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Abstract: The fast development of the transport sector has resulted in high energy consumption and
carbon dioxide (CO2) emissions in China. Though existing studies are concerned with the factors
influencing transport sector CO2 emissions at the national level (or in megacities), little attention
has been paid to the comprehensive impact of socio-economic, urban form, and transportation
development on transport sector carbon emissions and emissions efficiency in central China. This paper
examines the comprehensive impact of the transport sector’s carbon emissions from six provinces in
central China, during the period from 2005 to 2016, based on the panel data model. The dynamic
change of CO2 emissions efficiency is then analyzed using the Global Malmquist Luenberger Index.
The results indicate that, firstly, economic growth, road density, the number of private vehicles,
and the number of public vehicles have caused greater CO2 emissions during the study period, while
the freight turnover, urbanization level, and urban population density had repressing effects on CO2

emissions. Secondly, an uneven distribution of CO2 emissions and CO2 emissions efficiency was
found among different provinces in central China. Thirdly, changes in CO2 emissions efficiency were
mainly due to technical changes. Finally, we present some policy suggestions to mitigate transport
sector CO2 emissions in central China.

Keywords: transport sector CO2 emissions; influence factors; efficiency; panel data; Global Malmquist
Luenberger (GML); central China

1. Introduction

The main culprit in global warming is carbon dioxide (CO2), much of which is produced by the
combustion of fuel [1]. On a global scale, the transport sector emitted around 8000 million tons of CO2,
which is about one-quarter of the grand total in 2016. More and more countries and regions developing
their transport sectors are trying to cut down on energy consumption and CO2 emissions. America has
historically had the highest transport sector CO2 emissions levels of all regions, and this value has
persisted in recent years. However, China is quickly closing the gap, with annual growth rates five
times larger than America since 2000. China is also the country with the largest increase in transport
sector CO2 emissions. Thus, exploring the influencing factors and efficiency of CO2 emissions in the
transport sector is the basis of reducing transportation CO2 emissions in China.

Extensive analysis of the influencing factors of Chinese transport sector CO2 emissions has been
carried out [2]. The earliest literature studied the influence of socio-economic factors on transport sector
carbon emissions such as per capita GDP and GDP growth [3,4]. Later, transportation development
factors, such as passenger turnover and freight turnover, were determined to affect the change of CO2

emissions in the transport sector [5,6]. With the development of urbanization, some scholars began to
explore the impact of urban form and urban land on traffic carbon emissions [7,8]. Most existing studies
concentrate on the transport sector’s CO2 emissions at the national level [9,10], while others focus
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on megacities or east and south developed regions in China [8,11,12]. These studies ignore transport
sector CO2 emissions and the mitigation of such emissions in central China, despite central China
being a transportation hub connecting the east and west. The present study investigated the effect of
socio-economic urban form and transportation development on transport sector carbon emissions in
central China, which can play a pivotal role in effective emissions reduction.

Improving the efficiency of CO2 emissions has been recognized as the most effective way to reduce
the greenhouse effect and achieve sustainable development, especially in manufacturing industries
with high energy consumption [13,14]. Nevertheless, little literature has focused on the transport
sector, and the performance of transport sector CO2 emissions has mainly been measured via data
envelopment analysis (DEA) [15–18]. Nevertheless, these studies used a relatively static carbon
performance measure within a cross-sectional framework without considering dynamic performance
changes. The Global Malmquist Luenberger (GML) index integrates the cross-sectional and time-series
performances and has some advantages in calculating dynamic changes in efficiency. Some literature
discusses panel data using the GML index in many other sectors, including examinations of the
industrial sector [19,20], the light industry [21], the water industry [22,23], and the iron and steel
industry [24]. Zhang et al. [25] measured the dynamics of the transport sector’s total CO2 emissions
over time via a non-radial Malmquist CO2 emissions performance index. However, there are few
studies that use GML to measure CO2 emissions efficiency in the Chinese transport sector.

The objective of this study is to comprehensively explore the impacts of socio-economic factors,
urban forms, and transportation developments on the transport sector’s carbon emissions in central
China using panel data from six provinces from 2005 to 2016. In addition, to improve CO2 emissions
efficiency, this paper measures the dynamics of CO2 emissions efficiency in the transport sector using
panel data based on the Global Malmquist Luenberger index and comprehensively analyzes the
possible reasons for the fluctuation of transport sector CO2 emissions efficiency in each province.
The remainder of this paper is organized as follows: Section 2 briefly reviews the related literature;
section 3 describes the impact of urban form and transportation development on transportation CO2

emissions using the panel data model; section 4 evaluates dynamic CO2 emissions efficiency changes
using the Global Malmquist Luenberger index; lastly, conclusions and policy suggestions to mitigate
transportation CO2 emissions are provided.

2. Literature Review

Many existing studies in various countries have been concerned with CO2 emissions in the
transport sector. For the most part, these studies separately focus on the impacts of socio-economic,
transportation development, and urban form factors on CO2 emissions. Most studies explore the
influence of CO2 emissions and socio-economic factors such as GDP, per capita GDP, energy intensity,
and population size [26–31]. With the increase of urban populations in New Zealand, CO2 emissions
from the transport sector have increased [32]. Andreoni and Galmarini [33] found that economic
growth was the main factor behind CO2 emissions based on the water and aviation transport sectors in
Europe. Saboori et al. [34] explored the bi-directional long-run relationship between CO2 emissions
from the road transport sector and economic growth in all the countries belonging to the Organization
for Economic Co-operation and Development over the period from 1960 to 2008. Fan and Lei [35]
found that economic growth is the dominant factor behind CO2 emissions in Beijing, but influence
from population size was limited. In addition to the various socio-economic factors considered by
scholars, an increasing number of studies suggest that transportation development exerts an extensive
and lasting influence on the level of CO2 emissions. Taking Tunisia for example, road freight transport
intensity is second only to economic growth in terms of CO2 emissions [36]. A similar study was also
undertaken in European countries [37]. For China, passenger turnover, freight turnover, and private
vehicle inventories are the three most frequently used transportation development factors impacting
CO2 emissions [2,5]. Some scholars have concluded that passenger transport plays a more critical
role than freight transport in mitigating CO2 emissions [5]. Others have argued that the effect caused
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by passenger transport is as little as one-eighth that of freight transport [6]. In the wake of rapid
economic and technological developments from 1995 to 2016, the number of private cars in China has
climbed from 2.49 million to 160.30 million, an increase of 64 times. The rapid development of public
transportation has also played an important role in the overall development of transportation during
the same period. However, the quantity of public transportation is neglected as an impacting factor for
CO2 emissions in existing research.

Existing studies considered socio-economic factors and transportation development factors but
ignored the impact of urban form. Urban cities are not only the center of human production and
activity but also gather traffic elements and represent the pivot point of a transportation network [38,39].
Urban areas generally have a more intensive transport infrastructure, also highlighting the regional
imbalance between the supply and demand of traffic. Reckien et al. [40] argued that the total built
area and the total traffic area are positively related to road CO2 emissions in Berlin’s urban area.
The impacts of urban form on CO2 emissions in Chinese megacities were also explored by Ou et al. [41].
The number of patches and edge density of urban areas are factors that help quantify the urban form.
Wang et al. [8] found that the compact size of urban land helps decrease CO2 emissions. However, the
factors involved did not consider urbanization, urban road density, and urban population level. Urban
planning has an important effect on the process of building a low-carbon transport system. Further
understanding of the relationship between urban forms (like urban road density, urbanization, as well
as urban population level) and CO2 emissions may facilitate further research. On the other hand,
due to China's vast territory, significant regional differences, economic classifications, and population
distribution, other studies have explored the mitigation of carbon emissions in east and south coastal
China, which are areas with developed economies and dense populations [12,42]. Moreover, much
scholarly attention has been drawn towards the mitigation of CO2 emissions in China’s megacities.
Taking Beijing as an example, Wang et al. [7] indicated that urban form is a major factor for transport
sector CO2 emissions. The study’s results on China's four megacities (Beijing, Shanghai, Guangzhou,
and Tianjin) also showed that urban road density had significant negative effects on the level of CO2

emissions [8].
Although the influential factors behind carbon emissions in the transport sector have been widely

discussed in previous studies, few studies have evaluated the efficiency of the transport sector’s CO2

emissions. Cui and Li [43] employed a virtual frontier Data Envelopment Analysis (DEA model to
estimate transportation’s carbon efficiency using cases from 15 countries. Zhou et al. [44] analyzed
the CO2 performance of China’s transport sector using undesirable DEA models, which only adopt
energy and labor as the inputs. Zhang et al. [25] first proposed a non-radial Malmquist index to
conduct a dynamic CO2 emissions performance change analysis for the Chinese transport industry.
Total fixed assets, employees in the transport sector, and energy consumption were used as inputs
in their study. Generally, CO2 emissions are an undesirable output of the production process for
marketable or desirable outputs.

As mentioned above, there remain some research gaps that merit closer study. Firstly, previous
studies focused on the national or megacity level, where economic growth has promoted global
economic development. CO2 emissions have significantly affected global warming in the Organization
for Economic Co-operation and Development (OECD) countries, New Zealand, coastal regions of
China, and Chinese megacities. Central China is an ignored study area, where economic growth and
transportation have been developing rapidly in recent years. Secondly, it is clear that the impact
of socio-economic, urban form, or transportation development on CO2 emissions is not enough to
illustrate the whole picture in the transport sector. Comprehensive systematic studies of the transport
sector’s CO2 emissions and their efficiency in central China, incorporating socio-economic factors,
urban forms, and transportation developments, are relatively less common. Finally, investigating
CO2 emissions efficiency plays an important role in developing reduction policies for CO2 emissions.
In addition, the DEA method has gained popularity in the field evaluation of energy and CO2 emissions
efficiencies, such as in the industrial, iron, and steel sectors. There are few studies about transport
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sector CO2 emissions efficiency, and even fewer studies employ Global Malmquist Luenberger to
estimate CO2 emissions efficiency in the transport sector dynamically.

As the geographical heart of China, central China is an important raw-material base with abundant
coal and non-ferrous metals. Central China is, therefore, the economic development and transportation
hub connecting east and west China. China has a vast territory, and because of its differences in
geographical locations, economic foundations, regional policies, and transportation developments,
the country’s ability to mitigate regional emissions is not balanced. With the implementation of the
strategy called “the rise of central China”, the development of transportation infrastructure has been
accelerated, effectively driving the development of transportation in the central region. For this reason,
six provinces (Anhui, Shanxi, Jiangxi, Hubei, Hunan, and Henan) in central China were selected
as the related areas in this study. The aim of this study is to explore and improve the transport
impact on CO2 emissions efficiency. The present study first examines the impacts of socio-economic
factors, urban forms, and transportation developments on CO2 emissions in central China using panel
data for six provinces from the National Bureau of Statistics of China (NBSC). The differences in
CO2 emissions efficiency for the transport sector were then dynamically analyzed using the Global
Malmquist Luenberger Index. Finally, some suggestions for improving CO2 emissions efficiency and
reducing CO2 emissions from transportation in central China are proposed.

3. Influencing Factors on Transport Sector CO2 Emissions

3.1. Transportation Carbon-emissions Estimation

Inspired by Xu et al. [2], calculation of transport sector CO2 emissions for the six provinces in
central China from 2005 to 2016 was based on the quantity of the various types of fossil fuels consumed,
as well as their CO2 emissions factors, which were taken from the 2006 Intergovernmental Panel on
Climate Change (IPCC) reports and China’s National Development and Reform Commission [45].
The model is described by the following equation:

CO2 =
5∑

i=1

CO2i =
5∑

i=1

Eneri ×Con fi (1)

where CO2 means the amount of CO2 emissions in the transport sector, i represents the variety of fossil
fuel (gasoline, kerosene, diesel, fuel oil, and natural gas); Eneri is the total consumption of fossil fuel i
in the whole transport sector; and Confi means the CO2 emissions coefficient for i type of fossil fuel.
The carbon emissions coefficients for fossil fuels are shown in Table 1. All data are collected from
China Statistical Yearbook (2006–2017) and the provincial statistical yearbooks (2006–2017).

Table 1. Different Fossil Fuels’ Carbon Emissions Coefficients.

Fuel Gasoline Kerosene Diesel Fuel Oil Natural Gas

Emissions coefficient 0.5538 0.5714 0.5921 0.6185 0.4483

As a result, Figure 1 presents the dynamic changes in the transport sector’s CO2 emissions for
six provinces in central China. It was found that the CO2 emissions of these provinces maintained
an increase between 2005 and 2016. Both Henan and Jiangxi province had a sharp increase in 2011.
Hubei province was exposed to be the largest emitter. Between 2005 and 2016, the emissions of Hubei
province increased from 2442.18 million tons to 5323.20 million tons. Before 2006, Jiangxi Province
had lower CO2 emissions than other provinces (Hubei, Henan, Hunan, Shanxi, and Anhui), but close
to those of Shanxi province since 2014. In addition, the minimum emission level (Anhui, at 2173.00
million tons) is two-fifths that of the maximum (Hubei, at 5323.20 million tons) in 2016. This result
implies that provincial differences exist for the CO2 emissions in the transport sector in central China.
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Figure 1. The CO2 emissions of six provinces in central China’s transport sector.

3.2. Influencing Factors

3.2.1. Socio-economic Factors

The economy in central China has grown rapidly since the policies of “the Rise of Central China”
were issued. The income of the region’s residents has gradually increased, which was followed by
private car ownership, which caused an increase in the transport sector’s CO2 emissions. In this study,
per capita GDP (pGDP) was selected as the variable for the socio-economic development level. Figure 2
describes the trend of per capita GDP for provinces in central China. This trend shows steady growth,
except in Shanxi province. In particular, Hubei province has the highest per capita GDP among the six
provinces in central China. Hubei is also the largest emitter of CO2 emissions from the transport sector
in central China. The per capita GDP growth rates of the other provinces (Hunan, Henan, Jiangxi, and
Anhui) are similar to each other. This similarity means that the overall economic growth in central
China is balanced.
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Figure 2. The per capita GDP of six provinces in central China.

3.2.2. Transportation Development Factors

In order to better understand the impacts of transportation development on CO2 emissions, we
selected three variables according to existing researches, comprising the number of private vehicles
per 10,000 people (PRV), the number of public vehicles per 10,000 people (PUV), and freight turnover
(FT) [9]. As residents' living standards have improved, and the number of private vehicles per 10,000
people in the central region has grown from 515 in 2005 to 5582 in 2016. These results are shown in
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Figure 3a. An increasing number of both energy consumption and CO2 emissions occurred because,
before 2016, private cars could not function without consuming gasoline and diesel. At the same time,
the structure of mobile vehicles in the central region is unbalanced, and the proportion of private
cars is increasing by the year, but the proportion using public transport seldom fluctuates (Figure 3b).
In China, emissions from moving freight (tkm) is growing faster than that of moving passengers
(person·km) [6]. In this way, the trend in central China is the same as the trend in the entire country.
By the end of 2016, the freight transportation service turnover consisted of 3.57 trillion tkm in the
central region. Since 2007, the freight turnover in these provinces has been growing rapidly (Figure 4).
This growth unavoidably results in high growth in energy consumption and CO2 emissions.

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 16 

Figure 3a. An increasing number of both energy consumption and CO2 emissions occurred because, 

before 2016, private cars could not function without consuming gasoline and diesel. At the same time, 

the structure of mobile vehicles in the central region is unbalanced, and the proportion of private cars 

is increasing by the year, but the proportion using public transport seldom fluctuates (Figure 3b). In 

China, emissions from moving freight (tkm) is growing faster than that of moving passengers 

(person∙km) [6]. In this way, the trend in central China is the same as the trend in the entire country. 

By the end of 2016, the freight transportation service turnover consisted of 3.57 trillion tkm in the 

central region. Since 2007, the freight turnover in these provinces has been growing rapidly (Figure 

4). This growth unavoidably results in high growth in energy consumption and CO2 emissions. 

 

  

(a) (b) 

Figure 3. (a) Number of private vehicles; (b) number of public vehicles. 

3.2.3. Urban Form Factors 

Between 2000 and 2015, the proportion of people living in urban areas in China increased rapidly 

from 35.87% to 55.61% and has exceeded the world average since 2013 [46]. With this rapid urban 

expansion, many urban dwellers have begun to drive cars that consume biofuels, which has 

precipitated a climbing increase in CO2 emissions generated by cities. We chose three indicators to 

quantify the urban form: road density per 100 square meters (RD), urban population density (UPD), 

and urbanization level (UL). As shown in Figure 5, the proportion of the urban population showed a 

steady increase. Table 2 shows a statistical description of all the variables in this study. 

 

Figure 4. Freight turnover 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

05 06 07 08 09 10 11 12 13 14 15 16

x 
1

0
4 T

o
n

-K
m

Time (year)

Henan

Shanxi

Hunan

Hubei

Jiangxi

Anhui

0

10

20

30

40

50

60

70

80

05 06 07 08 09 10 11 12 13 14 15 16

Time/year

0

1000

2000

3000

4000

5000

6000

05 06 07 08 09 10 11 12 13 14 15 16

Time/year

Anhui

Jiangxi

Hubei

Hunan

Shanxi

Henan

Figure 3. (a) Number of private vehicles; (b) number of public vehicles.

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 16 

Figure 3a. An increasing number of both energy consumption and CO2 emissions occurred because, 

before 2016, private cars could not function without consuming gasoline and diesel. At the same time, 

the structure of mobile vehicles in the central region is unbalanced, and the proportion of private cars 

is increasing by the year, but the proportion using public transport seldom fluctuates (Figure 3b). In 

China, emissions from moving freight (tkm) is growing faster than that of moving passengers 

(person∙km) [6]. In this way, the trend in central China is the same as the trend in the entire country. 

By the end of 2016, the freight transportation service turnover consisted of 3.57 trillion tkm in the 

central region. Since 2007, the freight turnover in these provinces has been growing rapidly (Figure 

4). This growth unavoidably results in high growth in energy consumption and CO2 emissions. 

 

  

(a) (b) 

Figure 3. (a) Number of private vehicles; (b) number of public vehicles. 

3.2.3. Urban Form Factors 

Between 2000 and 2015, the proportion of people living in urban areas in China increased rapidly 

from 35.87% to 55.61% and has exceeded the world average since 2013 [46]. With this rapid urban 

expansion, many urban dwellers have begun to drive cars that consume biofuels, which has 

precipitated a climbing increase in CO2 emissions generated by cities. We chose three indicators to 

quantify the urban form: road density per 100 square meters (RD), urban population density (UPD), 

and urbanization level (UL). As shown in Figure 5, the proportion of the urban population showed a 

steady increase. Table 2 shows a statistical description of all the variables in this study. 

 

Figure 4. Freight turnover 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

05 06 07 08 09 10 11 12 13 14 15 16

x 
1

0
4 T

o
n

-K
m

Time (year)

Henan

Shanxi

Hunan

Hubei

Jiangxi

Anhui

0

10

20

30

40

50

60

70

80

05 06 07 08 09 10 11 12 13 14 15 16

Time/year

0

1000

2000

3000

4000

5000

6000

05 06 07 08 09 10 11 12 13 14 15 16

Time/year

Anhui

Jiangxi

Hubei

Hunan

Shanxi

Henan
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3.2.3. Urban Form Factors

Between 2000 and 2015, the proportion of people living in urban areas in China increased
rapidly from 35.87% to 55.61% and has exceeded the world average since 2013 [46]. With this rapid
urban expansion, many urban dwellers have begun to drive cars that consume biofuels, which has
precipitated a climbing increase in CO2 emissions generated by cities. We chose three indicators to
quantify the urban form: road density per 100 square meters (RD), urban population density (UPD),
and urbanization level (UL). As shown in Figure 5, the proportion of the urban population showed a
steady increase. Table 2 shows a statistical description of all the variables in this study.
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Table 2. Variable description.

Variable Definition Mean SD Min Max Observation

Dependent
variable C CO2 emissions in transport

sector (104 ton) 2603.02 1141.28 824.87 5323.20 72

Socio-economic
factor pGDP Per capita GDP

(CNY/person) 26,574.22 11477.23 8670 55665 72

Urban form
factors

RD The average road length per 100
km2 (km) 88.14 36.62 31.30 160.12 72

UL Population living in urban areas
divided by total population 0.42 0.09 0.21 0.58 72

UPD Urban population divided by
total urban size 2896.69 1465.92 466.00 5967.00 72

Transportation
development

factors

PRV Vehicles number of private cars
per 10,000 population 313.41 302.02 19.16 1284.47 72

PUV Number of public vehicles per
10,000 population 8.82 2.17 3.80 15.13 72

FT Traffic volume multiplied by the
transport distance 3520.34 2767.70 653.60 13,500.60 72

3.3. Panel Data Models and Results

The Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model
was proposed by Dietz and Rosa [47] to analyze the influences of impacting factors on the environment,
as follows:

Ii = aPb
i Ac

i T
d
i ei (2)

where P is the population size, A means the average affluence, and T denotes the technology index; a
represents the constant term, b, c, and d are the parameters for the environmental impacts as they relate
to P, A, and T, respectively, and e is a random error. In empirical research, this model is often used in
its logarithmic form. Based on the above analysis, the established model is as follows:

ln Cit = ci + β1 ln ULit + β2 ln UPDit + β3 ln RDit + β4 ln PUVit + β5 ln PRVit + β6 ln FTit + β7 ln pGDPit + εit (3)

where C is the amount of CO2 emissions in the transport sector, UL is the urbanization level, UPD
means urban population density, RD represents the urban road density, PUV denotes the number of
public vehicles per 10,000 people, PRV represents the number of private vehicles per 10,000 people,
FT describes turnover of freight traffic, pGDP is per capita GDP, ε is random error, and i and t represent
province and year, respectively. All variables are expressed in their logarithmic forms to facilitate
the estimation.

Before estimating the regression models for the panel data, it is necessary to ensure that the
variables are stationary. The results could show spurious relationships if they do not meet this condition.
The most common stationary test is the unit root test. We employed the widely used Levin-Lin-Chu
(LLC) and Phillips-Perron (PP-Fisher) unit root tests. In the unit root test, the optimal lag order
was determined according to the Akaike Information Criterion (AIC). The unit root test results are
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shown in Table 3, which means that all these variables except UL are not stationary at the level and
contain a panel unit root at the 5% significance level. When assessing the first-order differences, all the
variables reject the null hypothesis of being non-stationary. This result indicates that all the variables
are stationary after the first-order difference.

Table 3. Results of the unit root test.

Variable
Unit Root Test

LLC PP-Fisher

p-Value p-Value

Ln C
level 0.0656 0.9487
(D) 0.0002 *** 0.0003 ***

Ln UL level 0.0004 *** 0.0049 **
(D) 0.0000 *** 0.0001 ***

Ln UPD
level 0.9958 0.0000 ***
(D) 0.0031 ** 0.0000 ***

Ln RD
level 1.0000 0.0000 ***
(D) 0.0000 *** 0.0000 ***

Ln PUV level 0.0015 ** 0.2788
(D) 0.0000 *** 0.0000 ***

Ln PRV
level 0.7693 0.2311
(D) 0.0023 ** 0.0207 **

Ln FT level 0.9423 0.8942
(D) 0.0000 *** 0.0000 ***

Ln pGDP level 0.1835 0.0458 **
(D) 0.0006 *** 0.0015 **

** for p < 0.05, *** for p < 0.01.

Models for panel data often allow for autocorrelation and heteroskedasticity (as well as being
cross-sectional), which result in an estimated parameters bias. In this paper, a modified Wald test for
groupwise heteroskedasticity, a Breusch–Pagan test for cross-sectional independence, and a Wooldridge
test for serial correlation for the residuals of a fixed effect regression model are employed. The results
show that there are autocorrelation (F value = 48.05, p-value = 0.0010) and heteroscedasticity (R-square
value = 0.8106, p-value = 0.0000) problems without cross-sectional dependency, as shown in Table 4.
The panel corrected standard error (PCSE) estimation method introduced by Beck and Katz [48] is
an innovation of the panel data model estimation method. This method can effectively deal with
complex panel error structures, such as autocorrelation, heteroscedasticity, sequence correlation, etc.
It is especially useful when the sample size is not large enough for other methods. In existing empirical
applications, especially when estimating the panel data of national and provincial types, the PCSE
method is widely used to deal with complex panel error structures [5,49,50].

Table 4. Correlation matrix of residuals.

Shanxi Henan Hubei Hunan Jiangxi Anhui

Shanxi 1.0000
Henan −0.2078 1.0000
Hubei −0.5433 0.2209 1.0000
Hunan 0.1243 0.1980 0.1085 1.0000
Jiangxi −0.5187 −0.2069 0.4124 −0.1185 1.0000
Anhui −0.2718 0.3634 0.3716 −0.5988 −0.0022 1.0000

Chi2 (15) = 19.826, Pr = 0.1787

The estimation results for the PCSE model are shown in Table 5. The significance test for the
regression equation (Chi-square value = 308.09, p-value = 0.0000) indicates that the comprehensive
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influence of the independent variables on the dependent variable has statistical significance.
All independent variables are significant at the 1% significance level. Based the empirical results,
the per capita GDP had the most positive effects on the dependent variable, which shows that a 1% GDP
increase would cause a 1.04% increase of CO2 emissions in the transport sector. Among transportation
development factors, the number of private vehicles (0.445) and public vehicles (0.717) had positive
effects on transportation CO2 emissions, while the quantitative coefficient of the freight turnover is
−0.444. The number of private vehicles and public vehicles is the main contributor to CO2 emissions,
while freight turnover is negatively related to CO2 emissions in the transport sector. Road density (0.470)
also had positive effects on transportation CO2 emissions. The elasticity of the urbanization level and
urban population density are −3.454 and −0.620, respectively. To a certain extent, urban development
and the improvement of road capacity promote CO2 emissions from transportation. The increase
in urbanization level leads to an increase in built-up urban areas and promotes the convenience of
urban transportation, which could curb CO2 emissions from the transport sector. Though public
transportation development is low-carbon and environmentally friendly to a certain extent, excessive
allocation of public transportation will also lead to a rise in carbon emissions. Growing vehicle
ownership, accompanied by rapid economic development, has enhanced CO2 emissions. Freight
turnover is a comprehensive reflection of the need for freight transport and the total amount of freight
transport work provided and has a negative effect on CO2 emissions in the transport sector.

Table 5. Results of the variable intercept model of panel corrected standard error (PCSE).

Coef. Std. err. t p

pGDP 1.044 *** 0.262 (3.82) 0.000
RD 0.470 *** 0.134 (4.09) 0.000
UL −3.454 *** 0.558 (−6.37) 0.000

UPD −0.620 *** 0.087 (−7.58) 0.000
PRV 0.445 *** 0.111 (7.26) 0.000
PUV 0.717 *** 0.205 (4.58) 0.000
FT −0.444 ** 0.080 (−4.06) 0.000

_cons −3.195 1.793 (−1.80) 0.072
R-squared 0.8106

** for p < 0.01, and *** p < 0.001.

4. CO2 Emissions Efficiency of the Transport Sector

To measure the efficiency of CO2 emissions with the development of the transportation and
develop detailed CO2 emissions reduction policies, a Global Malmquist Luenberger (GML) index,
based on DEA, is employed to estimate the CO2 emissions efficiency in central China’s transport sector
as an undesirable factor and explores the key factors contributing to efficiency (from the standpoints of
technological progress and scale efficiency).

We chose five inputs, three desirable outputs, and CO2 emissions as the undesirable output. Labor
input (L) is represented by employees in the transport sector; this information is collected directly from
the China Statistical Yearbook. Here, the amount of capital input (K) is represented by the number
of private vehicles per 10,000 people, the number of public vehicles per 10,000 people, and the road
density. The rest input is represented by energy consumption (E). Three desirable outputs are passenger
turnover (P), freight turnover (F), and value-added from the transport sector (V).

4.1. Global Malmquist Luenberger Model

Regarding each province as a decision-making unit (DMU), there are six provinces in the Central
region: i = 1, · · · , K(K = 6). Each province uses N (N = 5) inputs to produce M (M = 3) desirable
outputs and L (L = 1) undesirable outputs in T time periods (t = 1, · · · , T) defined, respectively, as:
X = (x1, · · · , xN) ∈ RN

+,Y = (y1, · · · , yM) ∈ RM
+ , and Yu = (u1, · · · uL) ∈ RL

+. Hence, the environmental

production technology set can be expressed as: P(X) =
{
(x, y, u)

∣∣∣x can produce (y, u)
}
. A global
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benchmark technology is defined as PG = P1
∪ P2

∪ · · · ∪ PT. The GML index, proposed in this paper,
is defined as follows:

GMLt,t+1(xt, yt, ut, xt+1, yt+1, ut+1) =
1 + DG(xt, yt, ut)

1 + DG(xt+1, yt+1, ut+1)
(4)

where the directional function, DG(x, y, u) = max
{
β
∣∣∣(y + βy, b− βb ) ∈ PG(x)

}
, is defined based on the

global technology set PG. If the GMLt,t+1>1, CO2 emissions efficiency increases, and the evaluated
unit is capable of producing more of the desired output with less of the undesired output. However, if
GMLt,t+1 = 1, then performance remains unchanged, and GMLt,t+1 < 1 signals a performance decline.

The GML index can also be decomposed into efficiency change (EC) and best practice gap change
(BPC), as follows:

GMLt,t+1(xt, yt, ut, xt+1, yt+1, ut+1) = ECt,t+1
× BPCt,t+1

=
1+Dt(xt,yt,ut)

1+Dt+1(xt+1,yt+1,ut+1)
×

[
(1+DG(xt,yt,ut))/(1+Dt(xt,yt,ut)

(1+DG(xt+1,yt+1,ut+1))/(1+Dt+1(xt+1,yt+1,ut+1))

] (5)

where ECt,t+1 means a change in the efficiency between the time period t and t + 1.BPCt,t+1 denotes the
best practice gap change and measures technical change during the two time periods. The improvement
in EC suggests progress in management skills. Unlike the change in efficiency, technological change
can be achieved by adopting new technologies to reduce the amount of bad output under the premise
of a quantitative input.

4.2. The Results of GML and Discussion

Based on the GML model, the results of energy and CO2 emissions efficiency in the transport
sector of central China are shown in Table 6. Only Shanxi province was observed to experience
a positive efficiency growth (1.1%), while half of the provinces (Hubei = −1.3%, Jiangxi = −0.5%,
and Anhui = −0.7%) showed negative growth. This result shows that Shanxi province has actively
responded to the low-carbon development policies for the transport sector. Other provinces in central
China have made remarkable progress in the transport sector, but have ignored the importance of
low-carbon transportation.

Table 6. CO2 emissions efficiency in the provincial transport sector, 2006–2016.

Global Malmquist Luenberger Index

Henan Shanxi Hubei Hunan Jiangxi Anhui Central

2005–2006 1.000 0.998 1.000 0.940 0.980 0.981 0.983
2006–2007 1.000 1.080 1.000 0.990 0.972 0.982 1.004
2007–2008 1.000 1.016 1.000 1.074 1.021 1.038 1.025
2008–2009 1.000 0.838 0.941 0.995 0.977 1.000 0.959
2009–2010 1.000 1.208 1.063 1.005 0.967 1.000 1.040
2010–2011 1.000 1.000 1.000 1.000 1.022 1.000 1.004
2011–2012 1.000 0.967 0.908 1.000 1.065 1.000 0.990
2012–2013 1.010 0.919 1.101 1.000 0.985 1.000 1.002
2013–2014 0.990 1.016 0.882 1.000 0.969 1.000 0.976
2014–2015 1.000 1.063 0.986 1.000 0.966 0.917 0.989
2015–2016 1.000 1.016 0.978 1.000 1.018 1.005 1.003

Mean 1.000 1.011 0.987 1.000 0.995 0.993 0.998

Under the inclination for green transportation outputs in this study, when the number of expected
outputs (i.e.; passenger volume, freight volume, and value-added from the transport sector) increases
based on a given set of inputs, efficiency will increase. The trends of the GML index and its
decomposition in the transport sector are shown in Figure 6. As indicated by GML, the average
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CO2 emissions efficiency shows a decline of –0.2% during the study period. It was found that the
fluctuation of the BPC index is similar to that of the GML index, while the EC index seldom fluctuated,
indicating that a change in CO2 emissions efficiency is primarily caused by technological change. It is
recommended that the government invest in green technologies for the transport sector, such as buses
and taxis with renewable fuels in Shanxi province, road construction with renewable material in Henan
province, and the installation of an Intelligent Transportation System (IST) in Hunan province.
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The EC and BPC indexes of energy and CO2 emissions efficiency among the six provinces are
shown in Table 7. Shanxi province is rich in coal resources, so its freight transport demand is particularly
large. However, the transportation CO2 emissions of Shanxi province have barely increased since
2009. According to the GML index, only Shanxi had an average increase in CO2 emissions efficiency
(of 1.1%). In other words, Shanxi performed well in reducing its transportation CO2 during the study
period. As seen in Table 6, both the EC and BPC indexes are greater than 1, which indicates that Shanxi
has adopted new technology and management skills to achieve their CO2 emissions mitigation goals.
Over the last decade, the capacity for scientific and technological innovation in the transport sector has
been enhanced. Traditional buses have been gradually replaced by hybrid or pure electric buses. There
are many projects that demonstrate CO2 reduction goals, including key transport process monitoring
and management services in 2013 and the application of renewable energy in the construction and
operation of the “Gaoqin expressway” in 2014.

Table 7. The EC and BPC of the provincial transport sector, 2005–2016.

DMUs Henan Shanxi Hubei Hunan Jiangxi Anhui

EC BPC EC BPC EC BPC EC BPC EC BPC EC BPC

2005–2006 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.940 1.000 0.980 1.000 0.981
2006–2007 1.000 1.000 1.000 1.080 1.000 1.000 1.000 0.990 0.960 1.013 1.000 0.982
2007–2008 1.000 1.000 1.000 1.016 1.000 1.000 1.000 1.074 1.042 0.980 1.000 1.038
2008–2009 1.000 1.000 1.000 0.838 1.000 0.941 1.000 0.995 1.000 0.977 1.000 1.000
2009–2010 1.000 1.000 1.000 1.208 1.000 1.063 1.000 1.005 0.991 0.975 1.000 1.000
2010–2011 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.009 1.013 1.000 1.000
2011–2012 1.000 1.000 1.000 0.967 1.000 0.908 1.000 1.000 1.000 1.065 1.000 1.000
2012–2013 1.000 1.010 0.914 1.004 1.000 1.101 1.000 1.000 1.000 0.985 1.000 1.000
2013–2014 1.000 0.990 1.029 0.987 1.000 0.882 1.000 1.000 0.984 0.985 1.000 1.000
2014–2015 1.000 1.000 1.062 1.000 1.000 0.986 1.000 1.000 0.985 0.981 1.000 0.917
2015–2016 1.000 1.000 1.000 1.016 1.000 0.978 1.000 1.000 1.019 1.000 1.000 1.005

Mean 1.000 1.000 1.001 1.010 1.000 0.987 1.000 1.000 0.999 0.996 1.000 0.993

Among the six provinces in central China, Hubei province produced the highest CO2 emissions in
the transport sector during the study period. The average GML index is measured as −1.3%, which
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indicates a declining trend of CO2 emissions efficiency. The main reason for this result is that the BPC
index decreased, especially after 2013, while Hubei was deteriorating from an efficient province to an
inefficient one. From 2013 to 2016, the BPC index experienced a yearly decline of 11.8%, 1.4%, and 2.2%,
respectively. During the research period, massive investment and fast construction allowed Hubei to
form a comprehensive transportation hub, which provided a skeleton network of “four vertical, four
horizontal, and one ring” highways. These results indicate that low-carbon technological innovation
for the transport sector in Hubei has been neglected during the process of transportation development.

For Henan and Hunan province, GML = 1—indicating no improvement in CO2 emissions
efficiency. A possible cause for this might be the stabilization of management style and technological
innovation. The remaining provinces (Jiangxi and Anhui) had a CO2 emissions efficiency index less
than 1 in most of the time periods, and both improvements and declines occurred during these 12
years. However, during 2015–2016, the GML index was 1.018 in Jiangxi and 1.005 in Anhui, indicating
that these provinces were increasing their efforts to improve their efficiency. For example, by the end
of 2016, public transport in Anhui province accounted for 40.66% of motor vehicle trips, gradually
realizing full coverage of public transport star services. The “Changzhang expressway reconstruction
and expansion project” in Jiangxi province actively applied new technology for green recycling, which
reduced transport sector CO2 emissions by more than 30,000 tons in 2016.

5. Conclusions

China is currently facing environmental pressures, which are the result of the rapidly increasing
pace of energy consumption and CO2 emissions in the transport sector. Issues of CO2 emissions and
mitigation in the transport sector have attracted intense attention from both governments and academics.
This paper explores the factors driving transport CO2 emission and the differences in CO2 efficiency in
the central region of China and provides some policy suggestions for the Chinese government.

On the base of the provincial panel data of six provinces in central China, this paper constructed an
FGLS model that was used to investigate the impact of urban form and transportation development on
the CO2 emissions of the transport sector. Furthermore, the Global Malmquist Luenberger index was
used to quantify CO2 emissions efficiency in the transport sector, and possible reasons for the fluctuation
of transportation carbon emissions efficiency in each province were comprehensively analyzed.

Transportation CO2 emissions in central China increased continuously from 2005 to 2016.
The overall efficiency of CO2 emissions in the central region of China fluctuated during this period.
BPC was the main driver of GML growth, which indicates that the technical efficiency needed to
accelerate transport development must be further improved.

Some policy suggestions have been generated based on the above explorations. Firstly, there
are provincial differences in the CO2 emissions efficiency in the transport sector of central China.
Hubei should strengthen the construction of its talented team in the transport sector and support the
research and development of key technologies and core equipment for transportation to improve CO2

emissions efficiency. Hunan and Henan should optimize their transportation systems to improve
their CO2 emissions efficiency. Jiangxi and Anhui could learn advanced management skills and
introduce advanced technologies from other provinces with higher CO2 emissions efficiency such as
Shanxi. Secondly, there is a positive correlativity between the number of public vehicles and CO2

emissions during the study period. The government should improve public transport organization
and reduce the energy consumption of public transport. On the other hand, developing urban light
rail transit with the potential to mitigate CO2 and expanding the utilization of fuel-cell-driven and
power-driven vehicles are critical to controlling emissions in urban public transport. Thirdly, policies
aimed at the ownership of private vehicles should be strengthened. Due to rapid economic growth
and low energy efficiency, private vehicles have become the main contributors to CO2 emissions.
Moreover, hybrid and battery electric vehicles with renewable electricity can significantly contribute
to CO2 mitigation in car transport [51]. Accordingly, the government ought to tighten traditional
energy-intensive vehicle purchase standards and advocate and subsidize the purchase and utilization
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of hybrid and electric-powered vehicles. The government must also improve the R&D of green vehicles
and renewable electricity technology using fiscal instruments. Fourthly, road transport is still an
important part of freight transport but relies on an unreasonable freight structure. Pollution-free road
transport and low-energy rail transport should be further developed for freight transport. In addition,
improving intelligent traffic systems may also help reduce freights’ empty-load rates, which may
also help mitigate CO2. Finally, urban planning and transportation organization play an increasingly
important role in the mitigation of CO2 emissions in central China. This suggests that urban planners
should work to improve the connection between the pace of urbanization and road programs to reduce
CO2 emissions. Furthermore, technical methods could be used to strengthen the recycling of renewable
materials to improve CO2 emissions efficiency.

Author Contributions: Conceptualization of the article, H.L.S. and Y.F.X; formal analysis, investigation, and
original draft preparation, M.Z.L.; validation, H.L.S., M.Z.L, and Y.F.X.; review, editing, and supervision, H.L.S
and Y.F.X.; project administration, H.L.S.; funding acquisition, Y.F.X.

Funding: This research was funded by the National Natural Science Foundation of China, grant nos.
71974121, 71571111.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Le Quéré, C.; Andres, R.J.; Boden, T.; Conway, T.; Houghton, R.A.; House, J.I.; Marland, G.; Peters, G.P.; Van
der Werf, G.; Ahlström, A.; et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data Discuss 2012, 5,
1107–1157. [CrossRef]

2. Xu, B.; Lin, B. Differences in regional emissions in China’s transport sector: Determinants and reduction
strategies. Energy 2016, 95, 459–470. [CrossRef]

3. Lu, I.J.; Lin, S.J.; Lewis, C. Decomposition and decoupling effects of carbon dioxide emission from highway
transportation in Taiwan, Germany, Japan and South Korea. Energy Policy 2007, 35, 3226–3235. [CrossRef]

4. Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy
options. Energy Policy 2009, 37, 4523–4539. [CrossRef]

5. Zhang, C.; Nian, J. Panel estimation for transport sector CO2 emissions and its affecting factors: A regional
analysis in China. Energy Policy 2013, 63, 918–926. [CrossRef]

6. Duan, H.; Hu, M.; Zhang, Y.; Wang, J.; Jiang, W.; Huang, Q. Quantification of carbon emissions of the
transport service sector in China by using streamlined life cycle assessment. J. Clean. Prod. 2015, 95, 109–116.
[CrossRef]

7. Wang, S.; Fang, C.; Guan, X.; Pang, B.; Ma, H. Urbanisation, energy consumption, and carbon dioxide
emissions in China: A panel data analysis of China’s provinces. Appl. Energy 2014, 136, 738–749. [CrossRef]

8. Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form,
and transportation networks on CO2, emissions in China’s megacities. Appl. Energy 2017, 185, 189–200.
[CrossRef]

9. Yang, W.; Li, T.; Cao, X. Examining the impacts of socio-economic factors, urban form and transportation
development on CO2, emissions from transportation in China: A panel data analysis of China’s provinces.
Habitat Int. 2015, 49, 212–220. [CrossRef]

10. Hao, H.; Liu, F.; Liu, Z.; Zhao, F. Measuring Energy Efficiency in China’s Transport Sector. Energies 2017, 10,
660. [CrossRef]

11. Wang, Y.; Hayashi, Y.; Chen, J.; Li, Q. Changing urban form and transport CO2 emissions: An empirical
analysis of Beijing, China. Sustainability 2014, 6, 4558–4579. [CrossRef]

12. Gao, C.; Liu, Y.; Jin, J.; Wei, T.; Zhang, J.; Zhu, L. Driving forces in energy-related carbon dioxide emissions in
east and south coastal China: Commonality and variations. J. Clean. Prod. 2016, 135, 240–250. [CrossRef]

13. Qin, Q.; Li, X.; Li, L.; Zhen, W.; Yi, M. Air emissions perspective on energy efficiency: An empirical analysis
of China’s coastal areas. Appl. Energy 2017, 185, 604–614. [CrossRef]

14. Wang, Y.; Duan, F.; Ma, X.; He, L. Carbon emissions efficiency in China: Key facts from regional and industrial
sector. J. Clean. Prod. 2019, 206, 850–869. [CrossRef]

http://dx.doi.org/10.5194/essdd-5-1107-2012
http://dx.doi.org/10.1016/j.energy.2015.12.016
http://dx.doi.org/10.1016/j.enpol.2006.11.003
http://dx.doi.org/10.1016/j.enpol.2009.06.009
http://dx.doi.org/10.1016/j.enpol.2013.07.142
http://dx.doi.org/10.1016/j.jclepro.2015.02.029
http://dx.doi.org/10.1016/j.apenergy.2014.09.059
http://dx.doi.org/10.1016/j.apenergy.2016.10.052
http://dx.doi.org/10.1016/j.habitatint.2015.05.030
http://dx.doi.org/10.3390/en10050660
http://dx.doi.org/10.3390/su6074558
http://dx.doi.org/10.1016/j.jclepro.2016.05.131
http://dx.doi.org/10.1016/j.apenergy.2016.10.127
http://dx.doi.org/10.1016/j.jclepro.2018.09.185


Sustainability 2019, 11, 4712 14 of 15

15. Chang, Y.T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in
China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [CrossRef]

16. Zhou, G.; Chung, W.; Zhang, Y. Measuring energy efficiency performance of China’s transport sector: A data
envelopment analysis approach. Expert Syst. Appl. 2014, 41, 709–722. [CrossRef]

17. Cui, Q.; Li, Y. The evaluation of transportation energy efficiency: An application of three-stage virtual frontier
DEA. Transp. Res. Part. D 2014, 29, 1–11. [CrossRef]

18. Li, J.; Huang, X.; Kwan, M.-P.; Yang, H.; Chuai, X. The effect of urbanization on carbon dioxide emissions
efficiency in the Yangtze River Delta, China. J. Clean. Prod. 2018, 188, 38–48. [CrossRef]

19. Fan, M.; Shao, S.; Yang, L. Combining global Malmquist–Luenberger index and generalized method of
moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China). Energy
Policy 2015, 79, 189–201. [CrossRef]

20. Zhang, N.; Wang, B.; Liu, Z. Carbon emissionss dynamics, efficiency gains, and technological innovation in
China’s industrial sectors. Energy 2016, 99, 10–19. [CrossRef]

21. Emrouznejad, A.; Yang, G. CO2 emissions reduction of Chinese light manufacturing industries: A novel
RAM-based global Malmquist–Luenberger productivity index. Energy Policy 2016, 96, 397–410. [CrossRef]

22. Ananda, J.; Hampf, B. Measuring environmentally sensitive productivity growth: An application to the
urban water sector. Ecol. Econ. 2015, 116, 211–219. [CrossRef]

23. Ananda, J. Productivity implications of the water-energy-emissions nexus: An empirical analysis of the
drinking water and wastewater sector. J. Clean. Prod. 2018, 119, 1097–1105. [CrossRef]

24. Xi, Q.; Wang, X.; Xu, Y.; Wei, Y. Exploring Driving Forces of Green Growth: Empirical Analysis on China’s
Iron and Steel Industry. Sustainability 2019, 11, 1122. [CrossRef]

25. Zhang, N.; Zhou, P.; Kung, C.C. Total-factor carbon emissions performance of the Chinese transportation
industry: A bootstrapped non-radial Malmquist index analysis. Renew. Sustain. Energy Rev. 2015, 41,
584–593. [CrossRef]

26. Xu, B.; Lin, B. Investigating the differences in CO2 emissions in the transport sector across Chinese provinces:
Evidence from a quantile regression model. J. Clean. Prod. 2018, 175, 109–122. [CrossRef]

27. Zhang, M.; Li, H.; Zhou, M.; Mu, H. Decomposition analysis of energy consumption in Chinese transportation
sector. Appl. Energy 2011, 88, 2279–2285. [CrossRef]

28. Pongthanaisawan, J.; Sorapipatana, C. Greenhouse gas emissions from Thailand’s transport sector: Trends
and mitigation options. Appl. Energy 2013, 101, 288–298. [CrossRef]

29. Ratanavaraha, V.; Jomnonkwao, S. Trends in Thailand CO2 emissions in the transportation sector and Policy
Mitigation. Transp. Policy 2015, 41, 136–146. [CrossRef]

30. Rahman, S.M.; Khondaker, A.N.; Hasan, M.A.; Reza, I. Greenhouse gas emissions from road transportation
in Saudi Arabia—A challenging frontier. Renew. Sustain. Energy Rev. 2017, 69, 812–821. [CrossRef]

31. Liddle, B. Urban density and climate change: A STIRPAT analysis using city-level data. J. Transp. Geogr.
2013, 28, 22–29. [CrossRef]

32. Hasan, A.M.; Frame, D.J.; Chapman, R.; Archie, K.M. Emissions from the road transport sector of New
Zealand: Key drivers and challenges. Environ. Sci. Pollut. Res. 2019, 8, 937–957. [CrossRef] [PubMed]

33. Andreoni, V.; Galmarini, S. European CO2 emission trends: A decomposition analysis for water and aviation
transport sectors. Energy 2012, 45, 595–602. [CrossRef]

34. Saboori, B.; Sapri, M.; Bin Baba, M. Economic growth, energy consumption and CO2 emissions in
OECD (Organization for Economic Co-operation and Development)’s transport sector: A fully modified
bi-directional relationship approach. Energy 2014, 66, 150–161. [CrossRef]

35. Fan, F.; Lei, Y. Decomposition analysis of energy-related carbon emissions from the transportation sector in
Beijing. Transp. Res. Part. D Transp. Environ. 2016, 42, 135–145. [CrossRef]

36. M’raihi, R.; Mraihi, T.; Harizi, R.; Bouzidi, M.T. Carbon emissions growth and road freight: Analysis of the
influencing factors in Tunisia. Transp. Policy 2015, 42, 121–129. [CrossRef]

37. Andrés, L.; Padilla, E. Driving factors of GHG emissions in the EU transport activity. Transp. Policy 2018, 61,
60–74. [CrossRef]

38. Liu, J.; Zhou, H.; Sun, H. A three-dimensional risk management model of port logistics for hazardous goods.
Marit. Policy Manag. 2019, 46, 715–734. [CrossRef]

39. Liu, J.; Wang, J. Carrier alliance incentive analysis and coordination in a maritime transport chain based on
service competition. Transp. Res. Part. E Logist. Transp. Rev. 2019, 128, 333–355. [CrossRef]

http://dx.doi.org/10.1016/j.enpol.2013.03.011
http://dx.doi.org/10.1016/j.eswa.2013.07.095
http://dx.doi.org/10.1016/j.trd.2014.03.007
http://dx.doi.org/10.1016/j.jclepro.2018.03.198
http://dx.doi.org/10.1016/j.enpol.2014.12.027
http://dx.doi.org/10.1016/j.energy.2016.01.012
http://dx.doi.org/10.1016/j.enpol.2016.06.023
http://dx.doi.org/10.1016/j.ecolecon.2015.04.025
http://dx.doi.org/10.1016/j.jclepro.2018.06.145
http://dx.doi.org/10.3390/su11041122
http://dx.doi.org/10.1016/j.rser.2014.08.076
http://dx.doi.org/10.1016/j.jclepro.2017.12.022
http://dx.doi.org/10.1016/j.apenergy.2010.12.077
http://dx.doi.org/10.1016/j.apenergy.2011.09.026
http://dx.doi.org/10.1016/j.tranpol.2015.01.007
http://dx.doi.org/10.1016/j.rser.2016.11.047
http://dx.doi.org/10.1016/j.jtrangeo.2012.10.010
http://dx.doi.org/10.1007/s11356-019-05734-6
http://www.ncbi.nlm.nih.gov/pubmed/31222652
http://dx.doi.org/10.1016/j.energy.2012.07.039
http://dx.doi.org/10.1016/j.energy.2013.12.048
http://dx.doi.org/10.1016/j.trd.2015.11.001
http://dx.doi.org/10.1016/j.tranpol.2015.05.018
http://dx.doi.org/10.1016/j.tranpol.2017.10.008
http://dx.doi.org/10.1080/03088839.2019.1627435
http://dx.doi.org/10.1016/j.tre.2019.06.009


Sustainability 2019, 11, 4712 15 of 15

40. Reckien, D.; Ewald, M.; Edenhofer, O.; Liideke, M. What Parameters Influence the Spatial Variations in CO2

Emissions from Road Traffic in Berlin? Implications for Urban Planning to Reduce Anthropogenic CO2

Emissions. Urban. Stud. 2007, 44, 339–355. [CrossRef]
41. Ou, J.; Liu, X.; Li, X.; Chen, Y. Quantifying the relationship between urban forms and carbon emissionss

using panel data analysis. Landsc. Ecol. 2013, 28, 1889–1907. [CrossRef]
42. Wang, W.; Wang, J.; Guo, F. Carbon Dioxide (CO2) Emission Reduction Potential in East and South Coastal

China: Scenario Analysis Based on STIRPAT. Sustainability 2018, 10, 1836. [CrossRef]
43. Cui, Q.; Li, Y. An empirical study on the influencing factors of transportation carbon efficiency: Evidences

from fifteen countries. Appl. Energy 2015, 141, 209–217. [CrossRef]
44. Zhou, Y.; Xing, X.; Fang, K.; Liang, D.; Xu, C. Environmental efficiency analysis of power industry in China

based on an entropy SBM model. Energy Policy 2013, 57, 68–75. [CrossRef]
45. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report; Contribution of

Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change; IPCC: Geneva, Switzerland, 2007; 104p. Available online: https://www.ipcc.ch/report/ar4/syr/
(accessed on 31 May 2018).

46. Li, J.; Yang, Y.; Fan, J.; Jin, F.; Zhang, W.; Liu, S.; Fu, B. Comparative research on regional differences in
urbanization and spatial evolution of urban systems between China and India. J. Geogr. Sci. 2018, 28,
1860–1876. [CrossRef]

47. Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997,
94, 175–179. [CrossRef] [PubMed]

48. Beck, N.; Katz, J.N. What to do (and not to do) with Time-Series Corss-Section Data. Am. Political Sci. Rev.
1995, 89, 634–647. [CrossRef]

49. Appiah, K.; Du, J.; Yeboah, M.; Appian, R. Causal correlation between energy use and carbon emissions
in selected emerging economies—Panel model approach. Environ. Sci. Pollut. Res. 2019, 26, 7896–7912.
[CrossRef]

50. Thombs, R. The Transnational Tilt of the Treadmill and the Role of Trade Openness on Carbon Emissions:
A Comparative International Study, 1965-2010. Sociol. Forum 2018, 33, 422–442. [CrossRef]

51. Plötz, P.; Funke, S.A.; Jochem, P.; Wietschel, M. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles
larger than expected. Sci. Rep. 2017, 7, 16493. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00420980601136588
http://dx.doi.org/10.1007/s10980-013-9943-4
http://dx.doi.org/10.3390/su10061836
http://dx.doi.org/10.1016/j.apenergy.2014.12.040
http://dx.doi.org/10.1016/j.enpol.2012.09.060
https://www.ipcc.ch/report/ar4/syr/
http://dx.doi.org/10.11821/dlxb201706004
http://dx.doi.org/10.1073/pnas.94.1.175
http://www.ncbi.nlm.nih.gov/pubmed/8990181
http://dx.doi.org/10.2307/2082979
http://dx.doi.org/10.1007/s11356-019-04140-2
http://dx.doi.org/10.1111/socf.12415
http://dx.doi.org/10.1038/s41598-017-16684-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Influencing Factors on Transport Sector CO2 Emissions 
	Transportation Carbon-emissions Estimation 
	Influencing Factors 
	Socio-economic Factors 
	Transportation Development Factors 
	Urban Form Factors 

	Panel Data Models and Results 

	CO2 Emissions Efficiency of the Transport Sector 
	Global Malmquist Luenberger Model 
	The Results of GML and Discussion 

	Conclusions 
	References

