected. Meanwhile, the agricultural ecosystem also plays an important role
in absorbing GHG [4], which influences the total amount, too. The complicated process of agricultural
production makes it impossible to judge the net effect of GHG directly. In addition, because of the vast
territory of China, natural resources and agricultural development may be completely different among
regions, broadening the gaps of agricultural net GHG amount, but the geographical environment and
industrial structure of neighboring provinces are usually similar, which may cause the net amount
to correlate spatially. Therefore, what is the spatial–temporal characteristic of agricultural net GHG
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amount in China? Will it show spatial correlation? How is it evolving? Perhaps which regional
emission mitigation measures to take can be addressed by answering the above questions.

To clarify the sources and to estimate the amount of GHG from agriculture, scholars have
carried out relevant research. They have agreed that agricultural GHG emission comes from the
process of agricultural production, mainly involving crop and livestock production, forestry and
farmland use [3], also including agricultural waste, agricultural energy use and bio-burning [1,4].
There are two major perspectives for estimating: one is to focus on sources of a certain category, such
as the cropping system [5–7], farmland use [8], agricultural burning [9], waste products [10] and
livestock [11–13]. The other is to measure the total amount of a variety of sources from agriculture,
which takes a certain country or region as the research object [14–16]. As for the GHG-absorption
function of the agro-ecosystem, scholars generally believe that the absorption is contributed by forest,
grassland and farmland. Research of Europe and the United States focus on forest, including soil
carbon sequestration [17,18] and forest carbon sinks [19–21]. In China, scholars mainly consider
absorption of cropping system, that is, the GHG absorption of crops by photosynthesis during the
growth cycle [22,23]. In general, related studies are consistent in the coefficients of crops’ absorption [4].
Based on the estimation of GHG emission and absorption, scholars have begun to link them up and
explore the net effect in different countries or regions [24–28]. In the representative research of China,
Duan et al. study the carbon emissions, absorption and footprint of farmland ecosystems, and find
that they all show an increasing trend [29]. Chen et al. measure the carbon absorption and emission
of agricultural systems from 1991 to 2011, deeming the system is a sink of GHG [30]. The existing
studies have laid a foundation for thorough exploration on the net GHG emissions from agriculture.
However, the consideration of sources and estimation methods have not been unified, resulting in
different conclusions.

After understanding the sources and amount of agricultural GHG emission, scholars have paid
attention to its regional disparities [31,32], finding several factors that lead to the regional difference,
such as technical progress [33], production mode [34], agricultural practitioners, disaster degree,
industrial structure, economic development and public investment [35], and then proposing a series
of potential mitigation options [36,37]. With the research deepening, the convergence test, a tool to
investigate the evolution of regional disparities, is applied to analyze the regional difference of GHG
emissions [38–40]. Yang estimates the amount and intensity of agricultural carbon emissions in China
from 1993 to 2011, and confirms that there is no α convergence and conditional β convergence in the
intensity [41]. Cheng et al. study the convergence trend of agricultural carbon productivity in China
from 1997 to 2012, whose results show that there is no α convergence but absolute β convergence [42].
While Wu et al. take the slack based measure under undesirable outputs (SBM-Undesirable) to evaluate
China’s agricultural carbon emissions’ performance from 2000 to 2014 and believe that there is no
stochastic convergence in carbon emissions or its performance [43]. As seen from the convergence
study, scholars concentrate on agricultural GHG emission, paying insufficient attention to absorption,
and seldom consider the net effect. Besides, scholars assume that emissions are independent in different
regions, so they apply ordinary panel econometric methods when conducting the β convergence test.
In fact, agricultural GHG is more likely to correlate spatially because of the similar resource endowments,
industrial structure and the emission-mitigation policy imitation in neighboring provinces. If the
potential spatial correlation is ignored, it may affect the accuracy of the results [44].

To make up for the existing research, we comprehensively took 21 sources of agricultural GHG
emissions into consideration, and linked up the emission and absorption of agricultural ecosystem, to
estimate the net GHG emissions of 30 provinces in China from 2007 to 2016. Then, we chose the Moran’s
I based on the distance reciprocal square matrix to explore the spatial agglomeration of the emissions.
Finally, the convergence theory and spatial econometric methods were used to analyze the emissions’
convergence, aiming to offer a reference for controlling the emissions from both temporal and spatial
perspectives. The article is structured as: Section 2 introduces the method and data involved in this
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study. The third section presents the empirical analysis. The fourth section discusses the results and
the last section gives the conclusions.

2. Method and Data

2.1. Calculation of Agricultural Net GHG Emission

Agricultural GHG emission refers to the greenhouse gases released into atmosphere by agricultural
production, while agricultural GHG absorption is the greenhouse gases absorbed by crops through
photosynthesis, especially carbon dioxide. Both of them act on the net amount, when GHG released
minus that of absorbed is positive, agriculture ecosystem is a GHG source, and the corresponding
amount is called net emission. On the contrary, when the agriculture ecosystem becomes a GHG sink,
the corresponding amount is net absorption.

2.1.1. Agricultural GHG Emission

Four major categories of agricultural GHG emission sources were considered, totaling 21 items.
First, carbon emission caused by farmland utilization, involving the input of agricultural materials,
the plowing and irrigation activities; second, CH4 produced during the growth of rice; third, CH4

and N2O from intestinal fermentation and fecal management in ruminant breeding; fourth, carbon
emissions from agricultural energy. The total GHG emission was the sum of the emissions from
21 sources of four categories mentioned above.

The emissions of each category can be calculated as:

Ei =
∑

E j =
∑

(T j · δ j) (1)

where Ei is the total emissions of a certain category; Ej is the emissions of the source j belonging to this
category; Tj and δj represent the amount and coefficient of the source j, respectively. For the readers
interested in the details of the emission coefficient, we list all the coefficients in Appendix A.

To facilitate the analysis, the estimated GHG emissions were boiled down into carbon equivalents,
in line with Intergovernmental Panel on Climate Change (IPCC) [45], such that the GHG effect caused
by 1 t N2O and 1 t CH4 is equivalent to that caused by 298 t CO2 (81.2727 t C) and 25 t CO2 (6.8182 t C),
respectively [46].

2.1.2. Agricultural GHG Absorption

In terms of the agricultural GHG absorption, we considered the carbon dioxide that crops absorb
by photosynthesis in a life cycle, whose calculation equation is:

C =
k∑

i=1

Ci =
k∑

i=1

ciYi(1− ri)/HIi, (2)

where, C is the total amount of carbon dioxide absorbed by crops, Ci is the amount of carbon absorbed
by a certain crop, and ci is the corresponding coefficient of absorption, Yi, ri, HIi is the economic yield,
moisture content factor and economic coefficient of crop i, respectively. The corresponding coefficients
can be referred to in Table A5 of Appendix A.

2.2. Spatial Correlation

To reveal the spatial correlation of agricultural net GHG emissions, Moran’s I autocorrelation
analysis was adopted in this paper. We provide the calculation of Moran’s I in Appendix B.

Before calculating Moran’s I, we needed to quantify the spatial relationship of geographic units
by spatial weight matrix. When setting the matrix, related research often applies the “0–1” adjacency
matrix, which only considers the adjacent relation but ignores the difference caused by geographical
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distance [47]. Instead, based on the distance attenuation function, we took the reciprocal of the distance
square among geographic centers of 30 provinces as the spatial weight, so as to consider the possible
interaction among provinces which were geographically close but not adjacent.

2.3. Convergence Test

2.3.1. α Convergence Test

α convergence reflects the deviation of regional agricultural net GHG emissions from the overall
average level. In this paper, we explored the convergence or divergence of agricultural net GHG
emissions by testing the α coefficient, which denoted the average deviation of each value from the
mean. The equation is as:

α =

√√∑
i

(ln Eit − ln Et)2

/N (3)

where, ln Eit is the logarithmic value of the agricultural net GHG emissions of the province i in period t,
ln Et is the logarithmic value of the average emissions of all provinces during period t, N is the number
of provinces. It was possible to calculate the α value for every year, and if the value gradually decreased
with the passage of time, it suggested the agricultural net GHG emissions showed α convergence,
otherwise, α convergence did not exist.

2.3.2. Conditional β Convergence Test

β convergence consists of absolute β convergence and conditional β convergence. Absolute β

convergence is used to judge the relationship between the growth rate and the initial level of the net
emissions, and if they were related negatively, it indicated that there was an absolute β convergence
and a catch-up trend existed in backward areas. Different from absolute β convergence, conditional β
convergence does not only take the primary level into account, but considers several factors that may
also affect the convergence. To explore the influence of different factors, we selected the conditional β
convergence test, which can be calculated by Equation (4):

ln
(

Eit
Ei,t−1

)
= α+ β ln(Ei,t−1) + γX + µi + λt + εit (4)

where, Eit and Ei,t−1 are net agricultural GHG emissions in the t and t − 1 years of the province i,
respectively. X represents a set of control variables, and γ is the corresponding parameter; µi is the
individual-fixed effect and λt is the time-fixed effect; εit is the error term. If β is negative and statistically
significant, it indicates that negative correlation exists between the growth rate and the primary level,
which means there is conditional β convergence, if not, conditional β convergence does not exist.

Due to the technology diffusion and the policy imitation of neighboring regions, there may have
been spatial correlation of agricultural net GHG emissions. Therefore, when conducting conditional β
convergence tests, it was necessary to adopt spatial econometric models, and we mainly considered
the spatial lag model (SAR) and spatial error model (SEM), which can be estimated by Equations (5)
and (6) respectively.

ln
(

Eit
Ei,t−1

)
= α+ ρW ln

(
Eit

Ei,t−1

)
+ β ln(Ei,t−1) + γX + ci + ηt + εit (5)

where, ρ is the spatial autoregressive coefficient, which measures the mutual influence of the growth
rates of the net emissions among provinces. The meanings of other variables are the same as in
Equation (4).

ln
(

Eit
Ei,t−1

)
= α+ β ln(Ei,t−1) + γX + ci + ηt + µit, µit = λWµit + εit (6)
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where, λ is the coefficient of spatial error, which is used to measure the spatial correlation degree of
error terms. The meanings of other variables are consistent with Equation (4). Elhorst suggested the
selection of models could refer to Lagrange multiplier (LM) test: if the LM test statistics (or robust LM
test statistics) of spatial lag effect is more significant than that of spatial error effect, SAR should be
selected; on the contrary, SEM is more suitable [48]. In addition, the model can be selected according to
R2, log likelihood, Akaike Information Criterion (AIC), Schwarz Criterion (SC) and other indicators.

In terms of variables, the logarithm of the growth rate of the net emissions was taken as the
explained variable, and the logarithm of the net emissions was the core variable. Referring to the
relevant studies [33–35], we chose six factors that may have affected the convergence of emissions as
control variables, as shown in Table 1.

Table 1. Description of control variables for the conditional β convergence test.

Control Variable Symbol Calculation Unit

Agricultural labor al Agricultural practitioners 104 capita

Multiple cropping mc Ratio of sown area to cultivated area
of crops -

Agricultural disaster ad Ratio of agricultural disaster area to
crop sowing area -

Agricultural economy ae Ratio of gross agricultural output
value to rural population 104 CNY per capita

Industrial structure is Ratio of non-crop production value to
gross agricultural output value -

Fiscal expenditure fe Ratio of agricultural fiscal
expenditure to total fiscal expenditure -

Note: To guarantee the gross agricultural output value and the non-crop production value was comparable, it was
necessary to convert the corresponding value of each year into the actual value calculated at the comparable price in
2007. To make sure the data was smooth, two variables, agricultural labor and agricultural economy, needed to
be logarithmized.

2.4. Data Source

Excluding Hong Kong, Macao, Taiwan and Tibet due to missing data, the primary data covers 30
provinces of China from 2007 to 2016, consisting of all kinds of activity data involved in the calculation
of agricultural GHG emissions and absorption, and the control variables of β convergence test. The
data is introduced in Table 2.

Table 2. Introduction of data involved in the study.

Calculation Category Indicator Source

Agricultural GHG
emissions

Farmland
utilization

Application amount of fertilizers,
pesticides, plastic mulch, plowing area

and irrigation area
China Rural Statistical Yearbook

Rice planting Planting area of rice in all provinces
China Rural Statistical Yearbook and

National Compilation of Cost and Income
Information on Agricultural Products

Ruminant
breeding

Year-end stock of cattle, horses,
donkeys, mules, pigs, goats and sheep

China Animal Industry Yearbook and
Provincial Statistical Offices

Agricultural
energy

consumption

Amount of coal, coke, crude oil,
gasoline, kerosene, diesel oil, fuel oil
and natural gas used in agricultural

production

China Energy Statistics Yearbook and
Provincial Statistical Offices
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Table 2. Cont.

Calculation Category Indicator Source

Agricultural GHG
absorption Main crops

Yield of rice, wheat, corn, soybean,
rapeseed, peanut, sunflower, cotton,
potato, sugar cane, beet, vegetable,

melon, tobacco and other crops

China Rural Statistical Yearbook and
National Compilation of Cost and Income

Information on Agricultural Products

Conditional β
convergence test

Control
variables

Crop sown area, cultivated land area,
agricultural disaster area, gross

agricultural output value, total rural
population, non-crop production value,

fiscal expenditure on agriculture and
total fiscal expenditure

China Rural Statistical Yearbook

3. Empirical Analysis

3.1. Calculation and Analysis of Agricultural Net GHG Emissions

3.1.1. The Structure of Agricultural Net GHG Emissions

According to the method above, we estimated the net GHG emissions of agriculture in China
from 2007 to 2016 and analyzed the structure, as Figure 1 exhibits.

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 20 

Agricultural 
energy 

consumption 

Amount of coal, coke, crude oil, 
gasoline, kerosene, diesel oil, fuel oil 
and natural gas used in agricultural 

production 

China Energy Statistics 
Yearbook and Provincial 

Statistical Offices 

Agricultural 
GHG 

absorption 
Main crops 

Yield of rice, wheat, corn, soybean, 
rapeseed, peanut, sunflower, cotton, 
potato, sugar cane, beet, vegetable, 

melon, tobacco and other crops 

China Rural Statistical 
Yearbook and National 

Compilation of Cost and 
Income Information on 
Agricultural Products 

Conditional β 
convergence 

test 

Control 
variables 

Crop sown area, cultivated land area, 
agricultural disaster area, gross 

agricultural output value, total rural 
population, non-crop production value, 

fiscal expenditure on agriculture and 
total fiscal expenditure 

China Rural Statistical 
Yearbook 

3. Empirical Analysis  

3.1. Calculation and Analysis of Agricultural Net GHG Emissions 

3.1.1. The Structure of Agricultural Net GHG Emissions 

According to the method above, we estimated the net GHG emissions of agriculture in China 
from 2007 to 2016 and analyzed the structure, as Figure 1 exhibits. 

 
Figure 1. The histogram of agricultural net greenhouse gas (GHG) emissions’ structure of China 

from 2007 to 2016. 

Figure 1 presents the development of agricultural GHG emission and absorption in China. As 
for emission, the GHG emissions from farmland utilization averaged 52,383.423 × 104 t, accounting 
for 34.494% of the total GHG emission, which was the largest emissions source. While the source with 
the smallest emissions was the agricultural energy, with an average of 23,897.309 × 104 t, only 
accounted for 15.736% of the total. Besides, the mean of the other two sources were 32,850.876 × 104 t 
and 42,732.930 × 104 t separately, contributed 21.632% and 28.139% of the total amount. Observing 
the evolution of the structure, the variation trend of GHG emission sources was significantly 
different. Except the emissions from rice planting, which slightly decreased with an annual decline 
rate of −0.025%, those from farmland utilization, ruminant breeding and agricultural energy all 
performed a fluctuating rise, whose annual growth rate were 1.287%, 1.437%, 2.614%, respectively. 
As for crop GHG absorption, its average amount was 18,616.541 × 104 t, which rose stably during the 

0.000

10,000.000

20,000.000

30,000.000

40,000.000

50,000.000

60,000.000

70,000.000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016G
H

G
 e

m
iss

io
n 

an
d 

ab
so

rp
tio

n
U

ni
t: 

10
4

t

Year

Emissions from farmland utilization Emissions from rice planting
Emissions from ruminants breeding Emissions from agricultural energy
Absorption of crops

Figure 1. The histogram of agricultural net greenhouse gas (GHG) emissions’ structure of China from
2007 to 2016.

Figure 1 presents the development of agricultural GHG emission and absorption in China. As for
emission, the GHG emissions from farmland utilization averaged 52,383.423 × 104 t, accounting for
34.494% of the total GHG emission, which was the largest emissions source. While the source with the
smallest emissions was the agricultural energy, with an average of 23,897.309 × 104 t, only accounted
for 15.736% of the total. Besides, the mean of the other two sources were 32,850.876 × 104 t and
42,732.930 × 104 t separately, contributed 21.632% and 28.139% of the total amount. Observing the
evolution of the structure, the variation trend of GHG emission sources was significantly different.
Except the emissions from rice planting, which slightly decreased with an annual decline rate of
−0.025%, those from farmland utilization, ruminant breeding and agricultural energy all performed
a fluctuating rise, whose annual growth rate were 1.287%, 1.437%, 2.614%, respectively. As for crop
GHG absorption, its average amount was 18,616.541 × 104 t, which rose stably during the research
period with an annual growth rate of 2.129%. In the agricultural GHG emission structure of China,
the amount of absorption was much lower than emissions.
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3.1.2. Temporal Evolution of Agricultural Net GHG Emissions

To understand the temporal evolution of the net emissions, the corresponding box-plot was drawn
(Figure 2).

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 20 

research period with an annual growth rate of 2.129%. In the agricultural GHG emission structure of 
China, the amount of absorption was much lower than emissions. 

3.1.2. Temporal Evolution of Agricultural Net GHG Emissions 

To understand the temporal evolution of the net emissions, the corresponding box-plot was 
drawn (Figure 2). 

 
Figure 2. The box-plot of agricultural net GHG emissions of China from 2007 to 2016 (Unit: 104 t). 

The average of provincial net emissions was 4999.916 × 104 t during 10 years. In 2007, the net 
emission was 4520.424 × 104 t, at the valley in 10 years, and then increased steadily, reaching the 10-
year peak of 5842.196 × 104 t in 2014, declined in 2015 and recovered slightly in 2016, showing a 
fluctuating trend on the whole. Observing the extremum of agricultural net GHG emissions, there 
was a significant difference among provinces in different years. The minimum did not change 
significantly and stabilized at about 500.000 × 104 t, while the maximum experienced two light 
fluctuations, reaching the valley of 10,170.893 × 104 t in 2007 and the peak of 13,104.337 × 104 t in 2014. 
As can be seen from the interquartile range, the gap of the net emissions among provinces in China 
was gradually widening. 

3.1.3. Spatial Distribution of Agricultural Net GHG Emissions 

To show the spatial pattern of agricultural net GHG emissions, we divided the provincial 
average net emissions into five grades from high to low by natural breakpoint method, and the 
corresponding spatial distribution map was drawn (Figure 3). 

Figure 2. The box-plot of agricultural net GHG emissions of China from 2007 to 2016 (Unit: 104 t).

The average of provincial net emissions was 4999.916 × 104 t during 10 years. In 2007, the net
emission was 4520.424 × 104 t, at the valley in 10 years, and then increased steadily, reaching the
10-year peak of 5842.196 × 104 t in 2014, declined in 2015 and recovered slightly in 2016, showing a
fluctuating trend on the whole. Observing the extremum of agricultural net GHG emissions, there was
a significant difference among provinces in different years. The minimum did not change significantly
and stabilized at about 500.000 × 104 t, while the maximum experienced two light fluctuations, reaching
the valley of 10,170.893 × 104 t in 2007 and the peak of 13,104.337 × 104 t in 2014. As can be seen from
the interquartile range, the gap of the net emissions among provinces in China was gradually widening.

3.1.3. Spatial Distribution of Agricultural Net GHG Emissions

To show the spatial pattern of agricultural net GHG emissions, we divided the provincial average
net emissions into five grades from high to low by natural breakpoint method, and the corresponding
spatial distribution map was drawn (Figure 3).

Figure 3 shows the spatial distribution of the net emissions in China. From 2007 to 2016, there were
four provinces with the highest emissions, namely Henan, Hunan, Shandong and Heilongjiang, where
Henan was the only one whose emissions exceeded 10,000.000 × 104 t. There were seven provinces
in the second grade, which were Sichuan, Jiangxi, Hubei, etc. The provinces with medium emission
consisted of six provinces, including Guangdong, Yunnan, Jilin, etc. Then the next level included seven
provinces, followed by Gansu, Guizhou, Zhejiang and so on. Last, six provinces belonged to lowest
level, namely Qinghai, Hainan, Ningxia, etc. The regional pattern of the net emissions presented
the “center–periphery” pattern described by New Economic Geography. Meanwhile, the provinces
with high emissions were mainly agglomerated in the middle reaches of the Yangtze River, which
had always been China’s major agricultural production provinces and were also the central area of
the agricultural GHG emissions. In addition, the provinces with low emissions were mainly located
in the northwest region, whose agriculture were relatively underdeveloped and the GHG emissions
caused by agriculture were naturally less. Apart from the two regions, other regions in China were
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characterized by staggered distribution of provinces at different GHG emission levels. As can be seen
from Figure 3, the emissions showed certain agglomeration in space.
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3.2. Spatial Correlation Analysis of Agricultural Net GHG Emissions

3.2.1. Global Correlation Analysis

By using Stata 15.0 software, the global Moran’s I of the net emissions from 2007 to 2016 was
calculated, and the results are shown in Table 3.

Table 3. The Moran’s I of agricultural net GHG emissions from 2007 to 2016 in China.

Year Moran’s I Z-Statistics p-Value

2007 0.111 1.507 0.066
2008 0.118 1.583 0.057
2009 0.128 1.682 0.046
2010 0.122 1.625 0.052
2011 0.128 1.683 0.046
2012 0.171 2.141 0.016
2013 0.127 1.669 0.048
2014 0.147 1.875 0.030
2015 0.123 1.633 0.051
2016 0.133 1.732 0.042

The Moran’s I were all over 0.100 and passed the Z-test at a significance level of 10%, which
indicated that the agricultural net GHG emissions among provinces were not independent. Due to
the similar natural resource, climate conditions and cropping structure, the net emissions became
relevant in close provinces. In addition, the global Moran’s I performed unstably, whose value
gradually rose in the early years but decreased recently, showing an inverted U-shaped curve overall.
Owing to the extensive mode of agricultural production and the single way of emission mitigation,
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the development of agricultural net GHG emissions behaved similarly among close provinces in
the early years. However, with the promotion of environmental protection, various provinces had
formulated diversified measures for emission reduction according to their own orientation, resulting
in a gradual decrease of net emissions’ correlation.

3.2.2. Local Correlation Analysis

It was hard to describe the specific spatial correlation by global Moran’s I, so we took the 10-year
average emissions of 30 provinces as the study objects, and chose the Moran scatter plot to investigate
the local spatial correlation, as shown in Figure 4.
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Figure 4. The local Moran scatter diagram of average agricultural net GHG emissions of 30 provinces.
Note: 1 is Beijing, 2 is Tianjin, 3 is Hebei, 4 is Shanxi, 5 is Inner Mongolia, 6 is Liaoning, 7 is Jilin, 8 is
Heilongjiang, 9 is Shanghai, 10 is Jiangsu, 11 is Zhejiang, 12 is Anhui, 13 is Fujian, 14 is Jiangxi, 15 is
Shandong, 16 is Henan, 17 is Hubei, 18 is Hunan, 19 is Guangdong, 20 is Guangxi, 21 is Hainan, 22 is
Chongqing, 23 is Sichuan, 24 is Guizhou, 25 is Yunnan, 26 is Shaanxi, 27 is Gansu, 28 is Qinghai, 29 is
Ningxia and 30 is Xinjiang.

The Moran’s I scatter plot included four quadrants, corresponding to “high–high” agglomeration
(H–H), “low–high” agglomeration (L–H), “low–low” agglomeration (L–L) and “high–low”
agglomeration (H–L) in turn. From Figure 4, the scatters in the first and third quadrants were
more than those in the other two quadrants, i.e., the provinces belonging to the “high–high” and the
“low–low” agglomeration took the majority. Among them, the provinces whose scatters were located
the first quadrant totaled up to eight provinces, including Jilin, Jiangsu, Anhui, etc., showing the trend
that high emission areas were surrounded by similar ones. The provinces belonging to the second
quadrant included Shanxi, Liaoning, Fujian, etc., owning the character that low emission areas were
surrounded by high emission areas. The provinces in the third quadrant comprised of Beijing, Tianjin,
Shanghai and so on, performing that the low emission areas were surrounded by the similar ones.
The provinces of the fourth quadrant included Hebei, Inner Mongolia, Sichuan and so on, which were
characterized by high emission areas surrounded by those who performed oppositely. To conclude,
the provinces of “high–high” agglomeration were mainly situated in the middle reaches of the Yangtze
River, while those of “low–low” agglomeration mainly located in the northern coastal, eastern coastal
and northwest regions. In addition, provinces around the country showed obvious polarization of
high-value and low-value agglomeration.
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Aiming to distinguish the agglomeration under the significance level of 5%, we selected the base
year (2007), the last year (2016), the year with the strongest (2012) and the weakest spatial correlation
(2007), and then drew the corresponding Lisa agglomeration maps, as shown in Figure 5.

Sustainability 2019, 11, x FOR PEER REVIEW 10 of 20 

Chongqing, 23 is Sichuan, 24 is Guizhou, 25 is Yunnan, 26 is Shaanxi, 27 is Gansu, 28 is Qinghai, 29 is 
Ningxia and 30 is Xinjiang. 

The Moran’s I scatter plot included four quadrants, corresponding to “high–high” 
agglomeration (H–H), “low–high” agglomeration (L–H), “low–low” agglomeration (L–L) and “high–
low” agglomeration (H–L) in turn. From Figure 4, the scatters in the first and third quadrants were 
more than those in the other two quadrants, i.e., the provinces belonging to the “high–high” and the 
“low–low” agglomeration took the majority. Among them, the provinces whose scatters were located 
the first quadrant totaled up to eight provinces, including Jilin, Jiangsu, Anhui, etc., showing the 
trend that high emission areas were surrounded by similar ones. The provinces belonging to the 
second quadrant included Shanxi, Liaoning, Fujian, etc., owning the character that low emission areas 
were surrounded by high emission areas. The provinces in the third quadrant comprised of Beijing, 
Tianjin, Shanghai and so on, performing that the low emission areas were surrounded by the similar 
ones. The provinces of the fourth quadrant included Hebei, Inner Mongolia, Sichuan and so on, which 
were characterized by high emission areas surrounded by those who performed oppositely. To 
conclude, the provinces of “high–high” agglomeration were mainly situated in the middle reaches of 
the Yangtze River, while those of “low–low” agglomeration mainly located in the northern coastal, 
eastern coastal and northwest regions. In addition, provinces around the country showed obvious 
polarization of high-value and low-value agglomeration. 

Aiming to distinguish the agglomeration under the significance level of 5%, we selected the base 
year (2007), the last year (2016), the year with the strongest (2012) and the weakest spatial correlation 
(2007), and then drew the corresponding Lisa agglomeration maps, as shown in Figure 5. 

 
(a) 2007 

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 20 

 
(b) 2012 

 
(c) 2016 

Figure 5. Lisa agglomeration map of agricultural net GHG emissions in China in 2007, 2012 and 2016. 

As seen from Figure 5, under the 5% significance level, the provinces showing significant 
agglomeration had decreased sharply. There were mainly two types of agglomeration left, as the net 
emissions in middle reaches of the Yangtze River mainly exhibited “high–high” agglomeration, and 
those in the northern coastal region appeared to show “low–low” agglomeration, indicating that an 
obvious polarization existed. With the passage of time, the spatial correlation pattern had changed 
greatly. Specifically, in 2007, the spatial correlation was the weakest. The “high–high” agglomeration 
areas included Jiangxi, Hubei and Hunan provinces, while Beijing and Tianjin showed “low–low” 
agglomeration. By 2012, Beijing and Tianjin continued to be the “low–low” agglomeration centers, 
and Henan became a new center of “high–high” agglomeration. Besides, Hebei, as a transitional area 
of two agglomerations, was significantly characterized by “high–low” agglomeration. By 2016, the 
pattern of “low–low” and “high–high” agglomeration had not changed, but the “high–low” 
agglomeration in Hebei was no longer significant. 

3.3. Convergence Test 

The analysis above suggested that there were apparent gaps of the net emissions in different 
provinces, but they showed local spatial correlation in space. Then, with the passage of time, would 

Figure 5. Lisa agglomeration map of agricultural net GHG emissions in China in 2007, 2012 and 2016.



Sustainability 2019, 11, 4817 11 of 19

As seen from Figure 5, under the 5% significance level, the provinces showing significant
agglomeration had decreased sharply. There were mainly two types of agglomeration left, as the
net emissions in middle reaches of the Yangtze River mainly exhibited “high–high” agglomeration,
and those in the northern coastal region appeared to show “low–low” agglomeration, indicating that
an obvious polarization existed. With the passage of time, the spatial correlation pattern had changed
greatly. Specifically, in 2007, the spatial correlation was the weakest. The “high–high” agglomeration
areas included Jiangxi, Hubei and Hunan provinces, while Beijing and Tianjin showed “low–low”
agglomeration. By 2012, Beijing and Tianjin continued to be the “low–low” agglomeration centers, and
Henan became a new center of “high–high” agglomeration. Besides, Hebei, as a transitional area of two
agglomerations, was significantly characterized by “high–low” agglomeration. By 2016, the pattern of
“low–low” and “high–high” agglomeration had not changed, but the “high–low” agglomeration in
Hebei was no longer significant.

3.3. Convergence Test

The analysis above suggested that there were apparent gaps of the net emissions in different
provinces, but they showed local spatial correlation in space. Then, with the passage of time, would the
gaps narrow naturally? We applied α convergence test and conditional β convergence test to explore
the gaps of the net emissions among provinces.

3.3.1. α Convergence Test

The α coefficient of China’s agricultural net GHG emissions was calculated year by year, and we
drew a corresponding line chart, as shown in Figure 6.

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 20 

the gaps narrow naturally? We applied α convergence test and conditional β convergence test to 
explore the gaps of the net emissions among provinces. 

3.3.1. α Convergence Test 

The α coefficient of China’s agricultural net GHG emissions was calculated year by year, and we 
drew a corresponding line chart, as shown in Figure 6. 

 
Figure 6. The α coefficient of agricultural GHG emissions of 30 provinces in China from 2007 to 2016. 

Observing Figure 6, the α coefficient of the net emissions showed an overall upward tendency 
during the research period, indicating that there was no α convergence among 30 provinces. As the 
emissions developed diversely in different provinces, the gaps among provinces would continue to 
widen. Besides, the gaps diverged in different periods: the α coefficient decreased slowly from 0.887 
to 0.879 in the first five years, showing weak convergence, while it presented fluctuating growth 
during the recent period, with a peak of 0.938 in 2014, which suggested that the evolution of 
agricultural net GHG emissions’ gaps was unstable. 

3.3.2. Conditional β Convergence Test 

There was no α convergence for the national net emissions, which implied that the emission 
level of all provinces would not converge to a same stable standard. Then, we eased the convergence 
conditions and tried a conditional β convergence test, aiming to examine whether the “chase effect” 
of the emissions existed among provinces. The Moran’s I estimation confirmed that emissions 
showed a positive spatial autocorrelation in provinces, so the conditional β convergence analysis 
should be conducted by the spatial econometric methods, instead of the ordinary panel econometric 
model. In this paper, Stata 15.0 software was used for spatial econometric analysis, and we conducted 
spatial relevant tests for selecting spatial econometric models, which are shown in Table 4. 

Table 4. The results of spatial panel econometric model test. 

Test χ2 p-Value 
LM Error (Burridge) 1.730  0.188  
LM Error (Robust) 1.539  0.215  
LM Lag (Anselin) 19.764  0.000  
LM Lag (Robust) 19.572  0.000  

As the Table 4 presents, the statistics of spatial lag effect were both significant at the 1% statistic 
level, while those of spatial error effect were not, so SAR was more suitable for convergence analysis. 
The data was a short panel of data, so there was no need for a panel unit root test or co-integration 
test. To ensure the robustness of the empirical results, the estimation of SEM and the ordinary panel 
econometric model was taken as the comparison. The Hausman statistics of the three models were 
significant at the 1% statistic level, all accepting the hypothesis of fixed effects. The regression results 

0.840

0.860

0.880

0.900

0.920

0.940

0.960

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

α

Year

Figure 6. The α coefficient of agricultural GHG emissions of 30 provinces in China from 2007 to 2016.

Observing Figure 6, the α coefficient of the net emissions showed an overall upward tendency
during the research period, indicating that there was no α convergence among 30 provinces. As the
emissions developed diversely in different provinces, the gaps among provinces would continue to
widen. Besides, the gaps diverged in different periods: the α coefficient decreased slowly from 0.887 to
0.879 in the first five years, showing weak convergence, while it presented fluctuating growth during
the recent period, with a peak of 0.938 in 2014, which suggested that the evolution of agricultural net
GHG emissions’ gaps was unstable.

3.3.2. Conditional β Convergence Test

There was no α convergence for the national net emissions, which implied that the emission
level of all provinces would not converge to a same stable standard. Then, we eased the convergence
conditions and tried a conditional β convergence test, aiming to examine whether the “chase effect” of
the emissions existed among provinces. The Moran’s I estimation confirmed that emissions showed
a positive spatial autocorrelation in provinces, so the conditional β convergence analysis should be
conducted by the spatial econometric methods, instead of the ordinary panel econometric model.
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In this paper, Stata 15.0 software was used for spatial econometric analysis, and we conducted spatial
relevant tests for selecting spatial econometric models, which are shown in Table 4.

Table 4. The results of spatial panel econometric model test.

Test χ2 p-Value

LM Error (Burridge) 1.730 0.188
LM Error (Robust) 1.539 0.215
LM Lag (Anselin) 19.764 0.000
LM Lag (Robust) 19.572 0.000

As the Table 4 presents, the statistics of spatial lag effect were both significant at the 1% statistic
level, while those of spatial error effect were not, so SAR was more suitable for convergence analysis.
The data was a short panel of data, so there was no need for a panel unit root test or co-integration
test. To ensure the robustness of the empirical results, the estimation of SEM and the ordinary panel
econometric model was taken as the comparison. The Hausman statistics of the three models were
significant at the 1% statistic level, all accepting the hypothesis of fixed effects. The regression results
were exhibited in Table 5, where the log-likelihood ratio of SAR was 379.696, higher than that of SEM,
and the R2 was 0.518, better than the other two models, which also supported the rationality of SAR.
Most of the variable coefficients of the three models presented the same sign and little numerical
difference, indicating that the estimation results were robust.

Table 5. The results of conditional β convergence tested by three econometric methods.

Variables SAR SEM Ordinary Panel Model

ln (emissions) 0.521 *** 0.737 *** 0.494 ***
(3.57) (3.06) (6.93)

mc −0.023 −0.023 −0.020
(−1.11) (−1.07) (−0.90)

ln (al) −0.231 *** −0.312 ** −0.194 **
(−2.89) (−2.38) (−2.58)

ad
−0.027 −0.048 −0.041
(−0.77) (−1.02) (−1.23)

ln (ae) −0.114 *** −0.171 ** −0.123 ***
(−2.80) (−2.27) (−4.88)

is
−0.042 −0.142 0.230
(−0.21) (−0.91) (0.57)

fe 0.544 0.785 0.532
(1.09) (0.99) (1.40)

ρ/λ
0.547 0.638 -
(5.86) (6.21) -

Hausman 102.960 47.050 157.520
R2 0.518 0.373 0.392

Log-likelihood 379.696 371.070 -

Note: Z-statistics are presented in the brackets; *** and ** mean variables were significant at 1% and 5% statistical
levels, respectively.

Observing the estimation results of the SAR, we found the coefficient of emission’s logarithm
was positive at a 1% significance level, which proved the national agricultural net GHG emissions did
not show conditional β convergence, that is, there was no “chase effect” among provinces. Due to
the differences of resource endowments, economic development and industrial structure, not only
did backward regions have higher net emissions than advanced regions in the primary stage, but the
gap continued to widen over time. In addition, the spatial autoregressive coefficient ρ was 0.547 and
passed the Z-test at the 1% significance level, implying the growth rates of the net emissions inclined
to show spatial spillover effect significantly in close provinces.
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As for the control variables, the coefficients of agricultural labor and agricultural economy were
both negative and significant at the statistical level of 1%, indicating that the expansion of labor
and the improvement of economy were conducive to lowering the growth rate of the net emissions.
As the agricultural practitioners decrease, machines of irrigating and plowing would make up for
the reduced labor in the agricultural production, suggesting that the GHG emissions caused by
agricultural energy, such as diesel oil and agricultural gasoline, would increase. From the reality
in China, with the acceleration of urbanization and more agricultural labor force transferring to
the industry, the growth rate of agricultural net GHG emissions would be significantly increased.
The development of agricultural economy also had a negative effect on the growth rate of net emissions.
With the development of agricultural economy, green and clean mode of intensified production had
been gradually replacing the extensive operation mode with excessive energy consumption and large
emissions, which contributed to the emission mitigation.

4. Discussion

4.1. Implication

Agricultural GHG emissions plays an important role in global warming. As can be seen from the
analysis, the situation of agricultural GHG in China is not optimistic, which reveals the urgency to
accelerate the pace of emission mitigation.

(1) Although agricultural net GHG emissions in China had experienced some ups and downs in
the sample years, it showed an overall upward trend. Moreover, based on the evolution, we could
predict the net emissions may continue to grow in the next few years, manifesting the necessity to
take measures for emissions mitigation. From the structure, GHG emissions from farmland utilization,
ruminant breeding and agricultural energy all showed growing trends, especially those from farmland
utilization, accounting for 34.494% of the total amount, should be paid more attention.

(2) Due to the obvious provincial difference, when formulating regional agricultural GHG emission
mitigation policies, it is essential to establish differentiated emission reduction targets based on local
conditions. The key is to apply the low-carbon development mode of farming: adjust agricultural
production structure and plant low-emission and high-sink crops that adapt to local resources, increase
investment in technology to enhance the efficiency of agricultural machinery and the utilization rate of
energy, encourage agricultural practitioners to learn conservation-oriented fertilization techniques, use
pesticides rationally and recycle the waste plastic mulch.

(3) Based on the results of two convergence tests, there is no convergence nationwide, so it is
hard for the net emissions to reduce naturally. On the contrary, taking effective reduction measures is
a possible way to bridge the provincial gaps. Besides, the net emissions showed spatial correlation,
which interact and influence each other among provinces, suggesting that there is a possibility of
regional cooperation. It is necessary for all regions to strengthen cooperation and share low-carbon
technology, so as to cut down the net emissions coordinately through provincial correlation.

(4) A series of studies showed that some technologies may act in carbon sequestration and
negative emission of carbon may be achieved [49]. Technologies and techniques as biochar [49],
agroforestry systems [50] and conservational agriculture measurements [51,52] may act as additional
benefit methods for reduce carbon emission in agriculture. At present, low-carbon technology is
relatively insufficient for agriculture in China, and most of them are staying in the experimental stage.
In the future, China should attach importance to the development of the technologies and techniques
and apply them to practice as soon as possible.

4.2. Comparison

Comparing with the existing estimation of China, we find that difference in categories and sources
of agricultural GHG leads to the diversity of the results. Taking Chen’s estimation for example,
he deems that China’s agriculture served as a net GHG sink from 1991 to 2011 [30], while we believe
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that it was a GHG source from 2007 to 2016. Observing the calculation procedure, Chen calculates the
GHG absorption from 15 kinds of crops, whose categories and corresponding coefficients are the same
as our study, but there is a difference when calculating the emissions: Chen’s research is on the basis of
six sources of GHG emission source, inclusive of fertilizer, pesticide, plastic mulch, sheep, cow and pig,
less than our study that considers 21 sources of GHG emissions. Therefore, there is little difference in
the estimation of absorption between the two studies, but the emissions we estimated are much more
than Chen’s, consequently causing a significant difference in the net amount.

As for convergence, previous research focus on GHG emissions and relative indicators, and some
scholars have agreed that the agricultural GHG emissions of China does not achieve convergence
nationwide, neither does the intensity or performance [41,43], while the national agricultural carbon
productivity has absolute β convergence [42]. Instead, we took the net emissions as the target,
and found that neither of α convergence or conditional β convergence existed in the whole country,
which is a complement to the existing research.

4.3. Improving Direction

It should be noted that there are some limitations of this study. First, it lacks the consideration
for GHG effect of soil. The emission and sequestration of soil is closely related to the farming system,
where the soil carbon loss caused by no-tillage, less tillage or complete cultivation often has a world of
difference [34]. Some scholars adopt the test data of a certain region as GHG emission coefficient of soil,
and applied it to the whole country [4,53]. However, China has a vast territory, and its geographical
conditions and production patterns are quite different. Therefore, the application of such a simple way
is unscientific. Based on the above reasons, GHG emission and sequestration of soil have not been
considered in our measurement system of the agricultural GHG net emission.

Second, the impact of different farming methods was not considered. The agricultural practices,
such as cover crops and straw returning, may also influence the carbon sequestration in the soil,
resulting in a completely different net effect of GHG. As the major mode in China is smallholder
production, it was hard to consider the influence of cultivation modes in different regions. For this
reason, this paper did not consider different agricultural practices, which may have led to deviation in
the result.

To refine the measurement system and ensure the accuracy of results, we will focus on taking
the GHG effect of soil into research in the future. In addition, assessing the influence of different
agricultural practices also becomes the next direction.

5. Conclusions

Based on the Moran’s I, convergence tests and spatial econometric models, the study analyzed
the spatial correlation and convergence of agricultural net GHG emissions in China. From 2007 to
2016, the average of the net emissions of all provinces was 4999.916 × 104 t, showing a fluctuating
growth trend as a whole, and the gaps among provinces had been gradually widening. Most of
the provinces with large emissions belonged to the middle reaches of the Yangtze River, while the
provinces with low emissions were mainly located in the northwest of China. As for the spatial
correlation, the global Moran’s I of agricultural net GHG emissions was all over 0.100, implying the
net emissions were spatially correlated, whose correlation level showed an inverted U-shaped curve
as a whole. There was an obvious polarization of the net emissions, mainly exhibiting “high–high”
and “low–low” agglomeration, whose agglomerating centers were situated in the middle reaches of
the Yangtze River and the northern coastal region respectively. With the passage of time, the spatial
correlation pattern had changed greatly. In terms of convergence, agricultural net GHG emissions
did not show α convergence or conditional β convergence in the whole country. With time going
by, the gaps among different provinces broadened, and there was no “chase effect” in the emissions’
growth rate among provinces. In addition, the growth rate had a significant positive spatial spillover
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effect in close provinces, and the agricultural force and economic development had negative impact on
the growth rate of the net emissions.
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Appendix A

We present the coefficients of different source of agricultural GHG emission and absorption in this
section. The coefficients of farmland utilization are shown in Table A1.

Table A1. GHG emission coefficients of major sources in farmland utilization.

Farmland Utilization Emission Coefficient

Fertilizer 0.8956 kg(C)·kg−1

Pesticide 4.9341 kg(C)·kg−1

Plastic mulch 5.1800 kg(C)·kg−1

Ploughing 312.6000 kg(C)·hm−2

Irrigation 266.4800 kg(C)·hm−2

Data source: Duan [29].

Due to the diverse climate and temperature, CH4 emission rate in rice growth cycle was also
various in different provinces. Table A2 presents the coefficients of rice cultivation in provinces.

Table A2. GHG emission coefficient of rice cultivation in provinces of China. Unit: g(C)·m−2.

Province Emission Coefficient Province Emission Coefficient

Beijing 13.23 Henan 17.85
Tianjin 11.34 Hubei 38.20
Hebei 15.33 Hunan 35.00
Shanxi 6.62 Guangdong 41.20

Neimenggu 8.93 Guangxi 36.40
Liaoning 9.24 Hainan 38.40

Jilin 5.57 Sichuan 16.90
Heilongjiang 8.31 Chongqing 16.90

Shanghai 31.26 Guizhou 16.10
Jiangsu 32.40 Yunnan 5.70

Zhejiang 35.60 Shanxi 12.51
Anhui 31.90 Gansu 6.83
Fujian 34.60 Qinghai 0.00
Jiangxi 42.20 Ningxia 7.35

Shandong 21.00 Xinjiang 10.50

Data source: Min [54].

The coefficients of major ruminants are shown in Table A3.
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Table A3. GHG emission coefficient of major ruminants. Unit: kg(C)·head−1
·a−1.

Ruminant Emission Coefficient of
Intestinal Fermentation

Emission Coefficient of
Feces Management

Cow 395.5600 24.5520
Horse 122.7600 11.1848

Donkey 68.2000 6.1380
Mule 68.2000 6.1380
Pig 6.8200 27.2800

Goat 34.1000 1.1594
Sheep 34.1000 1.0230

Data source: IPCC [45].

Table A4 presents the coefficients of emissions from agricultural energy, which has been converted
in line with China through mass conversion of the same calorific value.

Table A4. GHG emission coefficient of main agricultural energy consumption.

Agricultural Energy Emission Coefficient Agricultural Energy Emission Coefficient

Coal 1.4676 kg(C)·kg−1 Kerosene 4.5844 kg(C) kg−1

Coke 2.9573 kg(C) kg−1 Diesel 4.6031 kg(C)·kg−1

Crude 4.3808 kg(C)·kg−1 Fuel oil 4.6218 kg(C)·kg−1

Gasoline 4.6939 kg(C)·kg−1 Natural gas 2.9047 × 104 t(C)·m−3

Data source: Guan [46].

In Table A5, we list the corresponding coefficient of main crops.

Table A5. Moisture content factor, carbon absorption rate and economic coefficient of main crops.

Crop Moisture Content Factor Carbon Absorption Rate Economic Coefficient

Rice 0.12 0.414 0.45
Wheat 0.12 0.485 0.40
Core 0.13 0.471 0.40
Beans 0.13 0.450 0.34

Rapeseed 0.10 0.450 0.25
Peanut 0.10 0.450 0.43

Sunflower 0.10 0.450 0.30
Cotton 0.08 0.450 0.10
Yams 0.70 0.423 0.70

Sugarcane 0.50 0.450 0.50
Beet 0.75 0.407 0.70

Vegetables 0.90 0.450 0.60
Melons 0.90 0.450 0.70
Tobacco 0.85 0.450 0.56

Other crops 0.12 0.450 0.40

Data source: Wang [22].

Appendix B

In this section, we present the calculation of Moran’s I for readers. The specific equation of global
Moran’s I is:

I =

n
n∑

i=1

n∑
j=1

Wi j(xi − x)(x j − x)

n∑
i=1

n∑
j=1

Wi j
n∑

i=1
(xi − x)

=

n∑
i=1

n∑
j,1

Wi j(xi − x)(x j − x)

S2
n∑

i=1

n∑
j,1

Wi j

, (A1)
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S2 =
1
n

∑
i

(xi − x)2. (A2)

In Equations (A1) and (A2), I is the global Moran’s I; n is the number of spatial units; x is the
net emissions of each space unit; Wij is a spatial weight matrix. Moran’s I ranges from −1 to 1, when
Moran’s I is a positive number at a given significance level, it proves that a positive correlation exist
among the observed values. When Moran’s I is negative, it indicates that there is a negative correlation.
The closer the value is to 0, the weaker the correlation is. In addition, the Z-test is suitable for Moran’s
I statistical test.

On the basis of global spatial autocorrelation analysis, local Moran’s I was able to reveal the spatial
autocorrelation of neighboring provinces, whose calculation equation is:

Ii =

n(xi − x)
∑
j

Wi j(x j − x)∑
i
(xi − x)2 =

nzi
∑
j

Wi jz j

zTz
= z′i

∑
j

Wi jz′ j. (A3)

In Equation (A3), Ii is the value of Moran’s I; Zi’, Zj’ are observed values that are normalized by
standard deviation; other variables have the consistent meaning to their counterpart in Equation (A1).

References

1. Johnson, M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate
greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [CrossRef] [PubMed]

2. Li, B.; Zhang, J.B.; Li, H.P. Research on spatial-temporal characteristics and affecting factors decomposition
of agricultural carbon emission in China. China Popul. Resour. Environ. 2011, 21, 80–86. [CrossRef]

3. Tubiello, F.N.; Salvatore, M.; Golec, R.D.C.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.;
Flammini, A. Agriculture, forestry and other land use emissions by sources and removals by sinks: 1990–2011
analysis. FAO Stat. Div. 2014, 4, 375–376.

4. Tian, Y.; Zhang, J.B. Study on the differentiation of net carbon effect in agricultural production in China.
J. Nat. Resour. 2013, 28, 1298–1309. [CrossRef]

5. Tongwane, M.; Mdlambuzi, T.; Moeletsi, M.; Tsubo, M.; Mliswa, V.; Grootboom, L. Greenhouse gas emissions
from different crop production and management practices in South Africa. Environ. Dev. 2016, 19, 25–35.
[CrossRef]

6. Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campbell, C.A.;
McConkey, B.G.; Nemecek, T.; et al. A comparison of methods to quantify greenhouse gas emissions of
cropping systems in LCA. J. Clean. Prod. 2017, 172, 4010–4017. [CrossRef]

7. Zhang, X. Multiple cropping system expansion: Increasing agricultural greenhouse gas emissions in the
north China plain and neighboring regions. Sustainability 2019, 11, 3941. [CrossRef]

8. Lu, X.H.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic evolution of regional discrepancies in carbon emissions
from agricultural land utilization: Evidence from Chinese provincial data. Sustainability 2018, 10, 552.
[CrossRef]

9. Lin, H.W.; Jin, Y.F.; Giglio, L.; Foley, J.A.; Randerson, J.T. Evaluating greenhouse gas emissions inventories for
agricultural burning using satellite observations of active fires. Ecol. Appl. 2012, 22, 1345–1364. [CrossRef]

10. Wang, W.W.; Zhang, J.B.; Wang, P.C. Carbon emission measurement using different utilization methods
of waste products: Taking cotton straw resources of south Xinjiang in China as an example. Nat. Environ.
Pollut. Technol. 2018, 17, 383–390.

11. Kipling, R.P.; Taft, H.E.; Chadwick, D.R.; Styles, D.; Moorby, J. Challenges to implementing greenhouse gas
mitigation measures in livestock agriculture: A conceptual framework for policymakers. Environ. Sci. Policy
2019, 92, 107–115. [CrossRef]

12. Garnier, J.; Noë, L.J.; Marescaux, A.; Cobena, A.S.; Lassaletta, L.; Silvestre, M.; Thieu, V.; Billen, G. Long-term
changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional
agriculture to conventional intensive systems. Sci. Total Environ. 2019, 660, 1486–1501. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.envpol.2007.06.030
http://www.ncbi.nlm.nih.gov/pubmed/17706849
http://dx.doi.org/10.1016/S2095-3119(13)60624-3
http://dx.doi.org/10.11849/zrzyxb.2013.08.003
http://dx.doi.org/10.1016/j.envdev.2016.06.004
http://dx.doi.org/10.1016/j.jclepro.2017.03.133
http://dx.doi.org/10.3390/su11143941
http://dx.doi.org/10.3390/su10020552
http://dx.doi.org/10.1890/10-2362.1
http://dx.doi.org/10.1016/j.envsci.2018.11.013
http://dx.doi.org/10.1016/j.scitotenv.2019.01.048
http://www.ncbi.nlm.nih.gov/pubmed/30743941


Sustainability 2019, 11, 4817 18 of 19

13. Bellarby, J.; Tirado, R.; Leip, A.; Weiss, F.; Lesschen, J.P.; Smith, P. Livestock greenhouse gas emissions and
mitigation potential in Europe. Glob. Chang. Biol. 2013, 19, 3–18. [CrossRef] [PubMed]

14. Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Worth, D.; Huffman, E.C. A tool to link agricultural activity
data with the DNDC model to estimate GHG emission factors in Canada. Agric. Ecosyst. Environ. 2010,
136, 301–309. [CrossRef]

15. Thamo, T.; Kingwell, R.S.; Pannell, D.J. Measurement of greenhouse gas emissions from agriculture: Economic
implications for policy and agricultural producers. Aust. J. Agr. Resour. Ec. 2013, 57, 234–252. [CrossRef]

16. Huang, K.-T.; Wang, J.C. Greenhouse gas emissions of tourism-based leisure farms in Taiwan. Sustainability
2015, 7, 11032–11049. [CrossRef]

17. Liski, J.; Perruchoud, D.; Karjalainen, T. Increasing carbon stocks in the forest soils of Western Europe.
Ecol. Manag. 2002, 169, 159–175. [CrossRef]

18. Baritz, R.; Seufert, G.; Montanarella, L.; Ranst, E.V. Carbon concentrations and stocks in forest soils of Europe.
Ecol. Manag. 2010, 260, 262–277. [CrossRef]

19. Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Philips, O.L.; Shvidenko, A.;
Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011,
333, 988–993. [CrossRef]

20. Erb, K.H.; Kastner, T.; Luyssaert, S.; Houghton, R.A.; Kuemmerle, T.; Olofsson, P.; Haberl, H. Bias in the
attribution of forest carbon sinks. Nat. Clim. Chang. 2013, 3, 854–856. [CrossRef]

21. Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth
forests as global carbon sinks. Nature 2008, 455, 213–215. [CrossRef] [PubMed]

22. Wang, X.L. Carbon Dioxide, Climate Change, and Agriculture; China Meteorological Press: Beijing, China, 1996.
23. Han, Z.Y.; Meng, Y.L.; Xu, J.; Wu, Y.; Zhou, Z.G. Temporal and spatial difference in carbon footprint of

regional farmland ecosystem-taking Jiangsu Province as a case. J. Agro Environ. Sci. 2012, 5, 1034–1041.
24. West, T.O.; Marland, G. A Synthesis of carbon sequestration, carbon emissions, and net carbon flux in

agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232.
[CrossRef]

25. Vleeshouwers, L.M.; Verhagen, A. Carbon emission and sequestration by agricultural land use: A model
study for Europe. Glob. Change Biol. 2010, 8, 519–530. [CrossRef]

26. Wear, D.N.; Coulston, J.W. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep.
2015, 5, 16518. [CrossRef] [PubMed]

27. Popp, M.; Nalley, L.; Fortin, C.; Smith, A.; Brye, K. Estimating net carbon emissions and agricultural response
to potential carbon offset policies. Agron. J. 2011, 4, 1131–1143. [CrossRef]

28. Xiong, C.H.; Yang, D.G.; Huo, J.W.; Wang, G.L. Agricultural net GHG Effect and agricultural carbon sink
compensation mechanism in Hotan prefecture, China. Pol. J. Environ. Stud. 2017, 1, 365–373. [CrossRef]

29. Duan, H.P.; Zhang, Y.; Zhao, J.B.; Bian, X.M. Carbon footprint analysis of farmland ecosystem in China. J. Soil
Water Conserv. 2011, 25, 203–208. [CrossRef]

30. Chen, L.Y.; Xue, L.; Xue, Y. Spatial agglomeration and variation of China’s agricultural net carbon sink.
J. Ecol. Environ. 2015, 11, 1777–1784.

31. Neumayer, E. Can natural factors explain any cross-country differences in carbon dioxide emissions?
Energy Policy 2002, 30, 7–12. [CrossRef]

32. Lantz, V.; Feng, Q. Assessing income, population, and technology impacts on CO2 emissions in Canada:
Where’s the EKC? Ecol. Econ. 2006, 57, 229–238. [CrossRef]

33. Uchiyama, K. Environmental Kuznets Curve Hypothesis and Carbon Dioxide Emissions; Springer: Tokyo,
Japan, 2016.

34. Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [CrossRef] [PubMed]
35. Zhang, J.B.; Cheng, L.L.; He, K. The difference of China’s agricultural low-carbon economic efficiency in

spatial and temporal and its influencing factors: A perspective of carbon input. J. Environ. Econ. 2017,
2, 36–51. [CrossRef]

36. Cole, C.V.; Duxbury, J.; Freney, J.; Heinemeyer, O.; Minami, K.; Mosier, A.; Paustian, K.; Rosenberg, N.;
Sampson, N.; Sauerbeck, D.; et al. Global estimates of potential mitigation of greenhouse gas emissions by
agriculture. Nutr. Cycl. Agroecosyst. 1997, 49, 221–228. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2486.2012.02786.x
http://www.ncbi.nlm.nih.gov/pubmed/23504717
http://dx.doi.org/10.1016/j.agee.2009.12.008
http://dx.doi.org/10.1111/j.1467-8489.2012.00613.x
http://dx.doi.org/10.3390/su70811032
http://dx.doi.org/10.1016/S0378-1127(02)00306-7
http://dx.doi.org/10.1016/j.foreco.2010.03.025
http://dx.doi.org/10.1126/science.1201609
http://dx.doi.org/10.1038/nclimate2004
http://dx.doi.org/10.1038/nature07276
http://www.ncbi.nlm.nih.gov/pubmed/18784722
http://dx.doi.org/10.1016/S0167-8809(01)00233-X
http://dx.doi.org/10.1046/j.1365-2486.2002.00485.x
http://dx.doi.org/10.1038/srep16518
http://www.ncbi.nlm.nih.gov/pubmed/26558439
http://dx.doi.org/10.2134/agronj2010.0517
http://dx.doi.org/10.15244/pjoes/65426
http://dx.doi.org/10.13870/j.cnki.stbcxb.2011.05.020
http://dx.doi.org/10.1016/S0301-4215(01)00045-3
http://dx.doi.org/10.1016/j.ecolecon.2005.04.006
http://dx.doi.org/10.1016/j.envint.2004.03.005
http://www.ncbi.nlm.nih.gov/pubmed/15196846
http://dx.doi.org/10.19511/j.cnki.jee.2017.02.003
http://dx.doi.org/10.1023/A:1009731711346


Sustainability 2019, 11, 4817 19 of 19

37. Dace, E.; Muizniece, I.; Blumberga, A.; Kaczala, F. Searching for solutions to mitigate greenhouse gas
emisisons by agricultural policy decisions—Application of system dynamics modeling for the case of Latvia.
Sci. Total Environ. 2015, 527, 80–90. [CrossRef]

38. Strazicich, M.C.; List, J.A. Are CO2 emission levels converging among industrial countries?
Environ. Resour. Econ. 2003, 24, 263–271. [CrossRef]

39. Westerlund, J.; Basher, S.A. Testing for convergence in carbon dioxide emissions using a century of panel
data. Environ. Resour. Econ. 2008, 40, 109–120. [CrossRef]

40. Lee, C.C.; Chang, C.P. New evidence on the convergence of per capita carbon dioxide emissions from panel
seemingly unrelated regressions augmented Dickey-Fuller tests. Energy 2008, 33, 1468–1475. [CrossRef]

41. Yang, X.Y. Regional differences and convergence of agricultural carbon emissions in China. Hubei Agric. Sci.
2016, 55, 1066–1072. [CrossRef]

42. Cheng, L.L.; Zhang, J.B.; Zeng, Y.M.; Wu, X.R. Analysis on the dynamic evolution and spatial club convergence
of national agricultural carbon productivity. J. Chin. Agric. Univ. 2016, 21, 121–132. [CrossRef]

43. Wu, H.Y.; He, Y.Q.; Chen, R. Agricultural carbon emissions performance and its stochastic convergence
in China-Based on SBM-Undesirable model and panel unit root test. Chin. J. Ecoagri. 2017, 25, 1381–1391.
[CrossRef]

44. Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 1988.

45. IPCC. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007.

46. Guan, X.L.; Zhang, J.B.; Wu, X.R.; Cheng, L.L. The shadow prices of carbon emissions in China’s planting
industry. Sustainability 2018, 10, 753. [CrossRef]

47. Wu, X.R.; Zhang, J.B.; Cheng, L.L.; Tian, Y. Potential of agricultural carbon reduction under climate change
and its spatial correlation characteristics in China: Based on the spatial Durbin model. China Popul.
Resour. Environ. 2015, 25, 53–61.

48. Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin, Germany, 2014.
49. Smith, P. Soil carbon questionar and biochar as negative emission technologies. Glob. Chang. Biol. 2016,

22, 1315–1324. [CrossRef]
50. Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003,

99, 15–27. [CrossRef]
51. Powlson, D.S.; Stirling, C.M.; Thierfelder, C.; White, R.P.; Jat, M.L. Does conservation agriculture

deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?
Agric. Ecosyst. Environ. 2016, 220, 164–174. [CrossRef]

52. Corbeels, M.; Cardinael, R.; Naudin, K.; Guibert, H.; Torquebiau, E. The 4 per 1000 goal and soil carbon
storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil Till. Res. 2019,
188, 16–26. [CrossRef]

53. Tan, Q. Greenhouse gas emission in China’s agriculture: Situation and challenge. China Popul. Resour. Environ.
2011, 21, 69–75. [CrossRef]

54. Min, J.S.; Hu, H. Calculation of greenhouse gases emission from agricultural production in China. China Popul.
Resour. Environ. 2012, 22, 21–27.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scitotenv.2015.04.088
http://dx.doi.org/10.1023/A:1022910701857
http://dx.doi.org/10.1007/s10640-007-9143-2
http://dx.doi.org/10.1016/j.energy.2008.05.002
http://dx.doi.org/10.14088/j.cnki.issn0439-8114.2016.04.062
http://dx.doi.org/10.11841/j.issn.1007-4333.2016.07.16
http://dx.doi.org/10.13930/j.cnki.cjea.170147
http://dx.doi.org/10.3390/su10030753
http://dx.doi.org/10.1111/gcb.13178
http://dx.doi.org/10.1016/S0167-8809(03)00138-5
http://dx.doi.org/10.1016/j.agee.2016.01.005
http://dx.doi.org/10.1016/j.still.2018.02.015
http://dx.doi.org/10.3969/j.issn.1002-2104.2011.10.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method and Data 
	Calculation of Agricultural Net GHG Emission 
	Agricultural GHG Emission 
	Agricultural GHG Absorption 

	Spatial Correlation 
	Convergence Test 
	 Convergence Test 
	Conditional  Convergence Test 

	Data Source 

	Empirical Analysis 
	Calculation and Analysis of Agricultural Net GHG Emissions 
	The Structure of Agricultural Net GHG Emissions 
	Temporal Evolution of Agricultural Net GHG Emissions 
	Spatial Distribution of Agricultural Net GHG Emissions 

	Spatial Correlation Analysis of Agricultural Net GHG Emissions 
	Global Correlation Analysis 
	Local Correlation Analysis 

	Convergence Test 
	 Convergence Test 
	Conditional  Convergence Test 


	Discussion 
	Implication 
	Comparison 
	Improving Direction 

	Conclusions 
	
	
	References

