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Abstract: This paper measures the diversity of highly-connected financial networks using network
entropy, and policy-related findings emerge from this research. With respect to the time variation of
network entropy, international diversification of the global financial network constructed from foreign
claims of international banks has decreased since the financial crisis of 2007–2008, while foreign
claims among 20 reporting countries have concentrated more on core countries, such as the US and
UK, since 2009. This change is more vividly captured by network entropy due to an unprecedented
drop in the measurement. The results suggest that network entropy has promising potential in the
financial market.
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1. Introduction

The recent financial crises highlight the importance of interconnected global financial markets
in the global economy [1]. With the literature on financial networks growing rapidly, the empirical
works can be divided into two strands. One of those strands focuses on data-based investigations of
financial networks to identify and understand their features. For example, [2] used the BIS (Bank for
International Settlements) consolidated banking sector statistics to investigate cross-border exposure
and provided several vulnerability measures. Among them, the borrower concentration ratio, which is
based on the Herfindahl index, and is similar to entropy in the sense that two measures gauge the
extent of the diversification of lending. A higher borrower concentration ratio may be interpreted as a
higher contagion risk. [3] examined the BIS locational statistics by focusing on flows rather than on
exposures. By employing network metrics, they found that connectivity tends to decline during and
after financial crises. [4] built a bank-level global financial network and identified a systematic effect of
recessions and banking crises on the global banking network. [5] extended a cross-border network
of the banking sectors in the Euro area to include sector networks of each country and highlight the
tradeoff between efficiency and stability in financial networks.

The research of the second strand centers around a slightly different question. How do the financial
networks transmit exogenous shocks to financial markets? To respond to this question, researchers
have widely used network simulation techniques. For instance, [6] studied cross-border contagion
risk during the period 1999–2006 by using the cross-border exposure data of 17 countries from the
BIS banking statistics. They adopted the approach developed in [7] and found that the contagion risk
increased during the period. [8] derived a tipping point condition of contagion dynamics in financial
networks. Their simulation experiments revealed that the concentration and complexity of financial
networks are important amplifiers of financial fragility.
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Moreover, global financial networks are naturally related to another important topic, that of
global liquidity. For example, [9] emphasized the role of global banks in the transmission of global
liquidity across borders. In this context, it is important to develop quantitative methods for analyzing
financial networks. The current literature on financial networks focuses primarily on the connectivity
of networks via the number of links. The network structures of international financial markets are
rapidly becoming more complex due to the advancement of international financial integration. Thus,
it is apparent that finer tools are needed to analyze these highly connected networks.

In this regard, this paper aims to contribute to understanding the network structure of global
financial markets by providing a network entropy measure of network diversity, or international
diversification, proposed by [10] and readily applicable to highly connected networks. Also, there may
be regional heterogeneity in network diversification. Countries in Asia, Africa, and the Middle East
might have both, a lower volatility of banking flows, and a more diverse set of creditors. Given that
the main source of variation comes from the financial crisis that emerged in Europe, and is mainly
exposed to west European parent banks, most of which were badly affected during the crisis.

Roughly speaking, network entropy is composed of two elements, namely, eigenvector centrality
and (Shannon) entropy. Eigenvector centrality, which, in general, depends on network structures, is
one of the measures of node centrality in network analysis. Several papers advocate the usefulness of
eigenvector centrality in the analysis of financial networks ([11–14]). In turn, entropy has been used as
a measure of diversification in the economic literature. For example, [15] have developed an entropy
measure of corporate diversification. In the context of the analysis of financial networks, entropy
can be viewed as a measure of the diversification of the links of a node in a network. By combining
eigenvector centrality and entropy, the entropy of a node can be determined, and the entropies of
nodes can reveal the heterogeneity of nodes even if they are completely connected. Finally, network
entropy is a weighted sum of the entropies of the nodes in a network. Thus, network entropy is a
network-wide measure of diversification that takes into account network structures by incorporating
eigenvector centrality.

Several papers, similar to this paper, use eigenvector centrality to analyze networks. In contrast, [11]
use the dominant left eigenvector of a (modified) weighted adjacency matrix to rank participants in
the Canadian large-value transfer system with respect to their daily liquidity holdings. Similarly, [12]
employ the dominant left eigenvector of a matrix of IPO (Initial Public Offering) flows to assess the
importance of international financial centers in attracting global IPOs. [13,14], however, study financial
derivatives from the perspective of network analysis and propose a super-spreader tax based on the
dominant right eigenvector. In comparison to these papers, our paper goes further by applying an
entropy measure based on eigenvector centrality.

In this paper, we apply the measure of network entropy to the BIS global financial network
database to study highly connected global financial networks. Based on the new measure of network
diversity, the research question in this paper is as follows. How did the network structure of global
banking networks among core countries (i.e., reporting countries) evolve during the global financial
crisis of 2007–2009 with respect to diversification? Policy-related findings emerge from this research.
Regarding the time variation of network entropy, the international diversification of the global financial
network constructed from foreign claims of international banks retreats after the financial crisis of
2007–2008. While foreign claims among 20 reporting countries have become more concentrated on
core countries such as the US and the UK from 2009, the change is more vividly captured by network
entropy, which exhibits an unprecedented drop in the measure. This finding demonstrates that network
entropy is a more sensitive measure of the diversity of a financial network due to the inclusion of
information about financial network structures that is captured by eigenvector centrality.

The paper is organized as follows. Section 2 presents the data and the methodology used in this
paper. Section 3 reports the main results of the paper, and Section 4 provides the conclusion.
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2. Data and Methodology

2.1. Data

The BIS consolidated banking statistics were used in this study. This paper focused on the foreign
claims, which are defined as the sum of cross-border claims plus foreign offices’ local claims in all
currencies [16]. The sample period of foreign claims was from the first quarter of 2006 to the third
quarter of 2012. Of the reporting countries, 20 countries were chosen because of data availability
(According to the BIS consolidated banking statistics, there was only one break reported during the
sample period (2006–2012). The United States increased its reporting population in the first quarter of
2009). Figure 1 depicts the trends of the foreign claims of the 20 countries. Figure 1 reveals that the
subnetwork of the 20 reporting countries has stagnated more severely than has the whole network.
However, Figure 1 does not provide information about whether there are changes in the structures
of global financial linkages. Therefore, to answer the question, it may be beneficial to examine the
network properties of the linkages.
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Figure 2 presents global financial networks constructed based on the foreign claims of the 20
reporting countries (For visualization of financial networks, we used the software, financial network
analytics (FNA), developed by Kimmo Soramäki which is available at www.fna.fi). The size of the
nodes is proportional to the amount of lending by a country, and the thickness of the link lines is
determined by the fraction of the foreign claims of one country on another country compared to its
total foreign claims. The figures indicate that there have been changes in the relative shares of the
volumes of lending by the 20 countries. For instance, the nodes of the US and Japan are larger in
2012 than they are in 2006. To see the changes more precisely, quantitative measures of the networks,
the concept of entropy, and related tools are required.

www.fna.fi
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2.2. Methodology

A network (N, A) is defined by a set of nodes N = {1, 2, . . . , n} and an adjacency matrix
A = (αi j)1≤i, j≤n, where the subscripts, i and j, indicate nodes of the network. A node, or vertex, is the
basic unit of the network. Nodes can be individuals, groups, cities, web pages, etc. In this paper, a
node represents a country in the global financial market. Nodes are connected by edges, i.e., links. An
edge score αi j of the adjacency matrix A corresponds to the strength of the interaction between node i
and node j. In general, the edge score αi j can take either a binary value, as in an unweighted network,
or a real value, as in a weighted network. If αi j , αi j for some pair (i, j), then the corresponding
network is called a directed network. Otherwise, it is called an undirected network. In this paper,
αi j and α ji represent foreign claims of country i on country j and vice versa. It is clear that in general,
αi j , α ji. Therefore, the network is a weighted and directed network. Moreover, since the foreign
claims exhibit non-negative values, the adjacency matrix A is a non-negative matrix. If a financial
network is a complete network, then the adjacency matrix A is a primitive matrix.
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2.2.1. Transformation of Adjacency Matrices into Stochastic Matrices

Adjacency matrices must be transformed into stochastic matrices to apply the concept of (Shannon)
entropy. In this paper, we adopt the method proposed by [10]. However, before introducing the
method, a more straightforward normalization, i.e., a fraction of total foreign claims, must be considered
for comparison.

Method 1. Given an adjacency matrix A, a stochastic matrix P̂ = (p̂i j) is defined as follows:

p̂i j =
αi j∑
j
αi j

(1)

Method 1 treats each node uniformly. In other words, Method 1 does not take into account the
possible heterogeneity of nodes. Accordingly, Method 1 will serve as a benchmark.

Method 2. In the literature on networks, several measures of centrality have been developed.
Among them is the eigenvector centrality proposed by [17], which is based on neighbors’ characteristics.
The basic idea of eigenvector centrality is that a node’s centrality depends on the centralities of its
neighbors. In particular, [17] assumes that a node’s centrality is proportional to the weighted sum
of the edge scores where weights are provided by centrality scores. Given adjacency matrix A, the
assumption yields a system of homogenous linear equations for the unknown variables, i.e., the
centrality scores, such that v = {v1, v2, . . . , vn}, as in [17]:∑

j

αi jν j = λνi, 1 ≤ i, j ≤ n (2)

where λ is a proportionality constant. The centrality scores should be non-negative. Equation (2)
illustrates why the proposed centrality is called the eigenvector centrality. The pair (λ, v) corresponds
to an eigenvalue–eigenvector pair of the adjacency matrix A.

Suppose that an adjacency matrix A is a non-negative and primitive matrix. Then, the
Perron–Frobenius theorem ([18], Theorem 1.1) indicates that there exists a dominant eigenvalue–
eigenvector pair, (λmax, vmax) such that

Avmax = λmaxvmax (3)

where both λmax and vmax are positive. vmax is uniquely determined up to scale. Then, vmax is
normalized, yielding

∑
j νmax( j) = 1. vmax (j) is described as a measure of relative contribution made

by node j to the network. In global financial works, the right eigenvector vmax (j) represents the relative
contribution made by country j to lending money. Then, given an adjacency matrix A, Method 2
defines a stochastic matrix P∗ = (p∗i j) as follows:

p∗i j =
αi jνmax( j)

λmaxνmax(i)
, 1 ≤ i, j ≤ n. (4)

2.2.2. Network Entropy

Several entropy measures have been used as a complexity measure of a graph ([19]). Following [10],
we apply the well-known Shannon entropy formula. Given a discrete probability distribution D = {p1,
p2, . . . , pn}, the formula is defined as follows:

H(D) = −
n∑

i=1

pilogpi. (5)
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Note that H(D) can be interpreted as the expected value of the random variable log( 1
p ). In particular,

from the perspective of financial network analysis, entropy can be described as a measure of
diversification given that the formula allows a more evenly distributed random variable to obtain
higher entropy.

Given a stochastic matrix (P = (pi j)) derived from an adjacency matrix of a network, the entropy
(Hi) of node i is obtained by applying the formula to transition the probability distribution,
which corresponds to the ith row of the stochastic matrix(P).

Hi(P) = −
n∑

i=1

pi jlogpi j, 1 ≤ i, j ≤ n (6)

Hi(P) measures the diversity of choices of node i. The network entropy (Hnetwork) is then defined as the
weighted sum of the entropies of the nodes.

Hnetwork(P) =
n∑

i=1

πiHi (7)

where the weighting vector π = {π1, π2, ..., πn} is the unique invariant distribution of the corresponding
stochastic matrix (P).

πP = π (8)

If a stochastic matrix is ergodic, i.e., primitive, then the unique invariant distribution is
well-defined ([20], Theorem 5.9). The left eigenvector π is a measure of relative contributions
made by countries borrowing money from global financial markets. In general, Hnetwork(P) quantifies
the average diversity of the choices of the nodes. Particularly, in this paper, Hnetwork(P) is a measure of
the international diversification in the global financial networks.

3. Network Entropy

Figure 3 depicts the networks associated with the stochastic matrices, which are constructed from
the foreign claims of 20 countries. Accordingly, the figures provide snapshots of the global financial
networks in 2006 Q1 and 2012 Q3 from the perspective of a network entropy approach. The width
of each edge in the networks is proportional to the components of the stochastic matrices, and the
size of each node is determined by the invariant distributions of the stochastic matrices. Compared
with Figure 2, Figure 3 reveals the crucial roles played by leading countries in incorporating the
heterogeneity of nodes in terms of eigenvector centrality. Other countries lend disproportionately large
amounts of money to leading countries. Also, Figure 3 uncovers a notable shrinkage in Germany’s
weight and a sizable increase in the weight of the US in the global financial networks.

Figure 4 presents the time variations of the network entropies of foreign claims. The left panel
of Figure 4 represents the network entropies computed by Method 1, and the right panel depicts the
network entropies calculated by Method 2. Note that the network entropy obtained from Method 2
dropped sharply from the first quarter of 2009, while the network entropy from Method 1 experienced
only moderate changes compared to Method 2. Figure 4 illustrates the point that Method 2 may better
detect changes in network structures since it incorporates changes in the centrality of nodes, whereas
Method 1 does not.

To see which countries are most responsible for these changes in network entropy in Method 2, the
components of network entropy for the G5 countries should be examined because they are the major
players in the global markets. Figure 5 exhibits the trends of the eigenvector centralities, entropies, and
invariant probabilities of the G5 countries. The upper panel unveils the sizable rise of the eigenvector
centrality of the US from 2009 Q1. It also displays the steady increase of the eigenvector centrality of
Japan. In contrast, the eigenvector centralities of France and Germany have decreased particularly
since the 2010 European economic crisis. In particular, although Germany has the highest eigenvector
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centrality in 2006 Q1, Japan, the UK, and the US have higher eigenvector centralities in 2012 Q3 than
Germany. It seems that these changes in eigenvector centrality are essential in understanding the
different results from the two methods because the eigenvector centrality is the only distinctive feature
of Method 2. The middle panel displays the entropies of five countries. The most severe declines
appear in the cases of Japan and the UK. It is noted that these two countries are more strongly connected
with the US than are France and Germany. The observation, combined with the rising eigenvector
centrality of the US, helps to understand the drivers of the remarkable drops of the entropies of Japan
and the UK. In terms of invariant probabilities, the bottom panel reveals a rising tendency for the US
and Japan and a descending tendency for France and Germany, which implies that more money is
flowing into the US and Japan.
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Table 1 provides a more comprehensive perspective of the components of network entropy by
providing snapshots for four periods. Table 1 includes the periods 2008 Q2 and 2009 Q1 for comparison
in addition to the starting and ending periods of the sample. From Table 1, it is evidenced that
in addition to France and Germany, the eigenvector centralities of Belgium and Netherlands also
declined sizably during the sample period. Regarding the entropies, it is interesting to note that only
the entropies of Greece and Italy decreased between 2006 Q1 and 2008 Q2. Finally, the invariant
probabilities of Belgium, Austria, and Italy, in addition to France and Germany, diminished during the
sample period reflecting the European debt crisis, which implies that the importance of these countries
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in international borrowing decreased. Overall, the analysis of the components of network entropy
provides a detailed picture of how the network structures of the global financial markets evolved
during the financial crises.

Table 1. Components of network entropy 1.

Eigenvector Centrality (vi) Entropy of a Node (Hi) Invariant Probabilities (πi)

2006-Q1 2008-Q2 2009-Q1 2012-Q3 2006-Q1 2008-Q2 2009-Q1 2012-Q3 2006-Q1 2008-Q2 2009-Q1 2012-Q3

AT 0.01 0.01 0.01 0.01 1.74 1.82 1.83 1.79 0.00 0.00 0.00 0.00
AU 0.01 0.01 0.01 0.02 1.31 1.33 1.27 1.43 0.00 0.01 0.00 0.01
BE 0.06 0.07 0.04 0.01 1.87 1.89 1.89 1.87 0.02 0.03 0.01 0.00
CA 0.03 0.02 0.04 0.07 1.32 1.35 0.90 0.80 0.01 0.01 0.01 0.03
CH 0.12 0.09 0.09 0.09 1.59 1.78 1.38 1.30 0.03 0.02 0.02 0.03
CL 0.00 0.00 0.00 0.00 1.35 1.65 0.78 0.58 0.00 0.00 0.00 0.00
DE 0.16 0.15 0.13 0.11 1.73 1.97 1.83 1.67 0.17 0.17 0.13 0.11
ES 0.05 0.05 0.05 0.06 1.41 1.58 1.29 1.12 0.03 0.03 0.03 0.02
FR 0.10 0.14 0.13 0.09 1.97 2.09 1.90 1.88 0.09 0.13 0.10 0.07
GB 0.12 0.12 0.14 0.15 1.84 1.97 1.47 1.50 0.26 0.24 0.25 0.24
GR 0.00 0.00 0.00 0.00 1.70 1.41 1.54 1.42 0.00 0.00 0.00 0.00
IE 0.04 0.04 0.03 0.01 1.60 1.66 1.56 0.59 0.02 0.02 0.02 0.00
IN 0.00 0.00 0.00 0.00 1.79 1.97 1.63 1.58 0.00 0.00 0.00 0.00
IT 0.02 0.05 0.04 0.03 1.98 1.25 1.47 1.37 0.01 0.04 0.02 0.01
JP 0.08 0.08 0.10 0.14 1.66 1.82 1.34 1.14 0.05 0.05 0.06 0.12
NL 0.11 0.09 0.07 0.05 1.89 2.02 1.94 1.88 0.07 0.06 0.03 0.03
PT 0.00 0.01 0.00 0.00 2.08 2.01 2.06 1.93 0.00 0.00 0.00 0.00
SE 0.02 0.02 0.01 0.02 1.45 1.57 1.61 1.36 0.00 0.00 0.00 0.00
TR 0.00 0.00 0.00 0.00 1.62 1.79 1.67 1.56 0.00 0.00 0.00 0.00
US 0.06 0.05 0.11 0.13 1.80 1.91 1.70 1.68 0.23 0.18 0.31 0.34

1 AT: Austria, AU: Australia, BE: Belgium, CA: Canada, CH: Switzerland, CL: Chile, DE: Germany, ES: Spain,
FR: France, GB: United Kingdom, GR: Greece, IE: Ireland, IN: India, IT: Italy, JP: Japan, NL: Netherlands, PT: Portugal,
SE: Sweden, TR: Turkey, US: United States.

4. Concluding Remarks

This paper proposes network entropy as a tool for measuring the diversity of highly connected
financial networks. The computation of network entropy hinges on eigenvector centrality and Shannon
entropy. We find some supporting evidence for the advantages of this approach in that the measures
that incorporate eigenvector centrality provide additional information about changes in foreign
claims over other simple measures that do not include eigenvector centrality. Meanwhile, the global
financial crisis of 2007–2008 highlighted the importance of indirect financial linkages across countries.
To capture indirect aspects of financial connections, quantitative measures need to be sensitive to
network characteristics of counterparty countries. The results in this study show that network entropy
is tailor-made for the purpose.

Policy-related findings emerge from this research. With respect to the time variation of network
entropy, international diversification of the global financial network constructed from foreign claims of
international banks declines after the financial crisis of 2007–2008. Furthermore, it is found that foreign
claims among 20 reporting countries have concentrated more on core countries such as the US and
the UK since 2009. In other words, more money has been flowing into big players in global markets,
searching for safe heavens. This change is more vividly captured by network entropy, which reveals
an unprecedented decline. This finding illustrates that network entropy is a more sensitive measure
for the diversity of a financial network due to the inclusion of information about financial network
structures captured by eigenvector centrality. For policy-makers, properly monitoring the evolving
features of financial networks is essential for ensuring financial stability. Thus, the results suggest that
network entropy has promising potential in the financial market.
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