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Abstract: Sustainable development is of great significance. The emerging research on data-driven
computational sustainability has become an effective way to solve this problem. This paper presents
a fault diagnosis and prediction framework for complex systems based on multi-dimensional data
and multi-method comparison, aimed at improving the reliability and sustainability of the system
by selecting methods with relatively superior performance. This study took the avionics system in
the industrial field as an example. Based on the literature research on typical fault modes and fault
diagnosis requirements of avionics systems, three popular high-dimensional data-driven fault diagnosis
methods—support vector machine, convolutional neural network, and long- and short-term memory
neural network—were comprehensively analyzed and compared. Finally, the actual bearing failure
data were used for programming in order to verify and compare various methods and the process of
selecting the superior method driven by high-dimensional data was fully demonstrated. We attempt
to provide a sustainable development idea that continuously explores multi-method integration and
comparison, aimed at improving the calculation efficiency and accuracy of reliability assessments,
optimizing system performance, and ultimately achieving the goal of long-term improvement of system
reliability and sustainability.

Keywords: industrial big data; computational sustainability; multi-method comparison; reliability
and sustainability; high-dimensional data

1. Introduction

Sustainable development has become the focus of the international community. However, how to
implement technology-driven sustainability from the existing policy-driven approach is the bottleneck of
realizing sustainability. In recent years, the emerging research on computational sustainability has become
an effective way to solve this problem and thus a new research hotspot. The focus of computational
sustainability research is to develop computational models, mathematical models, and related methods to
help solve some of the most challenging problems related to sustainable development [1-3]. The advent of
the era of big data brings opportunities for computational sustainability research, as well as new challenges
such as complexity of problems, computational efficiency, and scalability of methods. Furthermore,
the use of computer and information science technology can improve the necessity and effectiveness of
resource management and allocation. Big data contains abundant information and potential knowledge,
which provides a new research method driven by data, especially multi-source data. It will greatly
improve the accuracy of the method and the efficiency of problem solving.

The development of massive multi-dimensional data and computational sustainability is critical
for meeting the challenges of sustainability. It can help people make tradeoffs, familiarize themselves
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with complex systems, and explain uncertainties. At present, more and more scholars have started to
use data mining technology to solve the problem of computational sustainability. Representational
research involves many fields such as banking [4,5], healthcare [6,7], meteorology [8-11], ecological
protection [12-14], agriculture [15,16], and disaster management [17,18]. However, the applications in
industry, especially from a system perspective, are relatively rare. In fact, the reliability and sustainability
of complex systems in industry, especially complex systems with high-end equipment, is a matter
of concern, because it relates to efficiency, cost, resources, energy consumption, human—computer
interaction, and many other aspects. The reliability and sustainability of complex systems are also
closely related to each other. Continuous improvement of the reliability level is of great benefit to
long-term sustainability. A complex system with good sustainability will greatly improve operational
efficiency and re-source utilization.

The reliability and sustainability of high-end equipment systems determine the efficiency and costs
of equipment operation and affect their products and service quality. Reliability and sustainability
assessment of high-end equipment is a complex task, and there is a need to continuously improve
the accuracy of this task. This study took the problem of fault diagnosis and reliability evaluation of
avionics systems as an example to illustrate the application of big data and computational sustainability
in industry. As a key component structure of modern aircraft, its intelligence and synthesis are constantly
enhanced with the rapid development of electronic information technology, computer science, large
aircraft, and unmanned aerial vehicle industry. The avionics systems are a complex system. There
exists a correlation between failures, and fault data present high-dimensional attributes. Studying the
degradation mode of the avionics system, especially the fault classification and diagnosis prediction
driven by high-dimensional data, is of great significance for improving the reliability and sustainability
of the system.

Massive multi-dimensional data, computational sustainability and multi-method comparisons are
undervalued in terms of improving the reliability and sustainability of industrial complex systems.
In this paper, a fault diagnosis and prediction framework for complex systems based on multi-dimensional
data and multi-method comparison is proposed. We comprehensively analyzed and compared the popular
fault diagnosis methods driven by high-dimensional data and analyzed the performance of each method.
According to the characteristics of systems and data sets, methods with relatively superior performance were
selected. To improve the reliability and sustainability of complex systems, it is necessary to continuously
evaluate and select appropriate data-driven methods. On the one hand, it can improve the accuracy and
efficiency of evaluation; on the other hand, it can save time, resources, and costs for the entire system.
On the issue of improving the reliability and sustainability of industrial complex systems, we expect to
propose a new approach that matches the characteristics of industrial complex systems and performs better
than the traditional and isolated methods by using industrial big data, machine learning, and multi-method
comparisons, rather than chasing hot spots and trends out of touch with reality.

2. Fault Diagnosis and Reliability Evaluation of Complex System

With the development of science and technology and information technology, the precision and
complexity of high-end equipment are constantly improving, and the reliability level of complex
systems is also required to be higher. Compared to traditional mechanical components, the avionics
system has not only a complex hierarchical structure but also numerous software and hardware devices.
Moreover, the reliability of the avionics system is also interfered by various external environmental
factors such as external temperature, continuous propulsion, electromagnetic interference, pollution,
and vibration. Therefore, the faults are not isolated, but rather interrelated to each other. Moreover,
they are affected by each other because of the complex hierarchical structure. There are many ways
to evaluate the reliability of the avionics system, such as analysis of the mechanism characteristics
of massive and high-dimensional fault data in the big data environment, analysis of the modeling
of correlation between faults, analysis of multi-fault mode modeling, evaluation of comprehensive
reliability, and demonstration platform of fault diagnosis.
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In recent years, aircraft fault informatics has made great progress because of a rapid acceleration
in the level of computer, modern monitoring technology, and signal processing technology, thus
improving the diagnosis and positioning levels of aircraft faults. For example, large civil aircraft
(such as A320, A340, and BoeNe777) use a central maintenance computer system to monitor the flight
status of aircraft without intervals, record faults, and problems during the flight process, and send alarm
signals to the computer [19]. For multi-fault diagnosis, great achievements have been made in recent
years. Wang et al. studied the relationship between the factors causing problems in aircraft electronic
equipment and the external environment [20]. Chunfei et al. established an engine fault diagnosis
method using the neural network to study a turbofan engine, which can obviously remove the influence
of noise in the signal, thus helping in obtaining correct analysis results of engine performance [21].
Furthermore, from the perspective of probability statistics, fault diagnosis of aircraft communication
equipment was carried out by Petrov and Marinov [22]. Combining rule-based reasoning with fuzzy
modeling, Yang proposed an overall intelligent fault diagnosis method for avionics systems [23].
Using fuzzy modeling, Zhou and Cao realized fault classification diagnosis [24]. Jia et al. considered
aircraft as engineering systems and concluded that they had different energies under different states
(failure or normal) [25]. Then, a multi-fault diagnosis model was established according to the law
of conservation of energy. Multi-fault classification diagnosis has been implemented with several
different neural network models, such as back propagation (BP) and self-organizing maps (SOM),
by Fan [26]. Using the theory of rough neural network, Du proposed a new fault diagnosis method for
avionics systems, but with higher reliability [27]. Similarly, Xu put forward a new fault classification
diagnosis theory for avionics systems on the basis of the Lyapunov index spectrum and Lyapunov
index spectral entropy [28]. Moreover, Shi proposed a rule-based fault diagnosis method [29]. From
the perspective of the physical model, Baig proposed a multi-fault diagnosis expert system [30]. Palmer
suggested that data/information collection and processing as well as database technology played
an important role in aircraft fault diagnosis [31]. Kordestani proposed an integrated system to classify
fault localization [32]. Likewise, a multi-fault diagnosis expert system was proposed by Anami, using
a dynamic fault tree method with continuous optimization [33]. Multi-fault diagnosis methods for the
aircraft mentioned above can usually meet traditional requirements. However, the definition of fault
mechanism and transmission route of the system is not comprehensive, so faults with high complexity
and multiple sources of avionics systems cannot be comprehensively and effectively diagnosed. At the
same time, the above methods can only diagnose faults, and they lack reliable evaluation of the
system. There are many research directions in the classical system reliability theory, including the
modeling and analysis of failure modes, system reliability, reliable physical model, reliability design,
maintainability, maintainability design, distribution pattern recognition of failure and maintenance,
reliability evaluation and application, and reliability and maintenance implementation [34-37]. Existing
evaluation for system reliability is usually completed by establishing a reliability model, for which the
modeling and analysis of failure modes of the system should be done first, such as failure distribution
model, constant failure rate model, and failure model related to time. No matter from external forms or
internal logical mechanisms, reliability evaluation of the avionics system is completely different from
the traditional single part (equipment) or the mechanical manufacture system composed of a set of parts
(equipment). It is impossible to use the existing mathematical statistical model of reliability and the
highly simplified and abstract system analysis method. The existing analysis and evaluation methods
for system reliability include the reliability block diagram method, failure tree method, Markov model,
Petri net method, and goal-oriented (GO) method. However, in evaluating the avionics system of
an unmanned aerial vehicle (UAV), the disadvantages of these methods are as follows:

1. Most of the methods can only be used for static modeling, and they do not reflect the relatively
complex dynamic temporal relationship of the system [22-24,26].

2. As the system states increase, there would appear an exponential explosion of state space
for the reliability analysis model, resulting in great difficulty in model construction and
solution [21,23,24,26,27,29,30,32,33].



Sustainability 2019, 11, 4557 40f17

3. With a larger system scale, it is difficult to establish a model for hierarchical requirements of the
system [21,23-27,29-31,33].

4. Ttisdifficult for the existing reliability analysis model of the system to describe system uncertainty
as well as for some unconventional influence factors (such as environment and human factors) to
be described in the model [20,21,24-28,30,32,33].

In a word, there are many methods for fault diagnosis and prediction of complex systems, and each
method is not perfect. Considering the need to continuously improve the reliability and sustainability
of systems, it is necessary to deal with such problems with the idea of sustainable development. That is,
to continuously explore multi-method integration and comparison, aiming at improving the calculation
efficiency and accuracy of reliability assessments, optimizing system performance, and ultimately
achieving the goal of long-term improvement of system reliability and sustainability. Three popular
high-dimensional data-driven fault diagnosis methods—support vector machine (SVM), convolutional
neural network (CNN), and long- and short-term memory (LSTM) neural network—were chosen in
this study to demonstrate the process of selecting the superior method. The actual bearing failure data,
provided by the Case Western Reserve University Bearing Data Center which is located in Cleveland,
OH, USA, have been used for programming in order to verify various methods.

3. Chosen Fault Diagnosis Methods

3.1. Support Vector Machine

On the basis of the statistical learning theory, SVMs are becoming increasingly popular in machine
learning activities, including classification, regression, and outlier detection. Generally, the common
binary classification problems are solved by the basic and traditional SVM at the beginning of this theory.

3.1.1. SVM Theory

The core principle of this SVM is how to transform data from the originally low-dimensional
space to the feature space with a higher dimension, in which a so-called optimal hyperplane can be
found to maximize the margin between the two classes. The methodology, algorithm, and software of
this SVM have been widely applied [38,39]. From the start, SVM is two dimensional and develops
from an optimal classification plane problem on the basis of linear separability. Its central idea can be
illustrated by the two-dimensional situation shown in Figure 1 [40]. It displays two different kinds of
data: Class A (circular) and Class B (pentagonal) points. The SVM tries to place a linear boundary H
between the two classes, aiming to maximize the classification interval (margin); namely, the distance
between the boundaries of the two classes H1 and H2 (H1, H2, and H being parallel to each other) is
maximum. Moreover, the data points on the boundaries of H1 and H2, called support vectors, are
used to define the boundaries.

Support vector

Margin

¥ ~_ Support vector
W

Support vector

Figure 1. The principle of a support vector machine.
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3.1.2. Multiclassification SVM

The SVM was originally designed for binary classification. In general, there was more than one
fault condition in addition to the health condition. Therefore, the binary classifier was not suitable for
fault diagnosis, which made it necessary to develop a method to deal with multiclassification problems.
A brief introduction of the multiclassification SVM is as follows.

Multiclassification can be obtained by combining binary classifications. If there is a classifiable
class k (k > 2), it can be separated by binary classification. On the contrary, if any two classes are
separable in a class k event, class k must be separable. Therefore, a multiclassifier can be constructed by
combining multiple binary classifiers. Several methods have been proposed now, such as one-to-one,
one-to-all, and directed acyclic graph multiclass SVM [41,42]. By comparing these methods, Hsu and
Lin indicated that the one-to-one method was more suitable for practical application than other
methods [35].

For an event or data set containing k categories, the one-to-one method is used to construct M
(M = k (k — 1)/2) classifiers, each of which contains two types of data training events or data sets.

For the training data from class i to class j, the following binary classification problems need to
be solved:

min i i gij %(a)ij)Ta)ij +C Z é;j(wij)T
t

() K(xa) + b > 1= Eifyn = i
stq (') K(xa) + 07 < =1+ &ifyn = j ey
>0

Similar to the basic and traditional SVM, K(x,) represents the classifier of the kernel function;
(%1, Yn) is the ith or jth training sample, where w € R" and b € R are the weight coefficient and intercept
parameter; EZ is the relaxation variable; and C is the parameter for the penalty term. The specific
determination methods for the weight coefficients, relaxation variable, and penalty function can be
found in literature [35]. After M classifiers are constructed, a variety of methods are applied in the
subsequent test stage, usually using the following voting decision method: While determining whether
a sample x belongs to class i or class j, if the classifier determines that the sample belongs to class i,
the value of the corresponding voting function V(x;) should be increased by 1. On the contrary,
the value of voting function V(x ]-) should be increased by 1. Finally, sample x is categorized as one
class in which V is the largest, and this voting decision is also called a “max wins” decision. Please

refer to [43] for more detailed introduction to an SVM.

3.2. Convolutional Neural Network

Computer vision (CV) is an important direction for in-depth learning practice. At present,
CV problems are mainly divided into three categories: (1) image classification, (2) object detection,
and (3) neural style transfer. If a traditional neural network is used to deal with the three categories of
CV problems, it would be very difficult to solve the problem of the high dimension of the input layer.
For a 1000x1000-pixel picture with three color channels, the input layer of the neural network would
have a dimension of more than three million, which would result in a sharp increase in the network
weight, W, as well as two unexpected consequences. On the one hand, the neural network structure
would become complex, which would lead to overfitting as the amount of data is less than that of the
network structure, but on the other, the higher requirement for the hardware environment is needed,
and the required memory and computation are larger. These can be better solved by CNN.

3.2.1. Structure of CNN

The CNN is also a multistage neural network composed of multiple screening stages and
a classification stage. The purpose of the screening stage is to extract features from the convolution
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layer and pooling layer. The classification stage closely following the screening stage is actually
a multilayer perceptron composed of several fully connected layers. To sum up, taking input and
output into account, the CNN contains five layers: (1) input layer, (2) convolution layer, (3) pooling
layer, (4) full connection layer, and (5) output layer. The function of each type of layer is described
as follows: The convolution layer, firstly, uses a filter (the size depends on the dimension of the
input data) to convolve the local area of the input layer and then forms a convolution activation unit
containing features extracted from the original data. The same convolution kernel (also known as
weight sharing) is used by each filter to extract local features of the local area of the input layer. A filter
corresponds to a frame in the next layer, and the number of frames is called the depth of the layer. Kf
and bf, represent the weight and deviation of the ith convolution kernel in the /th layer, respectively,
and X'(j) refers to the jth local area of the first layer. The convolution process is described as follows:

yTV(G) = KL XG) + v @)

where * represents convolution, and it is used to calculate the dot product of the convolution kernel
and the local area of the input layer. yfl 1 (j) represents the input of the jth neuron in the ith frame
of the (I + 1)th layer. After the convolution operation, the rectified linear units (ReLUs) activation
function is introduced to accelerate the convergence of the neural network. The introduction, types,
advantages, and disadvantages of this activation function are covered in Section 3.2.2.

In the architecture of CNN, the pooling layer is usually connected with the convolution layer.
The pooling layer plays a role in reducing the sampling operation as well as reducing the spatial size
of features and network parameters. Furthermore, it is divided into two types: (1) max pooling and (2)
average pooling. Max pooling is more frequently used than average pooling. It can conduct a local
maximum operation on the input features, reduce the parameters, and obtain the feature of the same
position. The transformation of max pooling is described as follows:

I+1) N _ I
p TV0) = (j_l)wrgafstsjw{qi(t)} 3)

where qﬁ(t) refers to the value of the tth neuron in the ith frame of the first layer, t € [(j - 1)W + 1, jW],

where W is the width of the pooling region. pflﬂ) (j) represents the value of the neuron in the (I + 1)th

layer of the pooling operation. The CNN model structure used in this study is shown in Figure 2.
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Figure 2. A convolutional neural network model structure. ReLU: rectified linear unit.
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The CNN model structure consists of two screening stages and one classification stage. The input
of CNN includes the time series signals of bearing fault vibration. The first convolution layer directly
extracts features from the original input signals without any other transformation. The features of
the input signals are extracted from two convolution layers and two pooling layers. As the number
of layers increases, the depth of each layer becomes larger, and the width of each frame becomes
smaller, as shown in Figure 2. To complete the classification process, the classification phase consists of
two fully connected layers. The Softmax function is used by the classification function, thus making
the probabilities of 10 neurons conform to the probability distribution of 10 different bearing health
conditions. The form of the Softmax function is as follows:

7

fz) = =5

YD ez

4)

where z; represents the probability of the jth output neuron.

Similar to multi-layer perceptron (MLP), the CNN can be trained. The loss function of the CNN
model is the cross-entropy between the estimated Softmax output probability distribution and the
target class probability distribution. Let p(x) represent the target distribution and g(x) represent the
estimated distribution; then, the cross-entropy between p(x) and g(x) is

H(p, q) = = ) p(x)-logq(x) (5)

In order to minimize the loss function, the Adam stochastic optimization algorithm is used for
training the CNN model. It is suitable for big data or a multiparameter model, with the advantages
of direct implementation, higher calculation efficiency, small storage space requirement, and so on.
For more details about the Adam stochastic optimization algorithm, the reader can refer to [40].
Dropout is applied in the training as one of the effective methods to control overfitting.

3.2.2. Activation Function

At present, there are mainly three frequently used activation functions: (1) sigmoid function,
(2) tanh function, and ReLU function. The sigmoid function can precisely control the input to the real
value range (0, 1). Particularly, if the input is a very large negative number, then the output is 0. On the
contrary, if the input is a very large positive number, then the output is 1. The sigmoid function has
been widely used, but fewer people have used it recently. The main reasons are as follows:

1. When the input is slightly away from the origin of coordinates, the gradient of the function
becomes smaller—almost zero. During back propagation of neural network, the differential of
each weight w is calculated by the chain rule of differential. As back propagation passes through
the sigmoid function, the differential on the chain is very small. Further, back propagation might
pass through many sigmoid functions, finally resulting in little influence of weight @ on the loss
function, which goes against weight optimization. This problem is called gradient saturation or
gradient diffusion.

2. If the function output is not centered on 0, the weight updating efficiency would decrease.

3.  Thesigmoid function is applied in exponential operation, which is relatively slow for the computer.

Tanh function is a hyperbolic tangent function and its curve is similar to that of the sigmoid
function. The same point is, as the inputs of the two functions are large or small, the outputs are almost
smooth, and their gradients are very small, which is harmful to weight update. The difference is the
output interval; the output interval of tanh is (=1, 1); and the whole function is centered on 0, which is
better than the sigmoid function.

Compared to the first two activation functions, the ReLU function is one of the most popular
activation functions and has the following advantages: There is no gradient saturation when the
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input is positive. The calculation speed is much faster. Since the ReLU function only has a linear
relationship, it is much faster than the sigmoid and tanh functions in both forward and back propagation.
Correspondingly, the ReLU function also has some disadvantages. When the input is negative, the ReLU
function is not activated completely, which suggests that once the input is negative, it would die.
During forward propagation, some areas are sensitive, while some are not, so the ReLU function would
not die. However, when it comes to back propagation, if the input is negative, the gradient would
exactly go to zero, which encounters the same problem as the sigmoid and tanh functions. The ReLU
function is also not centered on 0. Please refer to [44] for more detailed introduction to the CNN.

3.3. Long- and Short-Term Memory Neural Network Model

As for the recurrent neural network (RNN), because the neurons have the looping structure,
the characteristics of the previous state can be reserved. The structure of the RNN is shown in Figure 3.
If the network input is a time series, it can be transformed into standard neurons connecting with
each other.

Output layer
0 Ori
Ty TN Ve

O, O
@ O O O

A
S W S W S JF

() [ (L
|
|
I

184 184 E {/ Hidden layer

! |

X X X X1
Input layer

Figure 3. The neuron structure of the recurrent neural network.

As shown in Figure 3, each node represents a neuron at a time point in the time series. U represents
the weight between the input layer and the hidden layer; W, the weight of circulating from the
hidden layer to itself; and V, the weight between the hidden layer and the output layer. Furthermore,
the weight coefficients are the same for each time series. The traditional RNN would lose certain
information after each feedback because of its own structure, which means the original information
would be lost and degraded, which is the so-called gradient disappearance. In order to solve the
gradient disappearance problem, the gated recurrent unit (GRU) neural network is adopted. It is
necessary to improve the neural network unit (the hidden layer of the RNN) and the memory unit
should be added to form the GRU structure. However, compared to GRU, the LSTM neural network
is a powerful solution to the gradient disappearance problem. As one of the RNN, the LSTM neural
network can solve the gradient disappearance problem of the traditional RNN, so it can learn and train
the relationship with long-term information transmission. In terms of the whole structure, the LSTM
neural network is similar to the traditional RNN, including the input layer, hidden layer, and output
layer. Unlike the GRU, it adds multiple control gates (memory modules) on the basis of the neuron
structure of the traditional hidden layer in order to solve the gradient disappearance problem, thus
realizing long-term memory and information transmission. Specific introduction of the LSTM neural
network can be referred to in the literature [45].

4. Example Verification and Comparison

4.1. Introduction of Data Source

In this study, the rolling bearing vibration signal data have been collected from the Case Western
Reserve University Bearing Data Center for fault classification (see Supplementary Materials). The specific
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structure of the test platform includes four parts: the motor is on the left, the torque sensor is in the
middle, the power meter is on the right, and an electronic control device that cannot be seen. On the basis
of the horsepower (1 hp = 746 W), the motor has four different working conditions—namely, 1 hp, 2 hp,
3 hp, and 4 hp. The bearing to be tested is used to support the motor shaft in the test platform. Before the
operation of the whole mechanical system, a single-point fault is arranged on the bearing (adopting the
spark erosion technology), with the fault diameters of 0.007, 0.014, and 0.021 in., respectively. There are
four different kinds of bearing states: (1) normal, (2) inner ring fault, (3) ball fault, and (4) outer ring
fault. The vibration data generated by bearing operation under these four different fault states would
be different; each fault state also includes three fault diameters, 0.007, 0.014, and 0.021 in., respectively.
Therefore, there are a total of 10 fault states (including normal state) corresponding to 1 hp.

4.2. Data Processing

In this study, the data are the time series data of 480,000 * 1 fault under 3 hp. The data processing
method is as follows: Since the upper limit of the data to be read is limited by the learner, the original
vibration data are segmented with a step length of 2000 to obtain the vibration data of 240 * 2000 in
each state. Since the bearing contains 10 fault states, the data set (including labels) of 2400 * 2000 is
finally obtained.

4.3. Parameter Setting

In order to compare the results of the SVM, CNN, and LSTM, it is necessary to set the same
parameters for all of them. The specific setting is as follows: The sample size is 8000, and the proportion
of the training, validation, and test sample is 7:2:1, batch = 200. The Adam stochastic optimization
algorithm is selected for the optimization algorithm. The learning rate is set as 0.06; the ReLU function
is selected as the activation function. The Softmax classifier is adopted. The number of hidden layers
is 2, as well as stride = 1, padding = same, and dropout = 1.

4.4. Analysis of Results

44.1. SVM

The parameters of the SVM are as follows: (1) C, penalty coefficient; (2) gamma, coefficient of
the kernel function; (3) kernel, kernel function. We used rbf as the kernel function. Grid search with
cross-validation (GridSearchCV) was used to select penalty coefficient parameters. The following
figure shows the performance of the learner when C takes different values. Macro avg was used as the
evaluation function. The value of C was obtained by three-fold cross-validation.

It can be seen that when C exceeds 32, the accuracy of the learner on the training set and test
set remains basically invariant (Figure 4). Considering that the higher the value of C, the higher the
training cost, therefore we set the parameter C = 32 on the premise that the performance of the learner
was relatively stable.
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Figure 4. Classification effect of the support vector machine (SVM). Kernel = rbf, gamma = 1/n features.

Then we randomly split the data to a training set and a test set 10 times to improve the reliability
of the results. Results are shown in Table 1 below.

Table 1. Classification effect of the support vector machine (SVM).

Times 1 2 3 4 5 6 7 8 9 10  Average
F1-Score Training 1 1 1 1 1 1 1 1 1 1 1
F1-Score Test 081 080 08 077 079 081 082 081 079 081 0.804
Accuracy Test 08 08 08 08 08 08 082 081 081 0.79 0.814

4.4.2. CNN and LSTM

When choosing the parameter C of SVM, we used GridSearchCV, which combines grid search
with three-fold cross-validation. In the SVM, CNN, and LSTM, 10-fold cross-validation was used to
validate the learner. The training set and validation set were put into the learner according to the
10-fold cross strategy to ensure that the actual training data amount reached 90% of the original data
set, and then the test set (10%) was used to test the learner. We also trained many times to improve the
reliability of the results. The results of the CNN and LSTM are as follows (Tables 2 and 3).

Table 2. Classification effect of convolutional neural network (CNN).

Times  Accuracy  F1-Score Loss

25

1.5 4

1 0.975 0.989

1.0 4

0.5 4

0.0 ———
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Table 2. Cont.

Times  Accuracy  F1-Score Loss
—— train
— test
2.0 4
1.5
2 0.9817 0.998 101
0.5 1
0.0
o] 25 50 75 100 12’5 150 175 200
—— train
— test
2.0 1
1.5
3 0.982 0.995 104
0.5 A L
0.0 e
o 25 50 75 100 125 150 175 200
2.59 —— train
— test
2.0 1
1.5 A
4 1.0 1.0
1.0 A
0.5 1
001 B ——— e
(o] 25 50 75 100 12’5 150 175 200
—— train
2:51 —— test
2.0 1
1.5 A
5 0.9817 0.986
1.0 1
0.5 1
0.0 e
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Table 2. Cont.

Times  Accuracy  F1-Score Loss
—— train
—— test
2.0 4
1.5 A
6 0.9833 0.977 104
0.5 1
0.0 1
o 25 50 75 100 125 150 175 200
—— train
— test
2.0 1
1.5 A
7 0.9834 0.997 10
0.5 4
0.0 1
o 2‘5 5’0 7‘5 1(’)0 12‘5 1%0 17‘5 2(’)0
—— train
— test
2.0 4
1.5 1
8 1.0 1.0 1o
0.5 4
0.0
o 2‘5 5’0 7’5 lll)O 125 150 17’5 200
—— train
2.0 1 — test
1.5 A
9 0.9843 0.988 1.0+
0.5 4
" AMAW
0.0 1
o 2‘5 5’0 7‘5 1(’)0 12'5 1%0 17'5 260
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Table 2. Cont.

Times  Accuracy  F1-Score Loss

2.0 1

1.5 4

10 0.9921 0.995 1.0 4

0.5 -

0.0

Average  0.9828 0.9925

Table 3. Classification effect of long- and short-term memory (LSTM) neural network.

Val_acc of the Last 10
Iterations

0.9733333388964335,
0.9466666777928671, .
0.9333333373069763, os|  adhutiall
0.9900000095367432, b "‘

Accuracy Loss F1-Score

30 — tain
test

f”quw i i il W 25
AU
I

0.9933333396911621, of NPT | sl | l
0.9900000095367432, \ | ‘
0.9733333388964335, | Wi liawlt 4
0.9900000095367432, 0 — os oL
0.9900000095367432, ! et 00
0.996666669845581 o m w0 w0 w0 00 oo e

0.97

\_l__.1|l il

o

4.4.3. Comparison of Results

After finishing the classification for the SVM, CNN, and LSTM, the typical indexes are selected to
compare the results, as shown in Figure 5.

It was found that the neural network method is better than the SVM in classification accuracy.
The reason is that when the sample size is sufficient, the neural network method can show a greater
superiority than the SVM. In addition, compared to LSTM, the CNN was promoted in the accuracy
of the training set and test set. Therefore, it is concluded that when the sample size is sufficient,
the classification by the neural network method is more accurate than the SVM in the field of
classification and fault diagnosis for the time series data, and the CNN has greater superiority than
LSTM. It is worth mentioning that LSTM was difficult to train. The following table shows the timing
performance of the three chosen methods (Table 4). Our hardware environment and platform settings
are as follows:

e  Operation system: Windows 10, 64bit

e  Central processing unit: 17-8750H@2.20GHz, 12-core

e  Graphics processing unit: Nvidia Geforce GTX 1060max-Q (6 GB)

e  Memory: DDR4-2666 8G+ DDR4-2666 4G

e Hard disk: KBG30ZMS128G NVME TOSHIBA

e  Programming language and development environment: Python 3.6, Anaconda3-5.4.0
e  Machine learning platform: TensorFlow 1.13.0

In order to see if the out-performances was by chance, we used the random forest method to test
whether the results were accidental. The table below shows the results of random forest (Table 5).

The random forest method performed well on the training set, and the training time was very short.
However, the method is not very effective on the test set. The cause may be because the large number
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of sample features leads to the poor distribution of feature weights in decision trees in the random
forest. The following is the structure diagram of a single decision tree in random forest (Figure 6).
Testing results show that the out-performances of the three chosen methods are relatively accurate.

S _
0 0.2 04 0.6 0.8 1 1.2

"Test ®Train

Figure 5. Comparison for the classification effect of the support vector machine (SVM), convolutional
neural network (CNN), and long- and short-term memory (LSTM) neural network.

Table 4. Training time of SVM, CNN, and LSTM.

Method Training Time
SVM-RBF 13.72s
CNN epoch =200 9min 17s

LSTM epoch = 1000 62 h 5 min

Table 5. Classification effect of random forest.

Data set Precision Recall F1-Score
Train macro avg 1.00 091 0.95
Test macro avg 0.75 0.12 0.21
Training time 3.2

Figure 6. Structure diagram of a single decision tree in random forest.

5. Conclusions

The reliability and sustainability of complex systems in industry, especially complex systems with
high-end equipment, is a matter of concern, because it relates to efficiency, cost, resources, energy
consumption, human-computer interaction, and many other aspects. Using large data, sustainability
calculation, and multi-method comparison can improve the cost-benefit of complex systems and
minimize the risk of failure while avoiding waste and redundancy. A more reasonable selection of
fault diagnosis methods will greatly reduce the overall demand for human resources, energy and time,
and help to improve efficiency and accuracy. This paper presents a fault diagnosis and prediction
framework for complex systems based on multi-dimensional data and multi-method comparison,
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aimed at improving the reliability and sustainability of the system by selecting methods with relatively
superior performance. Three methods—SVM, CNN, and LSTM—were used for programming, then
their results were compared, thus drawing the following conclusions:

1.  The new method is better than the traditional and single statistical analysis method.

2. For the classification of the time series fault data, the accuracy of the neural network is higher
than that of the SVM.

3. The CNN and LSTM both performed well. The CNN has slight superiority than LSTM regarding
accuracy. More than that, LSTM is much more difficult to train. It takes much more time and requires
higher equipment conditions. Generally, the CNN has greater advantages in the classification of
the time series fault data than LSTM.

Through this method and train of thought, we can choose the most effective fault diagnosis and
prediction method according to the characteristics of different systems and data sets, so as to improve
the reliability and sustainability of complex systems.

In addition to these findings, there are some problems to be further studied. There is no doubt that
model-based reasoning and data-supported reasoning are different. With the development of big data
technology and the shift of projects from simulation to the physical world, data will play an increasingly
important role, especially in reliability and sustainability applications. In this paper, a framework
of production operation using industrial big data and sustainable development guiding ideology in
the industrial field is proposed, which aims to illustrate that industrial big data and computational
sustainability are of great benefit in improving the reliability and sustainability of complex systems.
Due to the variety and rapid development of data mining and machine learning methods, the method
selection in this paper is representative but also has limitations. The machine learning methods for
fault diagnosis are still not comprehensive enough, and some methods such as other neural networks,
integrated learning, and random forest should be further developed to compare the comprehensive
effect for fault classification. Follow-up research can further broaden and supplement algorithms with
better performance according to the trends and hotspots of sustainable computing.

Supplementary Materials: The dataset used is available at: http://csegroups.case.edu/bearingdatacenter/pages/
download-data-file.
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