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Abstract: With increasing evidence of climate change affecting the quality of water resources, there is
the need to assess the potential impacts of future climate change scenarios on water systems to ensure
their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the
Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections
from 10 different combinations of a global climate model (GCM)–regional climate model (RCM)
under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian
networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in
mid- (2041–2070) and long-term (2071–2100) periods with respect to the baseline (1983–2012). BN
outputs show good confidence that, across considered scenarios and periods, nutrient loadings will
increase, especially during autumn and winter seasons. Most models agree in projecting a high
probability of an increase in nutrient loadings with respect to current conditions. In summer and
spring, instead, the large variability between different GCM–RCM results makes it impossible to
identify a univocal direction of change. Results suggest that adaptive water resource planning should
be based on multi-model ensemble approaches as they are particularly useful for narrowing the
spectrum of plausible impacts and uncertainties on water resources.

Keywords: water quality; climate change; Bayesian networks; uncertainty; multi-models

1. Introduction

The maintenance of good water quality resources is essential to protect both ecosystems and
human health, and they represent one of the main targets of both the European Water Framework
Directive (2000/60/CE) and Sustainable Development Goals (i.e., SDG6) [1].

Changes in the global climate system are expected to have major consequences on the qualitative
aspect of available water resources [2–7]; thus, assessing the impacts of future climate change
scenarios on water systems is necessary to ensure a sustainable management of water supply for
multiple purposes.

The inherent complexity, variability, and randomness of water systems, their interaction with
socio-economic factors including the land use and population growth, and the high degree of uncertainty
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stemming from climate change make the assessment of climate change impacts on water resources
particularly challenging [8].

Uncertainty plays a prominent role in climate change science and climate change impact science,
with hydrology and water resources research in particular [8–11]. According to Parker et al. [12] and
Hawkins et al. [13], it can be attributed to a number of reasons including (i) scenario uncertainty, arising
from our limited understanding about the path of greenhouse gasses emissions and socio-economic
development; (ii) internal climate variability, due to the inherent variability of the climate system
components, processes, and their interaction; (iii) model uncertainty, caused by the different
formulations used to represent climatic processes in climate and impact models.

A proper understanding of the type, sources, and effects of uncertainty is needed to achieve
the goals of reliability and sustainability in water system management and planning under
changing conditions [14,15]. Uncertainty quantification is vital to facilitate a risk-based approach to
decision-making, where the range of possible futures is considered [16,17], and costs and benefits of
adaptation are estimated accordingly. For this reason, uncertainties should be communicated as an
inevitable component of each climate impact assessment study in a form which is also understandable
by a non-scientific community to avoid misjudged information and to prevent overconfidence in
impact projections [18].

A promising way to evaluate and deal with uncertainty is represented by ensemble modeling
approaches [19]. Multi-model ensembles are commonly used to investigate structural model uncertainty,
employing more than one climate model to perform multiple simulations and analyzing how climate
change projections differ. The development of ensembles in both climate and impact studies is strongly
encouraged by the Intergovernmental Panel on Climate Change (IPCC) since the Fourth Assessment
Report (AR4, 2007) [20], which suggests the use of multiple climate models and scenarios to cover
different sources of uncertainty [20]. The variability among ensemble components, in fact, can be used
as a measure of the state of the knowledge. Furthermore, it could be useful to describe the confidence
about the impact of climate change on the system modeled, supporting more robust decisions. In
other words, if most ensemble members give comparable results, high confidence in projected climate
change impacts is obtained, while, by contrast, if a large spread between components exist, there is less
confidence in the forecasted impacts. Furthermore, it was shown that ensembles often give a more
accurate prediction of future climate impacts than even the best individual model [21–23].

Relying on the extensive experience acquired in climate modeling, the use of ensembles was
also transferred to the water resources field where attempts to build ensembles of impact models and
scenarios (i.e., hydrological, water quality) are becoming increasingly common [24–26] to support
water system management and adaptation.

In this respect, the paper proposes a Bayesian network (BN)-based approach to develop an
ensemble of impact scenarios simulating the effect of different climate change projections on the quality
of water of the Zero river basin (Italy). Accordingly, BNs are used as a modeling framework to evaluate
the uncertainty due to global climate model (GCM)–regional climate model (RCM) structure and
representative concentration pathways (RCPs), helping in determining and communicating the level
of confidence of projected water quality alterations between baseline and future climate regimes.

BN outcomes (i.e., multiple impact scenarios) can be used to inform the spectrum of plausible
effects of expected climate change on the Zero river basin and, thus, support the choice of effective
adaptation strategies for a sustainable management of water resource quality at the local scale.

After a brief introduction to the study area (Section 1), this paper describes the methodology and
input data employed (Section 2) and, finally, discusses the scenarios developed for the Zero river basin
case study (Section 3), together with their uncertainty analysis.

Study Area

The Zero river basin (ZRB) (latitudes 45◦28’ north (N)–45◦48 N, longitudes 11◦54’ east (E)–12◦25’ E)
(Figure 1) is located within the Venetian floodplain (northern Italy) and it is a sub-basin of the Venice
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lagoon watershed (Figure 1a), covering an area of 140 km2. The Zero river (Figure 1b), which is 47 km
long, together with the Dese rivers, provides the greatest contribution of freshwater (21% of the total)
to the lagoon of Venice [27].
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with capacities ranging from 2500 to 32,000 of population equivalents (PE) directly discharge into the Zero 
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Figure 1. The Zero river basin case study (a) and input data location (b).

The basin features a Mediterranean climate but typical traits of more continental climates [28],
with an average annual precipitation of around 1000 mm (period 2007–2012) and an average annual
temperature of 14 ◦C (period 2004–2013). It is characterized by marked inter-annual climate variability,
which can originate years climatologically very different from each other. The land use of the ZRB is
mainly characterized by agricultural areas, representing 73% of the total surface, while the remaining
surface of the basin is covered by artificial (24%), semi-natural, and forested areas (4%).

Agricultural areas are dominated by industrial crop typologies, including corn (45%)
(i.e., Zea mays L.), soy (9%) (i.e., Glycine max L.), and autumn–winter cereals (13%) such as winter
wheat (i.e., Triticum aestivum L.) and barley (i.e., Hordeum vulgare L.). A negligible percentage of the
agricultural land is also used for the cultivation of beets and other permanent horticultural crops.

Artificial surfaces are mainly represented by housing areas (54%), industrial businesses (32%),
and transportation and services (14%). Accordingly, several industrial and residential activities exist
on the basin. Three wastewater treatment plans (i.e., Morgano, Zero-Branco, and Castelfranco Veneto)
(Figure 1b) with capacities ranging from 2500 to 32,000 of population equivalents (PE) directly discharge
into the Zero river.

The intensive agriculture, characterized by an elevated level of fertilization, and the dense
urbanization represent significant pollution sources for the area and the main factor responsible for the
excessive nutrient loadings in the reaching bodies of the Venice lagoon. Nutrient pollution is a major
concern in the area considering the risk of eutrophication and toxic algae blooms which can threaten
the good qualitative status of waters with consequent implications for environmental and human
health [29]. Climate change, inducing extreme changes in temperature and precipitation trends, could
exacerbate such nutrient pollution, altering those hydrological processes (e.g., runoff, river flow, water
retention time, evapotranspiration) that regulate the mobilization of nutrients from land to inland and
coastal water bodies.
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2. Materials and Methods

To understand the complexity of the interactions between climate, hydrology and water quality
parameters in the Zero river basin, we adopted the BN-based integrated approach proposed in Figure 2.

 
 

4 
 

The intensive agriculture, characterized by an elevated level of fertilization, and the dense urbanization 
represent significant pollution sources for the area and the main factor responsible for the excessive nutrient 
loadings in the reaching bodies of the Venice lagoon. Nutrient pollution is a major concern in the area 
considering the risk of eutrophication and toxic algae blooms which can threaten the good qualitative status 
of waters with consequent implications for environmental and human health [29]. Climate change, inducing 
extreme changes in temperature and precipitation trends, could exacerbate such nutrient pollution, altering 
those hydrological processes (e.g., runoff, river flow, water retention time, evapotranspiration) that regulate 
the mobilization of nutrients from land to inland and coastal water bodies. 

2. Material and methods 

To understand the complexity of the interactions between climate, hydrology and water quality 
parameters in the Zero river basin, we adopted the BN-based integrated approach proposed in Error! 
Reference source not found.. 

Error! Reference source not found.

 
Figure 2. The Bayesian network (BN)-based integrated approach. 

The core of the proposed approach is represented by a Bayesian network, which is employed as a 
modeling tool for the simulation of multiple nutrient loadings scenarios, and for the analysis of their 
uncertainty. Different data coming from hydrological models, historical observations, and expert judgment 
(Table 1, Appendix) were structured and combined into a probabilistic form to develop and train the BN at 
different levels of implementation.  

Qualitative information elicited from experts was used to develop the conceptual model of the network 
and to train socio-economic and agronomic variables (i.e. irrigation, fertilizer application) of the model for 
which quantitative data were not available. Observations regarding the main climatic parameters (i.e., 
precipitation, temperature, and evapotranspiration) and point-source pollution sources (i.e., wastewater 
treatment plants (WWTPs) and industrial discharges), together with Soil and Water Assessment Tool 
(SWAT) model simulations (i.e., runoff, river discharge (Q)) for the current conditions developed by 
Reference [30], were used for the training of the network for the period 2004–2013. Additional observed 
hydrologic data (i.e., river discharge (Q), nutrient concentrations (i.e., NO3−, NH4+, PO43−)) coming from the 

Figure 2. The Bayesian network (BN)-based integrated approach.

The core of the proposed approach is represented by a Bayesian network, which is employed
as a modeling tool for the simulation of multiple nutrient loadings scenarios, and for the analysis of
their uncertainty. Different data coming from hydrological models, historical observations, and expert
judgment (Table A1, Appendix A) were structured and combined into a probabilistic form to develop
and train the BN at different levels of implementation.

Qualitative information elicited from experts was used to develop the conceptual model of the
network and to train socio-economic and agronomic variables (i.e., irrigation, fertilizer application) of
the model for which quantitative data were not available. Observations regarding the main climatic
parameters (i.e., precipitation, temperature, and evapotranspiration) and point-source pollution sources
(i.e., wastewater treatment plants (WWTPs) and industrial discharges), together with Soil and Water
Assessment Tool (SWAT) model simulations (i.e., runoff, river discharge (Q)) for the current conditions
developed by Reference [30], were used for the training of the network for the period 2004–2013.
Additional observed hydrologic data (i.e., river discharge (Q), nutrient concentrations (i.e., NO3

−, NH4
+,

PO4
3−)) coming from the water quality monitoring station were used to evaluate the performance of

the model under current conditions.
After the training and validation, an ensemble of climate change projections generated by coupling

different combinations of Global Climate Models (GCMs) with regional climate models (RCMs) was
used as input for scenarios analysis to assess the effect (and uncertainty) of future climate change on
nutrient loadings.

2.1. Climate Change Projections

To assess the effect of climate change on nutrient loadings (i.e., NO3
−, NH4

+, PO4
3−), changes in

temperature and precipitation over future scenarios were selected as climate change indicators and
used as input for the development of alternative nutrient loading scenarios using the BN model. The
main aim of the study, however, was to capture uncertainties across a range of available GCM–RCM
structures and representative concentration pathways (RCPs); thus, in order to represent the widest
range of temperature and precipitation changes projected for the case study area, different climate
change model outputs were considered (Table 1). This allowed including both the “worst” and “best”
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case scenarios in the BN, giving the users substantial flexibility in exploring and understanding the
possible implications of climate change in the future. GCM–RCM combinations were selected among
those available considering different kinds of features, including (i) their representativeness for the
case study area and for the selected time periods (i.e., 2041–2070 and 2071–2100); (ii) their ability to
perform at high spatial resolution; (iii) their availability in an open-source format.

Table 1. Global climate model (GCM)–regional climate model (RCM) projections selected and
implemented in the Bayesian network (BN). SMHI—Swedish Meteorological and Hydrological Institute;
DMI—Danish Meteorological Institute; CMCC—Centro Euro-Mediterraneo sui Cambiamenti Climatici.

No. Global Climate
Model (GCM)

Regional
Climate Model

(RCM)

Representative
Concentration

Pathways (RCPs)
Resolution Time Range Institute

1 HadGEM2-ES RCA4 4.5, 8.5 12 km 1970–2099 SMHI
2 IPSL-CM5A-MR RCA5 4.5, 8.6 12 km 1970–2100 SMHI
3 CNRM-CM5 RCA6 4.5, 8.7 12 km 1970–2100 SMHI
4 EC-EARTH RCA7 4.5, 8.8 12 km 1970–2100 SMHI
5 MPI-ESM-LR RCA8 4.5, 8.9 12 km 1970–2100 SMHI
6 CNRM-CM5 CCLM 4.5, 8.10 12 km 1950–2100 CLMcom
7 CMCC-CM COSMO-CLM 4.5, 8.11 8 km 1976–2100 CMCC
8 HadGEM2-ES RACMO22E 4.5, 8.12 12 km 1950–2099 KNMI
9 EC-EARTH HIRHAM5 4.5, 8.13 12 km 1951–2100 DMI
10 EC-EARTH RACMO22E 4.5, 8.14 12 km 1950–2100 KNMI

Ensembles of 10 climate change models were selected (Table 1), including the
CMCC-CM/COSMO-CLM GCM–RCM and nine GCM–RCM model combinations from the
EURO-CORDEX project [31].

The CMCC-CM global model [32] is a coupled atmosphere–ocean general circulation model,
while the COSMO-CLM (CCLM) [33] is a high-resolution (between 1 and 50 km) climate regional
model; both were developed by the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC),
and, when coupled, they allow a spatial resolution of 8 km for the selected region.

EURO-CORDEX is the European branch of the CORDEX initiative sponsored by the World Climate
Research Program (WRCP) with the aim of organizing an internationally coordinated framework
to produce improved regional climate change projections for all land regions worldwide based on
dynamical statistical downscaling models forced by multiple GCMs. CORDEX results were used as
input for climate change impact and adaptation studies within the Fifth Assessment Report (AR5) of
the Intergovernmental Panel on Climate Change (IPCC). In this study, nine climate change scenarios
resulting from different combinations of GCMs and RCMs at 12-km spatial resolution were selected
(Table 1). Different GCMs and RCMs were developed by different research groups including the Danish
Meteorological Institute (DMI), the Swedish Meteorological and Hydrological Institute (SMHI), and
the Met Office Hadley Centre (MOHC) (Table 1).

Based on the outputs of the selected GCM–RCMs (Table 1), different climate change scenarios
were developed for the Zero river basin case study by extrapolating the mean temperature (◦C) and the
cumulative precipitation (mm) calculated on a monthly basis. Specifically, for each GCM–RCM, five
different 30-year scenarios were developed for a control period (i.e., 1983–2012), a mid-term period (i.e.,
2041–2070) and a long-term period (i.e., 2071–2100) under two different representative concentration
pathways (i.e., RCP4.5 and RCP8.5). RCP4.5 represents the moderate emission scenario which predicts
an increase in radiative forcing up to 4.5 W·m−2 by 2100 and a stabilization of the emissions (i.e.,
650 ppm) shortly after 2100 [34], while RCP8.5 was chosen as representative of the extreme emission
scenario, in which the greenhouse gas (GHG) emissions and concentrations increase considerably over
the 21st century, leading to a radiative forcing of 8.5 W·m−2 by 2100 [35], thus describing a future
without any specific climate mitigation target.

To make the outputs of GCM–RCMs suitable to be implemented at the spatial scale of impact
assessment models, a bias correction was applied [30]. GCMs, in fact, have a spatial resolution too
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coarse for local-scale assessments and, for this reason, they are generally coupled with RCMs to
consider the effects of orography, land–sea surface contrast, and land surface characteristics. However,
RCMs also often show significant biases due to imperfect conceptualization, discretization, and spatial
averaging within grid cells; therefore, a bias correction is required.

For the data used in this study, the linear scaling (LS) method was applied to correct the biases in
the monthly values of temperature and precipitation based on observed ones. The LS method was
applied using the software CLIME, a geographic information system (GIS) software for climate data
analysis developed by the Regional Models and Geo-Hydrogeological Impacts (REMHI) division of
CMCC, as extensively described in Reference [30]. Specifically, the method was implemented for
all 10 climate scenarios for every weather station of the case study (Figure 1) using the rainfall and
temperature observations for the period 1993–2012 as a correction factor. Once corrected, outputs of
the GCM–RCMs for each of the 10 climate scenarios and for each of the three weather stations of the
case study (i.e. Castelfranco Veneto, Zero-Branco, Mogliano Veneto) were elaborated to obtain suitable
inputs for the BN model.

2.2. Bayesian Network Model

A BN model was employed to assess and compare the impacts of different climate change scenarios
on nutrient loadings (i.e., NO3

−, NH4
+, PO4

3−) in the transitional waters of the Zero river basin, thus
generating an ensemble of impact scenarios supporting the identification of climate change effect on
water quality.

The BN was implemented by building on a BN model previously developed and validated in a
case study [36] which was extended to allow the incorporation of multiple GCM–RCM inputs. The BN
for the Zero river basin was developed and run using the software HUGIN Expert, version 8 [37,38].
For additional details about the methodology and data used to develop the BN, please refer to
Reference [36].

2.2.1. BN Development and Training

The BN structure was designed following the DPSIR (Drivers-Pressures-State-Impacts-Responses)
framework, starting from the conceptual model described in Reference [36]. An influence (i.e., “box
and arrow”) diagram was developed including the most relevant systems variables (i.e., nodes), as
well as the links between them (i.e., directed arcs), allowing the identification of the main cause–effect
pathways between input variables, represented by climatic changes and land use, and output variables,
represented by the increase in nutrient loadings (i.e., NO3

−, NH4
+, PO4

3−) discharged by the Zero
river basin into the Venice lagoon. Successively, the BN was trained, assigning states, prior information
and conditional probabilities to all nodes of the network, translating the conceptual model into an
operative probabilistic form.

The training was performed using a heterogeneous set of information for the period 2004–2013
(Tables A1 and A2, Appendix A) at seasonal time steps including historical observations, hydrological
model simulations (i.e., SWAT), and expert opinions. Specifically, for nodes associated with climatic
variables (i.e., temperature, precipitation, evapotranspiration), probabilities were learned directly from
the frequency of observations of weather monitoring stations available in the case study (Figure 1).
Nodes related with point pollution sources were trained using the nutrient loadings measured in
the outflow from three different WWTPs (i.e., Morgano, Zero-Branco, Castelfranco Veneto) (Figure 1)
located in the basin, summing up their respective contribution.

Probability distributions of hydrological variables (i.e., runoff, river flow, nutrients loadings,
N and P in the runoff) were instead calculated based on the frequencies of results of hydrological
simulations performed with the Soil and Water Assessment Tool (SWAT) [39]. Finally, nodes describing
agronomic practices (i.e., water needs, irrigation, P and N fertilizer application) were trained through
expert elicitation or by applying empirical equations due to the lack of quantitative information and
experiences in the case study. An exhaustive description of assumptions and information used to train
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the BN can be found in Reference [36]. Figure 3 shows the configuration of the BN for the Zero river
basin once states, prior information, and conditional probabilities of each node were parametrized.
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2.2.2. BN Evaluation

The developed BN was evaluated with the main aim to assess if it was able to correctly represent
nutrient loadings and dynamics in the case study. Specifically, two main forms of model evaluation
were performed, namely, model predictive accuracy and sensitivity analysis [36].

Predictive Accuracy

Predictive accuracy assessment was performed by comparing BN simulations with observations
from water quality monitoring stations available for the case study. Specifically, observed nutrient
loadings were calculated, multiplying the observed water flow (Q) and nutrient concentrations
measured at two different water quality monitoring stations located in the case study (Figure 1)
managed by ARPAV Servizio Acque Interne and the former MAV (Magistrato alle Acque di Venezia).
The manual station 122 (45◦33’ N and longitude 12◦15’ E), provided seasonal data, and the automatic
station B2q (45◦34’ N and longitude 12◦17’ E) provided daily data. Both stations were specifically
identified and they are routinely used for (i) the assessment of the good environmental status of the
Zero river according to the requirements of the Water Framework Directive (WFD); (ii) the assessment
of the compliance with the maximum admissible load of nutrients discharged into the Venice lagoon
from the drainage basin fixed by the national competent law (DM 09/02/1999).

For this reason, the two stations were considered particularly representative to measure
the condition of the Zero river and its basin, thus providing reliable data for the evaluation of
BN performance.

Specifically, loadings of nitrogen nitrate (NO3
−) and ammonium (NH4

+) were obtained using
data from station B2q, while loadings of phosphate (PO4

3−) were calculated using data from station
122. A consistent set of observations was available only from year 2007 to 2012 and, therefore, the
evaluation was conducted only for this period.

For each output node (i.e., NO3
−, NH4

+, and PO4
3− loadings), correctly classified instances (CCIs)

were assessed as the percentage of cases correctly predicted divided by the total number of cases,
providing the measure of how many instances the model predicted correctly when tested against
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known case outcomes (i.e., observations). Error rates, used as evaluation criteria, were then computed
and depicted in confusion matrices as suggested in Reference [40].

Sensitivity Analysis

Another form of evaluating the developed model entails sensitivity analysis, which allows testing
the sensitivity of model outcomes to variations of model parameters [41]. Sensitivity analysis in
BNs can measure the sensitivity of outcome probabilities to changes in input nodes or other model
parameters, such as changes in node type of state and their coarseness; therefore, it useful to detect the
most relevant variables within the network. Sensitivity analysis was performed using two types of
measures: entropy and Shannon’s measure of mutual information [42].

The entropy (H(x)) of the probability distribution of a variable (x) expresses the measure of the
associated uncertainty of the random process with a particular probability distribution (P(x)) [42]; it is
calculated using the following function:

H(x) = −
∑

P(x) log P(x). (1)

Reducing entropy by collecting information, in addition to the current knowledge about the
variable x, is interpreted as reducing the uncertainty about the true state of x. Accordingly, the entropy
function enables an assessment of the level of uncertainty/certainty about the state of the output node
and of the additional information required to specify a particular alternative.

Entropy can be seen as a score of a variable richness (i.e., how much information is within the
data for that particular variable) [43,44], and it was used to rank nodes from the most uncertain to the
least uncertain, where the most uncertain variables are the least informative within the network.

In addition, the sensitivity of one node to multiple other nodes was evaluated using Shannon’s
measure of mutual information (MI) as follows:

MI (Y,X) = H(Y) − H(Y|X). (2)

MI enables assessing the effect of collecting information about one variable (Y) on reducing the
total uncertainty about variable X. When MI is equal to zero, the condition of one node does not affect
the state of the other and, therefore, the nodes can be defined as mutually independent [43].

2.2.3. Scenarios and Uncertainty Analysis

The model developed as above was used in this study to perform scenario analysis, allowing
the assessment of the relative change in outcome probabilities of nutrients under different climate
change conditions (Section 2.1), thus obtaining an ensemble of multiple impact scenarios. For each
GCM–RCM combination (Table 1) and climate change scenario (i.e., 2041–2070 and 2071–2100 under
two different representative concentration pathways, RCP4.5 and RCP8.5), the probability distributions
of temperature and precipitation were calculated based on the frequency in the respective model
simulations (Section 2.1). The BN was then run, alternatively fixing the evidence of being in a particular
scenario by assigning 100% probability to the related state in the “climate change scenario node”, letting
the information propagate through nodes linked by conditional probability (Figure 3) and calculating
the change in the posteriori probabilities of output variables (i.e., NO3

−, NH4
+, PO4

3− loadings).
Moreover, uncertainties in projected loadings due to the application of the ensemble of 10

GCM–RCM couples was performed by comparing outputs obtained with each of the different
GCM–RCM combinations across scenarios and seasons. Specifically, the changes in the probability
of each loading class in the mid-term (i.e., 2041–2070) and long-term (i.e., 2071–2100) simulated
periods were compared against the respective baseline scenario (i.e., 1983–2012) for each combination
of GCM–RCM.
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3. Results

3.1. BN Evaluation

3.1.1. Accuracy

As described above, a data-based evaluation was performed to assess the ability of the model
to correctly predict instances in an independent dataset. Accordingly, BN predictions were tested
against observations from water quality monitoring stations available from ARPAV for the case study
(Figure 1), generating confusion matrices representing the percentage of CCIs and, consequently, the
error rates (Figure 4). Observations were available only for 2007–2012 and, therefore, the evaluation
was conducted only for this period.
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Figure 4. Confusion matrices for output nodes of the BN model tested against the observed dataset (2007–
2012). The cells lying on the leading diagonal of the matrices represent the correctly predicted instances, 
while those off the diagonal are incorrect predictions. Adapted from Sperotto et al., 2019 [35]. 
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Figure 4. Confusion matrices for output nodes of the BN model tested against the observed dataset
(2007–2012). The cells lying on the leading diagonal of the matrices represent the correctly predicted
instances, while those off the diagonal are incorrect predictions. Adapted from Sperotto et al., 2019 [35].

In addition, the expected values of the probability distributions of nutrient loadings (i.e., NO3
−,

NH4
+, PO4

3−) for observed data were compared with those obtained through the Bayesian network
outputs (Figure 5).

Overall, the BN was able to reproduce the observed nutrient dynamics with loadings closely
replicated for most seasons. The evaluation produced very good results for phosphate (PO4

3−), while,
for ammonium (NH4

+) and nitrate (NO3
−), the correlation between observed and predicted nutrient

loadings was slightly worse. Indeed, overall, the BN was able to correctly classify 87.50% of instances
for PO4

3−, 63.64% for NH4
+, and the 66.67% for NO3

−, when tested against the observed dataset
(Figure 4). The BN overpredicted the decrease in ammonium and nitrate loadings between spring
and summer, while it underestimated the autumn loadings (Figure 5) for all three nutrient species
(i.e., PO4

3−, NH4
+, NO3

−) and the winter loadings of NH4
+ and NO3

−.
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Figure 2. Expected values of the probability distributions of nutrient loadings (NO3−, NH4+, P043−) from 
observed data (black) and Bayesian network outputs (red) for the period 2007–2012. 
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(NH4+) and nitrate (NO3−), the correlation between observed and predicted nutrient loadings was slightly 
worse. Indeed, overall, the BN was able to correctly classify 87.50% of instances for PO43−, 63.64% for NH4+, 
and the 66.67% for NO3−, when tested against the observed dataset (Error! Reference source not found.). 
The BN overpredicted the decrease in ammonium and nitrate loadings between spring and summer, while 
it underestimated the autumn loadings (Error! Reference source not found.) for all three nutrient species 
(i.e., PO43−, NH4+, NO3−) and the winter loadings of NH4+ and NO3−.

Figure 5. Expected values of the probability distributions of nutrient loadings (NO3
−, NH4

+, P04
3−)

from observed data (black) and Bayesian network outputs (red) for the period 2007–2012.

3.1.2. Sensitivity Analysis

Entropy was calculated for each node of the network (Table 2), allowing us to rank all variables from
the most uncertain to the least uncertain, where the most uncertain variables were those characterized
by high entropy and were, thus, the least informative probability distributions.

Results showed that the variable characterized by the least informative probability distribution
and a particularly high value of entropy was “effective rainfall” (3.26); however, variables characterized
by intermediate values of uncertainty were nodes directly influencing “loading NO3

−”, including
“N point sources” (1.36), “river flow” (1.34), “N runoff”(1.33), “N diffuse sources” (1.31), and “total
N Loading” (1.31). These uncertainties propagated through the network and, as a result, “loading
NO3

−” was the output node characterized by the highest value of entropy (1.24), while, for others, the
uncertainty was moderate (0.98 and 0.97).
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Table 2. Node ranking according to entropy score.

Variable Entropy H(x)

Effective rainfall 3.26
Season 1.39

Temperature 1.38
N point sources 1.36

River flow 1.34
N runoff 1.33

N diffuse sources 1.33
Total N Loading 1.31

Evapotranspiration 1.28
Loading NO3

− 1.24
Irrigation 1.24

P point sources 1.17
Runoff 1.12

Precipitation 1.06
N fertilizer application 1.04

Loading NH4
+ 0.98

Loading PO4
3− 0.97

P runoff 0.96
P diffuse sources 0.96

Water needs 0.56
P fertilizer application 0.56

Table 3 provides a ranking of the top five most influential variables on output nodes based on the
mutual information analysis. The output nodes “NO3

− loadings” and “NH4
+ loadings” were both

highly sensitive to “river flow” (MI = 0.54 and 0.37, respectively). “PO4
3− loadings” resulted highly

sensitive to “total P Loading” (M = 0.53), “P runoff” (M = 0.39), and “P diffuse sources” (M = 0.39).

Table 3. Summary of the mutual information (MI) analysis presenting the top five most influential
variables on output nodes.

Sensitive Node Node Affecting Sensitivity MI

Loading NO3
− River flow 0.54

Total N loading 0.30
N diffuse sources 0.23

N runoff 0.23
Evapotranspiration 0.23

Loading NH4
+ River flow 0.37

Loading NO3
− 0.18

Total N loading 0.17
Runoff 0.15

N diffuse sources 0.11

Loading PO4
3− Total P loading 0.53

P runoff 0.39
P diffuse sources 0.39

River flow 0.34
Runoff 0.31

In general, hydrological variables, which in turn were strongly influenced by climatic ones
(i.e., precipitation, temperature), were those most influential on other network variables. By contrast,
variables related to agronomic practices and land use had a mild effect (MI < 0.1) on other variables
with the exception of “N fertilizer application”, which moderately affected “NO3

− loadings” (MI = 0.22).
In particular, point sources had negligible effects on all output nodes (MI < 0.04) with respect to
diffuse sources.
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3.2. Climate Change Scenarios for the Zero River Basin

Different climate change scenarios were developed for the Zero river basin case study by
extrapolating the mean temperature (◦C) and the cumulative precipitation (mm) calculated on a
monthly basis, based on the outputs of the selected GCM–RCMs (Table 1). Specifically, for each
GCM–RCM, five different 30-year scenarios were developed for a control period (i.e., 1983–2012),
a mid-term period (i.e., 2041–2070), and a long-term period (i.e., 2071–2100) under two different
representative concentration pathways (i.e., RCP4.5 and RCP8.5).

Figure 6 shows the variability of temperature for different time periods and RCPs across different
climate change scenarios used to inform the BN. It is possible to observe that the temperature variability
across the future projection was quite narrow.  
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Figure 6. Variability in mean seasonal temperature within the global climate model (GCM)–regional
climate model (RCM) ensembles for the Zero river basin.

All climate scenarios agreed on projected temperature during the control period (i.e., 1983–2012).
Greater variability, instead, was depicted for RCP8.5 where one model in particular
(i.e., MPI-ESM-LR/RCA4, Model 5) of the ensemble projected lower temperatures in spring and
higher temperatures in autumn. In general, all models predicted an increase in mean seasonal
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temperature with respect to baseline across the different considered scenarios (Figure A3, Appendix A).
MPI-ESM-LR/RCA4 (Model 5) represented the only exception, predicting a decrease in temperature in
spring for RCP8.5 (Figure A3, Appendix A). A greater increase in temperature with respect to baseline
was predicted by RCP8.5 for the period 2071–2100.

By contrast, precipitation featured marked variability in all scenarios, as shown in Figure 7. All 10
GCM/RCMs of the ensemble generated quite similar statistics for the control period (i.e., 1983–2012)
with a narrow range between maximum and minimum values for all seasons. By contrast, the
variability increased consistently along the century, especially for RCP8.5. Greater variability can
be seen in summer, autumn, and winter, where the range between maximum and minimum values
projected by different GCM/RCMs became quite wide. However, while for winter and autumn most
models agreed on an increase in the cumulative precipitation (Figure A4, Appendix A), for spring and
summer, models gave the opposite results, making it impossible to agree on the direction of change
(i.e., decrease or increase).
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Figure 7. Variability in cumulative seasonal precipitation within the GCM/RCM ensembles for the Zero river 
basin. 
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The BN model was run, alternatively fixing the probability distribution of precipitation and 
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Figure 7. Variability in cumulative seasonal precipitation within the GCM/RCM ensembles for the Zero
river basin.
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3.3. Hydrological Responses to Climate Change

The BN model was run, alternatively fixing the probability distribution of precipitation and
temperature according to the medium- and long-term projections (i.e., 2041–2070, 2071–2100) provided
by the different available combinations of GCM–RCMs under two different representative concentration
pathways (i.e., RCP4.5 and RCP8.5). Accordingly, the network was used to develop multiple impact
scenarios linking the effect of future climate change projections on nutrient loadings. The developed
scenarios represent the probability of different classes of nutrient loadings (i.e., low, medium, high,
very high) calculated by the BN model as a result of changes in the probability distribution of input
variables (i.e., temperature and precipitation).

Figure 8 gives a concise overview of the probabilistic results obtained through the BN for each
season and scenario across the different GCM–RCM models considered (Table 1). Specifically, each
triangular portion of the graph represents one of the different climate change scenarios considered
(i.e., RCP4.5 2041–2070, RCP8.5 2041–2070, RCP4.5 2071–2100, RCP8.5 2071–2100), while, inside them,
each slice represents the results of different GCM–RCMs arranged in a clockwise direction (i.e., from
1–10, in Table 1). Each slice, in turn, is divided into the four different classes of loadings with an
amplitude corresponding to the value of the associate probability (i.e., from 0–100).

With regard to NO3
− (Figure 8a), the impact scenarios reported that higher loadings will take place

in autumn and winter, while the lowest loadings are predicted for summer. Across different models, in
fact, in autumn, higher probabilities were associated with high (i.e., 48,615-69,182 kg/season, orange)
and very high loading classes (i.e., >69,182 kg/season, red). The highest loading was predicted by the
MPI-ESM-LR/RCA4 (Model 5) under the RCP8.5 2071–2100 scenario with 70% probability associated
with the high loading class (Figure A5, Appendix A).

In summer, by contrast, a higher probability was associated with low (i.e., 0–28,047 kg/season,
green) loading classes, with the CMCC-CM/COSMO-CLM (Model 7) predicting the highest probability
(77%) under the long-term RCP8.5 scenario (Figure A5, Appendix A).

For ammonium (i.e., NH4
+), results across different models predicted high probabilities of

low loading during summer and spring (Figure 8b). The lowest loading was predicted by the
CMCC-CM/COSMO-CLM (Model 7) under RCP8.5 2041–2070 with a 97% probability of the low loading
class (i.e., 0–3224 kg/season, green) (Figure A6, Appendix A). In autumn, the probability of low loading
states decreased gradually across the scenarios, followed by an increase in the probability of medium
(i.e., 3224–5009 kg/season, yellow) and very high loadings (i.e., >6794 kg/season, red), respectively
reaching 38% and 24% under RCP8.5 2071–2100 in the simulation with IPSL-CM5A-MR/RCA4 (Model 2).

Results for PO4
3− showed a marked seasonality with high autumn loads and low loads in

spring and summer across different scenarios (Figure 8c). In summer, in fact, higher probabilities
were associated with the low loading state (i.e., 0–1978 kg/season, green). Specifically, the lowest
loadings were predicted by the CMCC-CM/COSMO-CLM (Model 7) under the medium- and long-term
RCP8.5 scenarios with a probability of 98% (Figure A5, Appendix A). High loadings were instead
predicted for autumn with probabilities of high (i.e., 2954–3929 kg/season, orange) and very high
classes (i.e., >3929 kg/season, red) increasing across scenarios. The IPSL-CM5A-MR/RCA4 (Model 2),
which described the most extreme loadings for the season, predicted probabilities of 34% and 16% of
being in very high and high classes under the long-term RCP8.5 scenario (Figure A5, Appendix A).
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Uncertainty Analysis

The variability of results was also analyzed by comparing outputs obtained with each of the 10
GCM–RCM combinations across scenarios and seasons. To make the results comparable, the change
in the probability of each loading class with respect to the baseline scenario (i.e., 1983–2012) was
calculated for each combination of GCM–RCM.

Accordingly, in Figure 9, which provides an example for PO4
3− loadings, negative values describe

a decrease in probability of specific loading classes (i.e., colored bars) with respect to baseline, while
positive values indicate an increase. Orthophosphate (i.e., PO4

3−) loadings showed clear variability
during spring and summer. During these periods, in fact, half of considered models predicted an
increase in loading, while others predicted a strong decrease. Less marked variability, however,
was depicted under RCP8.5 2071–2100, where most models agreed on a reduction in loadings in
the summer–spring period and an increase in probabilities associated with the low class. A good
agreement among models, instead, can be depicted in autumn especially under RCP8.5 2071–2100,
where most models predicted an increase in probabilities of very high and high loadings. Despite the
good agreement on the increase in loading, a moderate variability in the magnitude of the change with
respect to baseline remained. For RCP8.5 2041–2070, for instance, the maximum variation was related to
MPI-ESM-LR/RCA4 (Model 5) (i.e., +20%), while EC-EARTH/RCA4 (Model 4) predicted an increase of
+1.5%. In RCP8.5 2071–2100, the increase in probability ranged from +28% for IPSL-CM5A-MR/RCA4
(Model 2) to 2% for EC-EARTH/RCA4 and EC-EARTH/HIRHAM5 (Models 4 and 9). Also, in winter,
a general increase in loading was predicted with an increase in probabilities associated with higher
classes and a consequent decrease in probabilities of lower classes. The maximum increase (i.e., +10%)
was depicted with EC-EARTH/RACMO22E (Model 10) under RCP4.5 2071–2100.

Results for NO3
− and NH4

+ loadings presented a similar tendency (Figure A6, Appendix A).
The best agreement among models resulted for the autumn season, where an increase in loading was
predicted across all scenarios and for all GCM–RCM combinations. Specifically, for NO3

−, an increase
in probability of the high loading class was depicted, while, for NH4

+, the increase was associated
with the highest loading class (i.e., very high). Also, for winter, the variability of results was quite low,
with most models agreeing on an increase in probability of high and very high classes across different
scenarios. By contrast, two models (i.e., CNRM-CM5/CCLM and CMCC-CM/COSMO-CLM (Model 6
and 7)) predicted a decrease in loadings for both NO3

− and NH4
+. Large variability resulted for both

summer and spring seasons; hence, it was not possible to identify a clear direction of change.
Overall, the results for different nutrient species highlighted that, in general, the best agreement

between models resulted for autumn and winter, especially for RCP8.5 scenarios. In summer
and spring, instead, variability was high and, thus, there was less confidence in the changes
projected. This seasonal pattern of variability to some extent reflects that of precipitation (Section 3.1,
Figures 6 and 7), suggesting that this variable could play a major role in the model in determining both
the direction and the magnitude of changes in nutrient loadings. Comparing the results (Figures 9,
A3 and A4, Appendix A) with the changes in precipitation across the different models (Figure 9 and
Tables A1 and A2, Appendix A), a strong correlation between the increase in precipitation and increase
in the probability of high loading can be found.

In summer and spring, in fact, those models which predicted the highest increase in probability of
high loadings were also those showing a positive variation (i.e., increase) in precipitation with respect
to baseline.
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CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.EC-EARTH/RACMO22E.

Figure 9. Variations in the probability of each PO4
3− loading class with respect to baseline (i.e., 1983–2012) under different scenarios and GCM–RCM combinations.

Note: GCM–RCM combinations are numbered as follows: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4;
5. MPI-ESM-LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.EC-EARTH/RACMO22E.
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In this context, it is interesting to notice how, in spring (Figures A6 and A7, Appendix A) some
models (e.g., Models 8–10) contemporarily predicted an increase in probability of the two most extreme
classes (i.e., low and very high). The same models were also those predicting the highest increase in
precipitation with respect to baseline (Figure A7, Appendix A), suggesting that the unexpected high
probabilities of very high loading classes could be related to the projections of extreme precipitation
events in the considered scenarios.

4. Discussion and Conclusions

A BN was used to develop an ensemble of impact scenarios to investigate the potential mid- and
long-term impacts of climate change on the nutrient loadings in the waters of the Zero river basin in
northern Italy, one of the main tributaries of the Venice lagoon. Moreover, the uncertainty related to the
implementation of 10 GCM–RCM combinations forced with RCP4.5 and RCP8.5 emission scenarios
was analyzed.

The BN used was implemented by building on a model previously developed and tested in a
case study [36], integrating a heterogeneous set of data coming from multiple information sources
(i.e., observations, hydrological model simulations, climate change projections). The BN was evaluated
through a cross comparison between predicted and observed loadings, providing satisfactory results on
a seasonal time step; therefore, it is considered suitable for projecting future climate change scenarios.

According to the analysis of future climate for the Zero river basin, all projections agreed on an
increase in the mean seasonal temperature with respect to baseline for both RCPs.

By contrast, precipitation featured marked variability across scenarios; while for winter and
autumn most models agreed on an increase in the cumulative precipitation, for spring and summer, some
models gave opposite results, making it impossible to agree on the direction of change (i.e., decrease or
increase). The variability increased consistently along the century, especially for RCP8.5.

The impact scenarios developed showed that seasonal changes in precipitation and temperature
are likely to affect nutrient loadings and, consequently, the water quality of the Zero river. Results
suggest with good confidence that, across the considered scenarios, nutrient loadings will increase,
especially during the autumn and winter seasons. Most models, in fact, agreed in projecting a high
probability of an increase in nutrient loadings with respect to the current conditions. In summer
and spring, instead, the large variability between different GCM–RCM results made it impossible to
identify a clear direction of change.

The results were consistent with those obtained by Reference [45] applying the SWAT model for
simulating the effect of climate change on hydrological and ecological parameters in the same case
study. However, while conclusions for autumn are similar to those reached by other authors [26,46,47]
for similar catchments in Europe and the United States (US), for spring and summer, the results differ.
Xu et al., in particular, found that, in the Lake Erie region, spring loading of P will increase under
RCP8.5 scenarios driven by an anticipation of snow-melting processes. Such discrepancies can be
attributed to local and regional climatic characteristics which should, therefore, be taken into account
carefully, as they can have a significant role in governing nutrient transport dynamics.

In the Zero river basin, nutrient loadings were found to be particularly sensitive to hydrological
variables (i.e., river flow, runoff, N and P in runoff) directly correlated with climate variables
(i.e., precipitation, temperature) and diffuse pollution, especially considering that most dramatic
changes (e.g., increases in precipitation and runoff) will happen during seasons characterized by
intensive agricultural activities (e.g., manure application, irrigation).

In spring and summer, in fact, NO3
− and NH4

+ are commonly applied as fertilizers. In dry
and warm conditions, NH4

+ is readily adsorbed to clay mineral and is, therefore, scarcely prone to
movements; however, it becomes easily available in autumn, driven by runoff and extreme precipitation
events. NO3

−, on the other hand, is highly soluble and, thus, suitable to be transported by hydrological
flow. In autumn, the elevated temperature and wet conditions projected will enhance the nitrification
process, making NO3

− highly available. This, combined with the seasonal increase in the river flow,
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could explain the great increase in NO3
− loading during autumn. In the soil, the soluble form of

phosphorus (PO4
3−) is mobile, and it can be transported by diffusion or by surface water flow. At

elevated temperatures and in dry conditions, however, PO4
3− is easily adsorbed to clay particles or

immobilized by organic matter accumulating in the upper soil layer. In autumn, an increase in runoff,
following the enrichment of the topsoil of phosphorus occurring during the summer, increases PO4

3−

transport and, thus, its loading in the river. In addition, the projected increase of dry prolonged
conditions in summer might speed up soil erosion phenomena and, consequently, enhance the runoff

of adsorbed mineral forms of phosphorus through the basin, leading to peaks of PO4
3− loading in

autumn as soon as the drought breaks.
At the same time, the large uncertainty in spring and summer loadings makes it difficult to predict

the possible implications for the trophic state of the Venice lagoon. A significant increase in spring and
summer nutrients delivered by the Zero river, during the season of growth for most phytoplankton
species, would significantly increase the risk of harmful algae blooms and eutrophication phenomena.

The BN was revealed to be a suitable tool to characterize and communicate uncertainty on the
effect of climate change and land use on water quality attributes in a policy-relevant manner; however,
it is important to also acknowledge some limitations. Some uncertainty exists mainly due to the
availability and quality of input data, especially regarding agronomic practices. Due to data constraints,
in fact, fertilizer application and irrigation were considered uniform across the whole catchment, while
they could vary considerably, both spatially and temporally. Furthermore, due to scarce information
regarding point pollution sources, nutrient (N and P) loading was considered while neglecting to take
into account the type of WWTPs and how they work in cases with a large amount of inflow water, for
instance, during extreme precipitation events.

Improving the accuracy of input data throughout the catchment and involving a higher number
of experts in the model development would improve its calibration, validation, and results.

Finally, changes in land use (i.e., agricultural land extension, crop typology distribution) and
agricultural management practices (i.e., amount of fertilizer application), which were kept constant
over future scenarios in this BN version, should be accounted for in future model improvements to
provide a realistic picture of future risks threatening water quality sustainability. Accordingly, further
improvements of the proposed approach will consider the implementation of a dynamic version of
the BN [48] to better handle temporal dynamics over future scenarios, while also integrating land-use
change projections.

Overall, the results obtained from this study show that the selection of climate change information to
feed impact studies should be considered carefully as it strongly affects the outcome and the conclusions
of the assessment. Studies based on only one GCM–RCM combination should be interpreted with
caution, as results are highly dependent on the assumptions of the selected combination. Adaptation
and management decisions are taken based on this information with the consequence that societies
may underprepare for real risks affecting water systems, increasing the likelihood of severe impacts, or,
by contrast, they may overreact, wasting resources and efforts targeting irrelevant threats.

Accordingly, an adaptive water resource planning method should be based on ensembles and
multi-model probabilistic approaches rather than on an individual scenario and a single-value projection
for the future. Through the identification of worst- or best-case scenarios, it is possible to bound the
spectrum of plausible climate change impacts into an uncertainty space, inside which a set of optimal
adaptation strategies can be defined and tested for the sustainable and climate-proof management of
the water system.
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Appendix A

Table A1. List of input data used for the implementation of the BN in the Zero river basin.

Data Type Description Time Scale Resolution Source

Observations

Land cover
map

� Land-use map of the
Veneto region 2006 1:10,000

Regione del Veneto
Infrastruttura dati territoriali
(http://idt.regione.veneto.it/

app/metacatalog/)

Climatic data

� Daily precipitation
� Maximum/minimum

daily temperature
� Daily evapotranspiration

2004–2013

3 stations (i.e.,
Castelfranco, Veneto,

Zero-Branco, Mogliano
Veneto) (Figure 1)

ARPAV Servizio
Meteorologico

Water quantity
and quality

data

� Observed daily
river discharge

� Observed nutrient (NO3
−,

NH4
+, PO4

3−)
concentrations in the lagoon

2007–2012

2 stations (i.e., manual
station (Code 122),

automatic station (Code:
B2q) (Figure 1)

ARPAV Servizio Acque
Interne

MAV (Magistrato Acque
Venezia)

Point-source
pollution

� Monthly N and P loadings
from WWTP and
industrial discharges 2004–2013

3 stations (i.e., Morgano,
Zero-Branco,

Castelfranco Veneto)
(Figure 1)

ARPAV Servizio Acque
Interne

Hydrological simulations

Water quantity
and quality

data

� Simulated runoff

� Simulated N and P load in
the runoff

2004–2013 River basin

SWAT (Soil Water
Assessment Tool)
simulations [30]

� Simulated river discharge
Simulated nutrient loadings
(NO3

−, NH4
+, PO4

3−) in
the lagoon

2004–2013 1 station (i.e., manual
station (Code 122)

http://idt.regione.veneto.it/app/metacatalog/
http://idt.regione.veneto.it/app/metacatalog/
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Table A2. Overview of nodes and states in the Bayesian network model for the Zero river basin.

Node Description Type States Parametrization Method

Season Alternative seasons Labeled

Winter

Expert judgementSpring

Summer

Autumn

Climate change scenario Alternative climate change
scenarios

Labeled

Baseline 1983–2012

CMCC-CM/COSMO-CLM
simulations

RCP 4.5 2041–2070

RCP 4.5 2071–2100

RCP 8.5 2041–2070

RCP 8.5 2071–2100

Agricultural land scenario
Extension of land (ha) occupied
by agricultural activities under

different scenarios

Labeled
Actual 2004–2013; Observations, LUISA

simulationsFuture 2050

Temperature Seasonal average temperature
(◦C) Numeric interval

0–8.37

Observations
8.37–13.79

13.79–19.21

>19.21

Precipitation Seasonal cumulative
precipitation (mm) Numeric interval

0–201.50;

Observations
201.50–328.73

328.73–455.96

>455.96

Potential Evapotranspiration Seasonal cumulative potential
evapotranspiration (mm) Numeric interval

0–133.85

Observations
133.85–228.3

228.3–322.75

>322.75
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Table A2. Cont.

Node Description Type States Parametrization Method

Effective rainfall
Seasonal cumulative effective
rainfall reaching the soil (mm) Numeric interval

0–64.13

SWAT simulations
64.13–122.95

122.95–181.77

>181.77

Crop water needs Seasonal water demand for
different crop typology (mm) Numeric interval

0–109.77

Equation [36]109.77–213.64

213.64–317.50

>317.50

Irrigation Seasonal amount of water
applied as irrigation Numeric interval

<−55.29

Equation [36]−55.29–101.28

101.28–257.86

>257.86

N fertilizer application
Nitrogen fertilizer applied for

each season according to
different crop typology (kg/ha)

Numeric interval

0–45.74

Expert judgment45.74–87.52

87.52–129.30

>129.30

P fertilizer application
Phosphorus fertilizer applied
for each season according to

different crop typology (kg/ha)
Numeric interval

0–25.41

Expert judgment25.41–50.83

50.83–76.25

>76.25

N diffuse sources
Seasonal amount of nitrogen

coming from agricultural
practices (kg)

Numeric interval

0–7388.86

Equation [36]7388.86–13,959.99

13,959.99–20,531.11

>20,531.11
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Table A2. Cont.

Node Description Type States Parametrization Method

P diffuse sources
Seasonal amount of phosphorus

coming from agricultural
practices (kg)

Numeric interval

0–5169.28

Equation [36]5169.28–10,221.75

10,221.75–15,274.21

>15,274.21

N point sources

Seasonal amount of nitrogen
coming from point sources (i.e.,

wastewater treatment plants
(WWTPs) and industrial

discharges) (kg)

Numeric interval

0–9382.64

Observations
9382.64–10,389.82

10,389.82–11,396.99

>11,396.99

P point sources
Seasonal amount of phosphorus
coming from point sources (i.e.,

WWTPs and industrial
discharges) (kg)

Numeric interval

0–1143.64

Observations
1143.64–1478.99

1478.99–1814.35

>1814.35

River discharge Seasonal average river
discharge (L/s) Numeric interval

0–1458.96

SWAT simulations
1458.96–2360.53

2360.535–3262.102

>3262.10

Runoff
Seasonal cumulative runoff

(mm) Numeric interval

0–49.90

SWAT simulations
49.90–90.15

90.15–130.40

>130.40

N in runoff
Seasonal amount of nitrogen
loaded in the runoff (kg/ha) Numeric interval

0–0.63

SWAT simulations
0.63–1.19

1.19–1.75

>1.75
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Table A2. Cont.

Node Description Type States Parametrization Method

P in runoff
Seasonal amount of phosphorus

loaded in the runoff (kg/ha) Numeric interval

0–0.44

SWAT simulations
0.44–0.87

0.87–1.30

>1.30

Total N loading Seasonal nitrogen load in the
river (kg) Numeric interval

0–17,031.20

Equation [36]17,031.20–24,401.92

24,401.92–31,772.64

> 31,772.64

Total P loading Seasonal phosphorus load in the
river (kg) Numeric interval

0–5405.76

Equation [36]5405.76–9710.91

9710.91–14,016.07

>14,016.07

Loading NO3
− lagoon Seasonal loading of NO3

−

reaching the lagoon (kg) Numeric interval

0–28,047.50

SWAT simulations
28,047.50–48,615.00

48,615.00–69,182.50

>69,182.50

Loading NH4
+ lagoon Seasonal loading of NH4

+

reaching the lagoon (kg) Numeric interval

0–3224.52

SWAT simulations3224.52–5009.3

5009.3–6794.17

>6794.17

Loading PO4
3− lagoon (kg) Seasonal loading of PO4

3−

reaching the lagoon (kg) Numeric interval

0–1978.90

SWAT simulations
1978.90–2954.00

2954.00–3929.10

>3929.10
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Figure A1. Variation in mean seasonal temperature with respect to baseline (i.e., 1983–2012) within GCM–RCM ensemble.
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Figure 2. Variation in cumulative seasonal precipitation with respect to baseline (i.e., 1983–2012) within GCM–RCM ensemble. 
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Figure A2. Variation in cumulative seasonal precipitation with respect to baseline (i.e., 1983–2012) within GCM–RCM ensemble.
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Figure 3. Probability of different classes of NO3− loadings associated with different seasons and scenarios across the GCM–RCM combinations considered. 

 

Note: GCM–RCM combinations are numbered as follows: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4; 5. MPI-ESM-
LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10. EC-EARTH/RACMO22E.
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Figure A3. Probability of different classes of NO3
− loadings associated with different seasons and scenarios across the GCM–RCM combinations considered.
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Figure 4. Probability of different classes of NH4+ loadings associated with different seasons and scenarios across the GCM–RCM combinations considered. 

 

Note: GCM–RCM combinations are numbered as follows: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4; 5. MPI-ESM-
LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10. EC-EARTH/RACMO22E.
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0-3224 0.59 0.59 0.59 0.59 0.57 0.58 0.56 0.59 0.57 0.59 0.59 0.59 0.57 0.59 0.56 0.58 0.58 0.59 0.54 0.59 0.59 0.55 0.55 0.59 0.57 0.59 0.56 0.58 0.53 0.57 0.58 0.58 0.56 0.57 0.58 0.59 0.59 0.58 0.55 0.59 0.59 0.58 0.53 0.57 0.56 0.58 0.51 0.58 0.52 0.56
3224-5009 0.28 0.28 0.29 0.28 0.29 0.29 0.30 0.28 0.29 0.28 0.28 0.29 0.29 0.29 0.30 0.29 0.29 0.28 0.31 0.28 0.28 0.30 0.31 0.29 0.30 0.28 0.30 0.29 0.32 0.29 0.29 0.29 0.30 0.29 0.29 0.28 0.28 0.29 0.30 0.28 0.28 0.29 0.32 0.30 0.30 0.29 0.33 0.29 0.32 0.30
5009-6794 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06
>6794 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.08 0.08 0.07 0.08 0.07 0.08 0.07 0.09 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.09 0.08 0.08 0.07 0.10 0.07 0.09 0.08

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0-3224 0.59 0.60 0.59 0.59 0.60 0.60 0.60 0.60 0.60 0.59 0.61 0.61 0.61 0.60 0.61 0.61 0.63 0.60 0.60 0.61 0.60 0.61 0.59 0.60 0.61 0.60 0.64 0.61 0.58 0.61 0.60 0.60 0.61 0.60 0.60 0.61 0.62 0.61 0.60 0.60 0.63 0.63 0.63 0.62 0.60 0.64 0.65 0.63 0.61 0.62
3224-5009 0.31 0.31 0.29 0.32 0.31 0.30 0.31 0.31 0.31 0.31 0.31 0.29 0.28 0.31 0.30 0.30 0.29 0.30 0.30 0.30 0.31 0.29 0.30 0.31 0.31 0.30 0.28 0.29 0.31 0.30 0.31 0.30 0.29 0.31 0.31 0.29 0.29 0.29 0.29 0.30 0.29 0.28 0.28 0.30 0.31 0.28 0.28 0.28 0.30 0.29
5009-6794 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05
>6794 0.04 0.04 0.05 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.04 0.05 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.04 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.04 0.03 0.04 0.04 0.03 0.03 0.05 0.04 0.04 0.04 0.05 0.02 0.03 0.04 0.03 0.03 0.03 0.02 0.03 0.04 0.03

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0-3224 0.95 0.94 0.94 0.93 0.94 0.95 0.95 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.95 0.94 0.97 0.95 0.94 0.94 0.94 0.92 0.95 0.93 0.94 0.94 0.97 0.92 0.94 0.93 0.94 0.93 0.96 0.95 0.95 0.95 0.96 0.93 0.93 0.95 0.90 0.94 0.96 0.93 0.96 0.95 0.97 0.93 0.93 0.95
3224-5009 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.02 0.04 0.05 0.05 0.05 0.06 0.04 0.06 0.05 0.05 0.02 0.06 0.05 0.06 0.05 0.06 0.04 0.05 0.04 0.04 0.04 0.06 0.06 0.05 0.08 0.05 0.03 0.05 0.03 0.04 0.03 0.06 0.05 0.04
5009-6794 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00
>6794 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0-3224 0.49 0.51 0.51 0.51 0.46 0.50 0.52 0.52 0.48 0.49 0.47 0.44 0.47 0.45 0.37 0.35 0.39 0.45 0.49 0.49 0.39 0.46 0.43 0.42 0.49 0.41 0.37 0.49 0.43 0.45 0.45 0.45 0.43 0.46 0.34 0.39 0.34 0.47 0.41 0.43 0.44 0.32 0.40 0.54 0.46 0.40 0.36 0.43 0.43 0.38
3224-5009 0.32 0.32 0.32 0.32 0.35 0.32 0.32 0.32 0.33 0.34 0.35 0.35 0.33 0.35 0.37 0.39 0.37 0.34 0.34 0.34 0.37 0.34 0.35 0.35 0.33 0.36 0.38 0.33 0.36 0.35 0.35 0.35 0.35 0.35 0.37 0.37 0.38 0.34 0.36 0.36 0.35 0.38 0.36 0.35 0.33 0.36 0.37 0.35 0.36 0.37
5009-6794 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.06 0.06 0.07 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.07 0.06 0.06 0.07 0.07
>6794 0.13 0.11 0.11 0.11 0.12 0.12 0.09 0.11 0.13 0.11 0.11 0.15 0.13 0.13 0.20 0.19 0.17 0.15 0.10 0.11 0.18 0.14 0.15 0.17 0.12 0.17 0.18 0.12 0.15 0.13 0.13 0.14 0.15 0.12 0.24 0.17 0.22 0.13 0.16 0.13 0.14 0.24 0.17 0.12 0.15 0.16 0.20 0.15 0.14 0.18

Winter
1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100Classes

Spring
1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100Classes

Summer
1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100Classes

Autumn
1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100Classes

Note: GCM–RCM combinations are numbered as follows: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4;
5. MPI-ESM-LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.
EC-EARTH/RACMO22E.

Figure A4. Probability of different classes of NH4
+ loadings associated with different seasons and scenarios across the GCM–RCM combinations considered.
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Figure 5. Probability of different classes of PO43− loadings associated with different seasons and scenarios across the GCM–RCM combinations considered. 

 

Note: GCM–RCM combinations are numbered as follows: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4; 5. MPI-ESM-
LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10. EC-EARTH/RACMO22E. 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0-1978 0.65 0.65 0.64 0.65 0.62 0.64 0.61 0.65 0.62 0.65 0.65 0.64 0.62 0.64 0.60 0.63 0.63 0.65 0.58 0.65 0.63 0.59 0.59 0.64 0.62 0.65 0.60 0.63 0.56 0.46 0.63 0.63 0.61 0.63 0.63 0.65 0.65 0.63 0.60 0.65 0.65 0.63 0.56 0.61 0.61 0.64 0.53 0.64 0.56 0.61
1978-2954 0.25 0.25 0.25 0.25 0.26 0.25 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.27 0.25 0.25 0.25 0.28 0.25 0.26 0.27 0.26 0.25 0.26 0.25 0.27 0.26 0.27 0.27 0.26 0.26 0.25 0.26 0.26 0.25 0.25 0.25 0.27 0.25 0.25 0.26 0.27 0.26 0.25 0.26 0.30 0.26 0.26 0.24
2954-3929 0.08 0.08 0.08 0.08 0.09 0.08 0.10 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.10 0.08 0.08 0.08 0.11 0.08 0.08 0.11 0.09 0.08 0.09 0.08 0.10 0.08 0.11 0.15 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.10 0.08 0.08 0.08 0.12 0.09 0.09 0.08 0.14 0.08 0.10 0.08
>3929 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.06 0.11 0.03 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.06 0.03 0.05 0.03 0.04 0.03 0.08 0.07

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0-1978 0.75 0.75 0.72 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.77 0.75 0.75 0.74 0.76 0.78 0.78 0.75 0.75 0.75 0.76 0.74 0.72 0.75 0.76 0.74 0.79 0.73 0.71 0.75 0.76 0.72 0.72 0.75 0.77 0.74 0.75 0.72 0.74 0.73 0.78 0.77 0.75 0.76 0.76 0.78 0.79 0.76 0.73 0.75
1978-2954 0.17 0.17 0.16 0.18 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.15 0.17 0.16 0.17 0.16 0.16 0.16 0.17 0.17 0.16 0.16 0.17 0.17 0.17 0.15 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.27 0.16 0.17 0.16 0.16 0.16 0.17 0.17 0.16 0.15 0.16 0.17 0.16
2954-3929 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.06 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.06 0.05
>3929 0.03 0.03 0.07 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.02 0.05 0.06 0.04 0.03 0.02 0.03 0.04 0.04 0.03 0.03 0.05 0.06 0.04 0.03 0.04 0.03 0.05 0.05 0.04 0.02 0.05 0.06 0.03 0.02 0.06 0.05 0.06 0.06 0.05 0.02 0.03 0.05 0.03 0.02 0.02 0.02 0.04 0.04 0.04

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0-1978 0.95 0.94 0.94 0.93 0.95 0.95 0.96 0.94 0.95 0.94 0.95 0.95 0.94 0.94 0.95 0.95 0.98 0.95 0.94 0.94 0.94 0.92 0.96 0.93 0.94 0.94 0.98 0.92 0.94 0.93 0.94 0.93 0.96 0.95 0.95 0.96 0.96 0.93 0.93 0.95 0.90 0.94 0.96 0.93 0.97 0.95 0.97 0.93 0.93 0.95
1978-2954 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.01 0.03 0.03 0.03 0.03 0.04 0.02 0.04 0.03 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.05 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03
2954-3929 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01
>3929 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.03 0.01 0.02 0.01 0.02 0.00 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0-1978 0.51 0.53 0.54 0.53 0.45 0.51 0.53 0.54 0.51 0.50 0.48 0.47 0.50 0.48 0.36 0.31 0.40 0.48 0.52 0.52 0.38 0.50 0.45 0.43 0.55 0.41 0.34 0.55 0.44 0.46 0.47 0.48 0.45 0.49 0.30 0.39 0.33 0.52 0.40 0.44 0.46 0.29 0.40 0.47 0.44 0.41 0.33 0.42 0.44 0.36
1978-2954 0.24 0.25 0.25 0.25 0.28 0.25 0.26 0.24 0.24 0.27 0.29 0.24 0.24 0.28 0.24 0.27 0.26 0.24 0.28 0.27 0.25 0.24 0.25 0.24 0.25 0.25 0.28 0.25 0.27 0.27 0.28 0.25 0.25 0.27 0.21 0.26 0.23 0.25 0.27 0.29 0.26 0.22 0.26 0.28 0.23 0.27 0.24 0.25 0.26 0.26
2954-3929 0.13 0.14 0.13 0.14 0.18 0.14 0.14 0.13 0.13 0.16 0.17 0.14 0.13 0.15 0.16 0.21 0.16 0.13 0.15 0.14 0.17 0.11 0.14 0.14 0.10 0.15 0.20 0.10 0.16 0.15 0.15 0.14 0.14 0.15 0.15 0.17 0.16 0.12 0.17 0.18 0.15 0.16 0.17 0.16 0.14 0.17 0.17 0.15 0.16 0.18
>3929 0.12 0.09 0.08 0.09 0.10 0.11 0.07 0.08 0.12 0.07 0.05 0.15 0.13 0.09 0.24 0.21 0.18 0.15 0.05 0.07 0.20 0.15 0.16 0.19 0.10 0.18 0.19 0.10 0.14 0.11 0.09 0.13 0.15 0.09 0.34 0.18 0.29 0.11 0.16 0.10 0.14 0.34 0.18 0.10 0.19 0.16 0.26 0.18 0.14 0.20

Classes

Classes

Classes

Classes RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Winter

Spring

Summer

Autumn
1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100

1983-2012 RCP4.5 2041-2070

Note: GCM–RCM combinations are numbered as follows: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4;
5. MPI-ESM-LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.
EC-EARTH/RACMO22E.

Figure A5. Probability of different classes of PO4
3− loadings associated with different seasons and scenarios across the GCM–RCM combinations considered.
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Figure A6. Variations in the probability of each NO3
− loading class with respect to baseline

(i.e., 1983–2012) under different scenarios and GCM–RCM combinations.
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