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Abstract: In order to sustainably and reasonably evaluate the characteristics and efficiency of regional
atmospheric environment, this paper calculated the atmospheric environmental efficiency and regional
differences, which is based on the non-radial directional distance function DEA model, among 11
cities in Zhejiang Province from 2006 to 2016 in both static and dynamic dimensions. Compared
with existing researches, the atmospheric environmental efficiency evaluation system constructed
in this paper not only considered the development of regional economy, but also focused on the air
quality output so as to constrain the emission of atmospheric pollutants. The results showed that
the average value of the static efficiency of atmospheric environment in Zhejiang was 0.6824 over
the past ten years, and there was still about 32 percentage difference from the production frontier.
The room for improvement in pollution reduction and control was still huge. The pure technical
efficiency was the main factor to impede the improvement of atmospheric environment’s static
efficiency in Zhejiang. Meanwhile the dynamic efficiency of atmospheric environment in Zhejiang
reached an average annual rate of 7.60%, with a cumulative increase of 93.28%. As well, there were
significant urban differences in the growth rate, of which Hangzhou was the fastest, followed by
Ningbo and Jiaxing. The improvement of atmospheric environmental efficiency was mainly driven
by technological advancement and scale efficiency expansion. The distribution of 11 cities in the four
high and low environmental efficiency matrices was relatively uniform, and there was no “Matthew
Effect” of H/H or L/L polarization. In the future, Zhejiang needs to formulate corresponding measures
to control the atmospheric pollution by fully considering the actual conditions at different cities,
and effectively strengthen the environmental management exchanges and collaboration within the
province to enhance the overall atmospheric environment efficiency.

Keywords: atmospheric environmental efficiency; DEA model; Malmquist index; regional difference;
Zhejiang Province

1. Introduction

Sustainable atmospheric environmental efficiency evaluation is an important prerequisite for
realizing regional pollutant emission reduction and policy formulation and is also a critical link to
improve the level of regional environmental management [1]. In China, where industrialization and
urbanization are advancing, the deterioration of the air environment represented by smog pollution has
hindered the construction of ecological civilization and the high-quality development of the economy.
Therefore, how to maintain an effective control of atmospheric pollution and achieve simultaneous and
coordinate the improvement of environment with development of economy is of great significance [2,3].
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In 1998, the Organization for Economic Co-operation and Development (OECD) first proposed
the use of eco-efficiency to reflect the level of environmental performance of production units and
apply them to environmental management and decision-making processes [4]. Subsequently, the study
of the regional environmental sustainability level from the perspective of efficiency has attracted
the attention of many scholars and corporate decision makers [5–8]. In order to effectively curb the
increasingly serious air pollution problem, an increasing numbers of scholars over recent years have
begun to pay attention to research areas on economy and management such as air pollution control
and atmospheric environmental efficiency. In 2012, Wang Qi and other scholars took the lead in using
the ultra-efficient DEA model to evaluate the efficiency of air pollution control [9]. The evaluation
of atmospheric environmental efficiency stems from the deepening and expansion of environmental
efficiency evaluation in the atmospheric field and is intended to explore the air pollution cost of
economic development [10–12]. From the perspective of evaluation indicators, the DEA analysis
framework based on input-output indicators can be divided into two categories. The first always
views atmospheric pollutant emission as an undesired output indicator [11,13], while labor, capital,
energy and other factors are considered as input indicators. It is intended to increase expected
output while reducing unintended output and resource input [9]. For example, in some empirical
studies, CO2 emissions are often taken as output objects of pollutants [14–16], while SO2, NOx, and
smoke & dust are included in undesired output indicators gradually [13,17–19]. On the contrary,
many scholars hold the view that air pollutant emissions are used as input indicators and GDP as
an indicator of economic output. Considering that the emission of atmospheric pollutants cannot be
completely avoided in the process of economic activities, to some extent, the pollutant itself is also an
input, so it is reasonable to regard it as an input variable [10]. For instance, Wang Bo’s comparative
study found that when pollutants are used as input variables, the constraints are more stringent
and the decision-making unit is more likely to improve [20]. Therefore, many scholars often use
atmospheric pollutant emissions as input indicators in empirical research to conduct empirical measures
of atmospheric environmental performance [21,22], atmospheric environmental efficiency [11,19,23,24]
and measure and analysis of atmospheric pollution emission efficiency [25–27]. From the evaluation
method, the environmental efficiency measure based on the data envelopment analysis (DEA) method
and its improved model is widely used [28–30]. After Charnes et al. proposed the DEA method in
1978 [31], from the traditional radial framework to the non-radial framework considering slack variables,
different scholars have proposed improved models such as the SBM (Slacks-Based Measure)-DEA
model [32,33], Super-SBM model [10,34,35], and non-radial directional distance function (NRDDF)
DEA model [11,25]. These models focus on the combination of static efficiency and dynamic efficiency
analysis in empirical measures. The Malmquist productivity index [36–38] and the Luenberger
productivity index method [25,39] are used to decompose the technical efficiency, technological
progress and scale efficiency index of dynamic efficiency in detail. From the research object and scale,
considering the continuity and availability of data, the macroscopic research of the national level [1,15]
and provincial level [2,8,19,40,41] has received widespread attention from scholars. In the meantime,
research area has gradually turned to the empirical analysis of the mesoscopic aspects of specific
objects such as major industrial provinces [25], the Yangtze River Economic Zone [10], and a certain
province [42], but in-depth comparative studies at the city level are still few, this will not be conducive
to the sustainable development of urban air environment management.

Overall, this paper selects Zhejiang Province, an important economic province in the southeastern
coastal areas, and also one of the key areas of environmental protection and pollution prevention and
control, as the research object to build a new atmospheric environmental efficiency evaluation system,
which is in obtaining economic and air quality output while reducing the input of pollutants per unit
of atmospheric environmental pollutants. Based on the non-radial DEA model of Malmquist index,
the atmospheric environmental efficiency of Zhejiang Province and 11 cities between 2006–2016 is
measured from static and dynamic dimensions. And from the single atmospheric pollutant perspective
decomposition efficiency index, this paper obtains the factors affecting the atmospheric environment
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efficiency of different cities, and then provide reference for the optimization of air pollutant emission
reduction and regional environmental strategy in Zhejiang Province.

Compared with the existing research results, the main contributions of this paper are as follows:
(1) The non-radial DEA method has outstanding advantages in studying atmospheric environmental
efficiency and is widely used, but more attention is paid to economic indicators (GDP) in the
selection of indicators. As the output impact of air quality has been neglected, this paper constructs
a new atmospheric environmental efficiency evaluation system, which is to reduce the input of
pollutants per unit of atmospheric environmental pollutants while obtaining economic and air quality
output; (2) Combining the static atmospheric environmental efficiency assessment with the dynamic
environmental efficiency assessment can effectively and systematically identify the environmental
efficiency levels and the variance in different cities, and contribute to the establishment of local
atmospheric environmental governance strategies and sustainable development systems; (3) Compared
with national large-scale research, the evaluation of urban atmospheric environmental efficiency in
typical areas can meet the specific implementation of the “National—Provincial—City level ” air
pollution control plan, and provide evidence for atmospheric environment control at the city-level.

2. Method and Model

2.1. The Input and Output Indicators

Previous studies have shown that environmental efficiency refers to the environmental cost
of economic development [9,12]. Atmospheric environmental efficiency refers to the atmospheric
environmental cost (pollutant emissions) that regional producers use in economic activities by using
various factors for a certain period of time. The assessment of atmospheric environmental efficiency
reflects the input and output relationship among regional air pollution emissions, economic and
environmental benefits. Here, the DEA method is used to solve the problem, and the Sulfur dioxide
emissions (SO2), smoke & dust emissions, Nitrogen oxides emissions (NOx), and total industrial
exhaust emissions are taken as input indicators (Table 1). The urban Gross Domestic Product (GDP,
the key index to measure area economy development), good air quality rate, and urban environmental
air quality index (IAQI) [43–45] are used as output indicators. Among the output indicators, the good
air quality rate and the IAQI index are the most direct factors for measuring air environmental benefits.
The good air quality rate refers to the number of days per year that meet the secondary National
Ambient Air Quality Standards (GB3095-2012). IAQI is an alternative Nemerow index and reflects
both maximum and average values of concentrations of pollutants relative to their objective air quality
standard [43,44]. To maintain the positiveness of the output indicators (the greater the output value,
the better the system efficiency), the reciprocal form of IAQI is chosen as the actual calculation of
ambient air quality.

Table 1. Descriptive statistical results of input and output variables from 2006 to 2016.

Indicator Variable/(unit) Number of samples Average Standard deviation Minimum Maximum

Input
Indicator

SO2/(10,000 tons) 121 58146.26 37720.36 2232.89 213000.00
Smoke & dust/(104 tons) 121 28608.12 16704.42 2654.94 74036.99

NOx/(Ton) 121 60031.28 55996.23 6203.00 277988.20
Industrial waste gas/(108 cubic meters) 121 1971.34 1505.06 155.49 6486.95

Output
Indicator

GDP/(108 yuan) 121 2812.30 2249.76 335.20 11313.72
Good air quality rate/(%) 121 89.11 9.46 59.70 100.00

IAQI−1 121 1.05 0.26 0.65 2.03

Note: IAQI’s urban air quality comprehensive index is calculated based on the annual average
mass concentration of three conventional pollutants of SO2, NO2 and PM10 (taking into account that
PM2.5 is mainly included in the monitoring scope after 2012, the monitoring time varies from city to
city. The data is missing, so it is not included in the calculation index), their scatter plot distribution
shown in Figure 1. As well, they are evaluated by the secondary standard limit of Ambient Air Quality
Standard (GB3095-2012). The specific calculation process is based on the references [43–45].
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Figure 1. Scatter plot, distribution overlay, and box chart of the annual average concentration of SO2,
NO2, and PM10, respectively.

Based on the availability of indicators’ data, 11 prefecture-level cities in Zhejiang Province were
selected as the decision-making units of the study (Figure 2), with time spans from 2006 to 2016.
The indicator data mainly comes from the Zhejiang Statistical Yearbook (2007–2017) [46], Zhejiang
Natural Resources and Environment Statistical Yearbook (2007–2017) [47], Zhejiang Environmental
Quality Report (2001–2005, 2006–2010 and 2011–2016) [48], few additional data are available on
Zhejiang and 11 cities’ Environmental Quality Bulletin, as well as related official government websites.
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2.2. Non-Radial DEA Model Based on Malmquist Index

Data Envelopment Analysis (DEA) is often used to evaluate the efficiency of Decision-Making
Units (DMU) with multiple inputs and multiple outputs [31].

The principle of the method is mainly to determine the relatively effective production frontier
surface by means of mathematical programming and statistical data by keeping the input or output
of the decision unit unchanged. Each decision unit is further projected onto the production front
surface, and their relative effectiveness is evaluated by comparing the degree to which the decision unit
deviates from the front surface. The DEA method measures relative efficiency, and there is no need to
dimensionless process the data before applying it. The most basic DEA models are the CCR model and
the BCC model. Among them, the CCR model is based on the assumption that the production process
is a constant scale income, that is, when the input amount increases in equal proportion, the output
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should increase in equal proportion. The CCR model calculates the efficiency value of the decision
unit through the following linear programming:

min θ

s.t.



n∑
j=1

λ jxi j ≤ θxik, i = 1, . . . , m

n∑
j=1

λ jyl j ≥ ylk, l = 1, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n

(1)

In actual production, there may be a state of increasing returns to scale or diminishing returns to
scale. In order to analyze the change in the scale return of the decision unit, the efficiency value can be
calculated by the following BBC model under the assumption that the scale returns are variable:

min θ

s.t.



n∑
j=1

λ jxi j ≤ θixik, i = 1, . . . , m

n∑
j=1

λ jyl j ≥ ylk, l = 1, . . . , s

n∑
j=1

λ j = 1

λ j ≥ 0 , j = 1, 2, . . . , n

(2)

The technical efficiency defined by the above two equations is input-oriented efficiency, which
mainly measures the difference between the actual input cost of a decision unit and the minimum
input cost that can be achieved under the same output. Output-oriented DEA primarily measures the
difference between the actual output of a decision-making unit and the maximum output that can be
achieved, given the input. The output-oriented CCR model and the BCC model are planned as follows.
The technical efficiency value can be obtained by calculating 1/ϕ:

max ϕ

s.t.



n∑
j=1

λ jxi j ≤ xik, i = 1, . . . , m

n∑
j=1

λ jyl j ≥ ϕylk, l = 1, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n
min ϕ

s.t.



n∑
j=1

λ jxi j ≤ xik, i = 1, . . . , m

n∑
j=1

λ jyl j ≥ ϕylk, l = 1, . . . , s

n∑
j=1

λ j = 1

λ j ≥ 0 , j = 1, 2, . . . , n

(3)

The traditional DEA models such as the traditional CCR model [31] and the BCC model [49] have
two obvious shortcomings. Firstly, the efficiency evaluation is based on the radial measure, that means
the input or output is required to be reduced or expanded in the same proportion. When there is input
or output slack, the efficiency value will be biased. Secondly, the two models can only measure the
overall efficiency of the decision-making unit from the static dimension, and cannot process the panel
data to obtain the dynamic efficiency change trend of the decision-making unit. Therefore, we select the
non-radial measure DEA model based on the Malmquist index to solve the above two problems [50,51].



Sustainability 2019, 11, 4544 6 of 19

As well, static efficiency analysis and dynamic efficiency change analysis were adopted to reveal the
characteristics and trends of efficiency variation of decision-making units (Figure 3).Sustainability 2019, 11, x FOR PEER REVIEW 7 of 21 
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2.2.1. Non-Radial Measure DEA Model

Suppose there are n decision-making units, if which has m inputs, s outputs. The token xi j is used
to represent the i-th input of the j-th decision-making unit, and yl j is used to represent the l-th output
of the j-th decision-making unit. We introduce the following non-radial DEA model based on slack
variables to calculate the efficiency of the k-th decision-making unit:

minθ = 1
m

m∑
i=1

θi

s.t.



n∑
j=1

λ jxi j + s−i = θixik, i = 1, . . . , m

n∑
j=1

λ jyl j − s+l = ylk, l = 1, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n
s−i ≥ 0, s+l ≥ 0, i = 1, . . . , m, l = 1, . . . , s

(4)

where the s−, s+ are the slack vectors of input and output, θ is the environmental efficiency of the k-th
decision-making unit, θi is the efficiency of the i-th input, that is, the environmental efficiency of the i-th
air pollutant by the k-th decision-making unit. The total environmental efficiency θ is obtained by the
mean of the environmental efficiency of each air pollutant. According to the model, the static efficiency
of the atmospheric environment (ST) in each city can be obtained by calculating θ. It is mainly used
to measure the relative effectiveness of each city in the atmospheric environment and sustainable
development. As well, it can be further decomposed into the efficiency of various single pollutants.
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In the above model, let xi =
n∑

j=1
λ jxi j,yi =

n∑
j=1

λ jyi j, then we can think of (x, y) as a virtual DMU.

Since the s− and s+ are the slack vectors of input and output, so we have: xi ≤ θixik,yi ≥ yik, that means
the input of the virtual DMU is not higher than the input of the k-th decision-making unit, and the
output is not lower than the output of the k-th decision-making unit. For ∀i, θi is greater than 0 known
by the model, when s−, s+ are 0 and for ∀i, θi is 1, the k-th decision-making unit is DEA effective.

The virtual DMU x∗ =
n∑

j=1
λ∗jx j, y∗ =

n∑
j=1

λ∗jy j, constructed by the optimal solution, is the effective target

value of the evaluated DMU.
In addition, the above model is carried out under the assumption of constant returns to scale

(CRS), and the obtained efficiency is the comprehensive efficiency (T). If the constraint of
n∑

j=1
λ j = 1

is added, the model is carried out under the assumption of variable returns to scale (VRS), and the
obtained efficiency is pure technical efficiency (SPTE). Further, we can separate scale efficiency (SSE),
and thus judge the technical effectiveness and scale effectiveness of air pollution control in each
city [25]. The specific model is run in MATLAB software, n is 11 cities, m is 4 input indicators, and s is
3 output indicators.

2.2.2. Malmquist Productivity Index Model Method and Decomposition

The above method Equation (1) is based on static dimensions, and its efficiency index can only
reflect the relative effectiveness of different decision-making units in the same period. However,
the measurement of the change trend of decision-making efficiency between different periods needs
to be realized by dynamic analysis. This paper introduces the Malmquist Productivity Index for the
measurement of dynamic efficiency [38,52]. Refer to the Malmquist Productivity Index constructed by
Caves et al. [50] as a measure of total factor productivity (T) change from period t to period t + 1:

M(yt+1, xt+1, yt, xt) =

[
Dt(xt+1, yt+1)

Dt(xt, yt)
×

Dt+1(xt+1, yt+1)

Dt+1(xt, yt)

] 1
2

(5)

where Dt(xt+1, yt+1) denotes the validity of the period t + 1 when the DMU uses the technology Tt of
the t period as a reference, Dt+1(xt, yt) denotes the validity of the period t when the DMU uses the
technology Tt+1 of the t + 1 period as a reference.

When the Malmquist index is greater than 1, it indicates that the total factor productivity (T) from
period t to period t + 1 has a positive growth. Thus, Equation (2) can be further decomposed into:

M(yt+1, xt+1, yt, xt) =
Dt+1(xt+1, yt+1)

Dt(xt, yt)

[
Dt(xt+1, yt+1)

Dt+1(xt+1, yt+1)
×

Dt(xt, yt)

Dt+1(xt, yt)

] 1
2

(6)

where Dt+1(xt+1,yt+1)

Dt(xt,yt)
represents the technical efficiency change index (TEC), if TEC > 1, it indicates

that the technical efficiency of the decision-making unit is continuously improving and
approaching the production front, otherwise the existing technology cannot be fully utilized.

The
[

Dt(xt+1,yt+1)

Dt+1(xt+1,yt+1)
×

Dt(xt,yt)

Dt+1(xt,yt)

] 1
2

represents the technology progress change index (TPI). If TPI > 1,

it indicates that the air pollution control of the decision-making unit has technological innovation
or progress, and if TPI < 1, it indicates that the air pollution control of the decision-making unit has
technological retrogression.
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According to Fare et al. [36], in the case of variable returns to scale (VRS), technical efficiency
change (TEC) can be further decomposed into pure technical efficiency change index (PTEC) and scale
efficiency change index (SEC). Therefore, Equation (3) eventually can be decomposed into:

M(yt+1, xt+1, yt, xt) =
Dt+1(xt+1,yt+1|VRS)

Dt(xt,yt|VRS) ·
Dt+1(xt+1,yt+1|CRS)
Dt+1(xt+1,yt+1|VRS) ·

Dt(xt,yt|VRS)
Dt(xt,yt|CRS)

[
Dt(xt+1,yt+1)

Dt+1(xt+1,yt+1)
×

Dt(xt,yt)

Dt+1(xt,yt)

] 1
2

(7)

which is: T = PTEC × SEC × PTI

2.2.3. Non-Radial Measure DEA Model Based on Malmquist Index

In the DEA measure modal based on the Malmquist index, the distance function is the efficiency
value of the DMU [7,53], which can be obtained by the following four linear programming models:

Dt(xt, yt) = minθ∗1 = 1
m

m∑
i=1

θi

s.t.



n∑
j=1

λ jxi jt + s−i = θixikt, i = 1, . . . , m

n∑
j=1

λ jyl jt − s+l = ylkt, l = 1, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n
s−i ≥ 0, s+l ≥ 0, i = 1, . . . , m, l = 1, . . . , s

Dt+1(xt+1, yt+1) = minθ∗2 = 1
m

m∑
i=1

θi

s.t.



n∑
j=1

λ jxi j,t+1 + s−i = θixik,t+1, i = 1, . . . , m

n∑
j=1

λ jyl j,t+1 − s+l = ylk,t+1, l = 1, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n
s−i ≥ 0, s+l ≥ 0, i = 1, . . . , m, l = 1, . . . , s

Dt(xt+1, yt+1) = minθ∗3 = 1
m

m∑
i=1

θi

s.t.



n∑
j=1

λ jxi jt + s−i = θixik,t+1, i = 1, . . . , m

n∑
j=1

λ jyl jt − s+l = ylk,t+1, l = 1, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n
s−i ≥ 0, s+l ≥ 0, i = 1, . . . , m, l = 1, . . . , s

Dt+1(xt, yt) = minθ∗4 = 1
m

m∑
i=1

θi

s.t.



n∑
j=1

λ jxi j,t+1 + s−i = θixikt, i = 1, . . . , m

n∑
j=1

λ jyl j,t+1 − s+l = ylkt, l = 1, . . . , s

λ j ≥ 0 , j = 1, 2, . . . , n
s−i ≥ 0, s+l ≥ 0, i = 1, . . . , m, l = 1, . . . , s

(8)

In each model, if we increase the constraint of variable scale returns, we can further obtain the total
factor productivity change index (T), technical efficiency change (TEC), the pure technical efficiency
change index (PTEC), and the scale efficiency change index (SEC).
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3. Results

3.1. Static Efficiency of Atmospheric Environment in Zhejiang and its Reginal Difference

Based on Equation (4), the static results of atmospheric environmental efficiencies in 11 cities in
Zhejiang Province from 2006 to 2016 were calculated with DEA model. The results were show in the
Table 2 and Figure 4.

Table 2. Static calculation results of atmospheric environmental efficiencies in 11 cities in Zhejiang
Province from 2006 to 2016.

Cities SO2 Smoke & Dust NOx Industrial Waste Gas ST

Hangzhou 1.0260 0.5649 0.8200 0.7092 0.7808
Ningbo 0.5976 0.7349 0.3513 0.4314 0.5211

Wenzhou 0.9941 1.0192 1.0159 0.8983 0.9814
Jiaxing 0.4452 0.5064 0.5532 0.4581 0.4886

Huzhou 0.4691 0.3100 0.3514 0.3236 0.3601
Shaoxing 0.7188 0.5628 0.9136 0.7957 0.7436

Jinhua 0.8151 0.3441 0.6962 0.6449 0.6234
Quzhou 0.4090 0.2166 0.3299 0.2300 0.2932

Zhoushan 1.0000 1.0000 1.0000 1.0000 1.0000
Taizhou 0.6919 1.1258 0.7039 0.8364 0.8243
Lishui 0.6990 0.6495 1.2388 0.7635 0.8285

Average 0.7151 0.6395 0.7249 0.6446 0.6768
S.D. 0.2148 0.2898 0.2915 0.2381 0.2271

Note: ST represents the total average value of atmospheric environmental static efficiency.

From the above Table 2, it is shown that the total average value of atmospheric environmental
static efficiencies in the 11 cities was 0.6768, and still has around 32.32% improvement potential
comparing to the production frontier, which indicates that there is a long way to go in the control and
management of atmospheric pollution. Of the overall efficiencies of the 11 cities, Zhoushan is the only
city to reach production frontier. Therefore, there is much the other 10 cities can do in the management
of atmospheric pollution. The reginal differences were shown in the Figure 4. Zhoushan has the highest
efficiency and this is closely related to Zhoushan’s unique geography, climate, and underdeveloped
heavy industry. Besides, the air quality of Zhoushan is also ranked top of all Chinese cities. Except
Zhoushan, the cities with ST above 0.8 include Wenzhou, Taizhou and Lishui. However, Quzhou and
Huzhou have relatively low total static efficiency and both are below 0.4. In the perspective of air
pollutants, the emission of NOx has the highest efficiency 0.7249, followed by SO2 with an efficiency of
0.7151. Both efficiency of smoke & dust and industrial waste gas are below the average value, reaching
0.6395 and 0.6446 respectively. The atmospheric environmental static efficiencies of the above four
pollutants also have reginal differences (Figure 4). For instance, Hangzhou, Wenzhou and Zhoushan
have relatively higher efficiencies of SO2 while Jiaxing, Quzhou and Huzhou have lower efficiencies.
Taizhou, Wenzhou and Zhoushan have relatively higher efficiencies of smoke and dust, while Quzhou,
Huzhou and Jinhua have lower efficiencies. The static efficiency of NOx is higher in Lishui, Wenzhou
and Zhoushan, while lower in Ningbo, Quzhou and Huzhou. The efficiency of industrial waste gas is
higher in Zhoushan, Wenzhou and Taizhou while lower in Quzhou, Huzhou and Ningbo.



Sustainability 2019, 11, 4544 10 of 19Sustainability 2019, 11, x FOR PEER REVIEW 11 of 21 

 275 
Figure 4. Distribution of total atmospheric environmental static efficiencies in Zhejiang Province in 276 
2006, 2009 2012 and 2016, respectively. 277 

Atmospheric environmental static efficiency was further divided into pure technical efficiency 278 
(SPTE) and scale efficiency (SSE), and the results were shown in the Table 3. The average value of 279 
SPTE from 2006 to 2016 in the 11 cities in Zhejiang is 0.7790, while the average value of SSE is 0.8895. 280 
Among all the air pollutants, SPTE of NOx is the highest, reaching 0.8261, and followed by SO2 281 
reaching 0.7970. SPTE of smoke & dust is the lowest. SSE are all above 0.8. The SSE of SO2 is highest 282 
reaching 0.9150, followed by NOx (0.8923), smoke & dust (0.8804), and industrial waste gas (0.8741). 283 
Both the pure technical factor and scale factor of environmental efficiency can be improved, and pure 284 
technical factor has more potential to be improved. Most cities have higher SSE than SPTE except 285 
Hangzhou, Ningbo, Wenzhou, Zhoushan, Taizhou. In the perspective of reginal difference, the 286 
deviation of the environmental efficiencies among cities is significant, especially SPTE of which the 287 
standard deviation is 0.2270. In the perspective of every single pollutant, the standard deviation of 288 
SPTE is larger than that of SSE. Also, the SSE in most cities have been approaching production frontier. 289 
However, compared with the production frontier, Ningbo has much to do in terms of SSE. With the 290 
lowest overall SSE, Ningbo is very good at the SSE of smoke and dust. In our additional research, the 291 
SSE in Ningbo is close to or even achieving efficiency frontiers during 2011–2015. This indicates that 292 
Ningbo should pay more attention to control and manage the other pollutants including SO2, NOx, 293 
and industrial waste gas. Besides, Wenzhou and Zhoushan have been closely approaching the 294 
production frontier in both SPTE and SSE. Hangzhou has reached the production frontier in the 295 
aspect of SPTE but has much to do to improve SSE of industrial waste gas and smoke & dust.  296 

Table 3. Pure technical efficiency and scale efficiency of four air pollutants’ environmental static 297 
efficiency in 11 cities in Zhejiang Province from 2006 to 2016. 298 
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2006, 2009 2012 and 2016, respectively.

Atmospheric environmental static efficiency was further divided into pure technical efficiency
(SPTE) and scale efficiency (SSE), and the results were shown in the Table 3. The average value of SPTE
from 2006 to 2016 in the 11 cities in Zhejiang is 0.7790, while the average value of SSE is 0.8895. Among
all the air pollutants, SPTE of NOx is the highest, reaching 0.8261, and followed by SO2 reaching
0.7970. SPTE of smoke & dust is the lowest. SSE are all above 0.8. The SSE of SO2 is highest reaching
0.9150, followed by NOx (0.8923), smoke & dust (0.8804), and industrial waste gas (0.8741). Both the
pure technical factor and scale factor of environmental efficiency can be improved, and pure technical
factor has more potential to be improved. Most cities have higher SSE than SPTE except Hangzhou,
Ningbo, Wenzhou, Zhoushan, Taizhou. In the perspective of reginal difference, the deviation of the
environmental efficiencies among cities is significant, especially SPTE of which the standard deviation
is 0.2270. In the perspective of every single pollutant, the standard deviation of SPTE is larger than that
of SSE. Also, the SSE in most cities have been approaching production frontier. However, compared
with the production frontier, Ningbo has much to do in terms of SSE. With the lowest overall SSE,
Ningbo is very good at the SSE of smoke and dust. In our additional research, the SSE in Ningbo is
close to or even achieving efficiency frontiers during 2011–2015. This indicates that Ningbo should pay
more attention to control and manage the other pollutants including SO2, NOx, and industrial waste
gas. Besides, Wenzhou and Zhoushan have been closely approaching the production frontier in both
SPTE and SSE. Hangzhou has reached the production frontier in the aspect of SPTE but has much to
do to improve SSE of industrial waste gas and smoke & dust.
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Table 3. Pure technical efficiency and scale efficiency of four air pollutants’ environmental static
efficiency in 11 cities in Zhejiang Province from 2006 to 2016.

Cities

Environmental Efficiency
of SO2

Environmental Efficiency
of Smoke & Dust

Environmental Efficiency
of NOx

Environmental Efficiency
of Industrial Waste Gas ST

SPTE SSE SPTE SSE SPTE SSE SPTE SSE SPTE SSE

Hangzhou 1.0000 1.0260 1.0000 0.5682 1.0000 0.8200 1.0000 0.7092 1.0000 0.7808
Ningbo 0.9047 0.7008 1.0066 0.6979 0.8275 0.4809 0.9030 0.4965 0.9104 0.5882
Wenzhou 1.0000 0.9941 1.0000 1.0175 1.0000 1.0159 1.0000 0.8983 1.0000 0.9814
Jiaxing 0.4484 0.9927 0.5183 0.9512 0.5569 0.9928 0.4621 0.9879 0.4964 0.9802
Huzhou 0.4834 0.9759 0.3120 0.9447 0.3622 0.9737 0.3269 0.9892 0.3711 0.9697
Shaoxing 0.7804 0.9343 0.6404 0.8694 0.9417 0.9729 0.8779 0.9176 0.8101 0.9270
Jinhua 0.8375 0.9758 0.3469 0.9637 0.7147 0.9749 0.6610 0.9751 0.6400 0.9745
Quzhou 0.5528 0.8379 0.4090 0.7632 0.5314 0.7946 0.4310 0.8071 0.4811 0.7936
Zhoushan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Taizhou 0.9410 0.7492 1.0188 1.0467 0.9498 0.7520 0.9432 0.8865 0.9632 0.8577
Lishui 0.8183 0.8787 0.7495 0.8619 1.2031 1.0372 0.8166 0.9484 0.8969 0.9310

Average 0.7970 0.9150 0.7274 0.8804 0.8261 0.8923 0.7656 0.8741 0.7790 0.8895
S.D. 0.1995 0.1046 0.2790 0.1420 0.2428 0.1600 0.2408 0.1461 0.2270 0.1200

3.2. Evolution of Atmospheric Environment Dynamic Efficiency in Zhejiang Province

In order to clarify the dynamic evolution process of atmospheric environmental efficiency in
various cities of Zhejiang Province, the non-radial DEA model of the Malmquist index [49] was
used to measure the total factor productivity (T) of each city, which was decomposed into three
parts: Pure technical efficiency changes (PTEC), scale efficiency change index (SEC) and technology
progress change index (TPI). Figure 5 shows the total factor productivity and decomposition index of
the atmospheric environmental efficiency of the whole and single air pollutants in various cities of
Zhejiang Province.

For the dynamic efficiency of the overall atmospheric environment in Zhejiang Province (Figure 5a),
during the decade of 2006–2016, except for the decline in 2010–2011, the remaining years showed an
overall upward trend (T > 1), with the largest increase in 2015–2016; which reflected that Zhejiang
Province has significantly improved the overall efficiency of atmospheric environmental governance
(Figure 5b) during the “13th Five-Year Plan” period. In contrast, pure technical efficiency and scale
efficiency are both volatile (Figure 5a). In 2010–2011, the scale efficiency increased the most, and
the pure technical efficiency increased slightly. In the past ten years, in addition to a certain degree
of decline in 2010–2011, the technological progress index has also shown a growth trend, with the
largest increase in 2015–2016, which indicates that the improvement of atmospheric environmental
efficiency in Zhejiang Province in 2006–2016 is mainly attributed to technological advances, changes
in production technology and the improvement of atmospheric environmental efficiency promoted
by increasingly advanced environmental governance technologies. This can also be reflected in the
efficiency of individual pollutants. The environmental management efficiency of the three major
pollutants increased significantly during 2015–2016 (Figure 5b~e).

For SO2 emission (Figure 5c), the total factor productivity (T) maintains a growth trend, in which
pure technical efficiency and scale efficiency are also volatile, while the technological progress index
has been growing. For smoke & dust (Figure 5d), the technology advancement index has only dropped
significantly in 2010–2011, and the rest of the year has increased, However, because the scale efficiency
decline in 2012–2013 is higher than the growth of pure technology efficiency and technological progress
index, the decline of pure technical efficiency in 2013–2014 is higher than the growth of scale efficiency
and technological progress index, therefore, the overall indicators of smoke & dust in these two periods
have different degrees’ decline. For NOx emission (Figure 5e), the overall indicator has declined
in the period of 2008–2009 and 2010–2011, respectively, because of a decline in scale efficiency and
technological progress index and the sharp decline in the technological progress index. As for industrial
emissions, the efficiencies of T, PTEC, SEC and TPI have fluctuated during this decade. It can also
be seen from Figure 5c~f that 2010–2011 is a special period. In addition to the significant increase
in the technological progress index of SO2, the technological progress index of smoke & dust, NOx
and industrial waste gas has fallen sharply. Although the scale efficiency of pollution prevention and
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control has been greatly improved in order to make up for the technical deficiencies, the comprehensive
environmental efficiency of NOx and industrial waste gas are still at a reduced level. With the
implementation of major policies of The 13th Five-Year Plan for the Prevention and Control of Air
Pollution in Zhejiang Province and The 13th Five-Year Plan for the Prevention and Control of Industrial
Pollution in Zhejiang Province, Zhejiang Province has strengthened the investment in the reduction and
treatment of atmospheric pollutants and the upgrading of technological transformation. As a result,
the efficiency of the atmospheric environment has increased significantly since 2015–2016. In addition,
through the environmental efficiency changes of various atmospheric pollutants in Figure 5b, the
efficiency of SO2 emission has been in a stable high value state that is greater than 1, which is related
to the importance of SO2 governance by governments at all levels after the 11th Five-Year Plan. The
control efficiency of other pollutants fluctuated sharply, and it showed an alternating ups and downs
with time, and the overall variation characteristics were similar.
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The specific annual decomposition indices of major pollutants are further listed, as shown in
Table 4. For the dynamic efficiency growth index, SO2 emission has the highest annual Malmquist
index, with an average annual growth rate of 24.20%, followed by smoke & dust (15.07%), NOx
(12.94%), and industrial waste gas (7.28%). In terms of pure technical efficiency change, industrial
waste gas (6.87%), smoke & dust (6.59%) and NOx (2.62%) have slightly increased, while SO2 (−1.40%)
has declined to some extent, but the total annual average technology change efficiency is increasing.
For the change of scale efficiency, all four pollutants have increased; for the technological progress
index, the technological progress index of SO2 has been greatly improved, smoke & dust and NOx
have also increased moderately, and the technology progress Index of the annual average of industrial
waste gas has increased slightly. The contribution rates of the three decomposition indices to the
dynamic efficiency of air pollution prevention and control in Zhejiang Province are as follows:
Technological progress index (13.55%), scale efficiency change (3.46%), and pure technical efficiency
change (0.65%). The improvement of environmental efficiency is mainly caused by the "two-wheel
driving" of technological progress and scale expansion effect. The effect of pure technical efficiency is
less affected, and the effect on various pollutants is different, so it can be neglected. This is different
from the single-wheel drive mode; the growth of air pollution emission efficiency in China’s major
industrial provinces depends entirely on environmental technology advancement found by Wang K.L.
et al. [25]. In addition, the decomposition index of the four major pollutants is also different. For SO2

emission, the technological progress index increases significantly, while the pure technical efficiency
decreases slightly. For smoke & dust and NOx, the pure technical efficiency and scale efficiency
increase slightly, while the pure technical efficiency increase moderately. Considering that the static
efficiency of smoke & dust is not high, the technical level and management level should be emphasized
in the treatment of smoke dust. For industrial waste gas, the technological progress index has a
slight increase. Therefore, in the improvement of atmospheric environmental efficiency in Zhejiang
Province, we should pay attention to the synergy between pure technological efficiency change, scale
efficiency changes and technology progress change index. In the process of eliminating backward
production capacity, adjusting industrial structure and increasing environmental construction, we must
also optimize production network structure, innovative enterprise management mode and optimize
resource allocation.

Table 4. Dynamic environmental efficiency of various pollutants and the growth rate of their
decomposition index from 2006 to 2016.

Efficiency Indicator T PTEC SEC TPI

SO2
average annual 24.20 −1.40 2.03 30.49

cumulative value 603.29 −11.88 19.79 997.12

Smoke & Dust
average annual 15.07 6.59 8.31 18.44

cumulative value 253.75 77.62 105.19 358.71

NOx
average annual 12.94 2.62 6.85 11.28

cumulative value 198.90 26.21 81.55 161.69

Industrial
waste gas

average annual 7.28 6.87 10.25 1.91
cumulative value 88.20 81.81 140.71 18.54

Overall
pollutants (%)

average annual 13.13 0.65 3.46 13.55
cumulative value 203.51 6.02 35.76 213.79

3.3. Regional Differences in the Dynamic Evolution of Atmospheric Environmental Efficiency in Different Cities
of Zhejiang Province

Due to the inconsistent industrial structure, energy structure and industrialization of different
cities, there are regional differences in the dynamic evolution of atmospheric environmental efficiency.
Table 5 shows the results of annual dynamic efficiency calculations of atmospheric environment in cities
of Zhejiang Province. It can be seen that the total efficiency of air pollution prevention and control in
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cities of Zhejiang Province increased during 2006–2016. The fastest growth rate is in Hangzhou (1.2147),
followed by Ningbo (1.2059) and Wenzhou (1.1993), and the slowest is Quzhou (1.0538). Combined
with static overall efficiency, Hangzhou’s overall static efficiency ranks 5th (0.7808), and Ningbo ranks
8th (0.5211). As the main industrial and economically developed cities in Zhejiang Province, these
two cities still have a large room for improvement in the atmospheric environment efficiency. From
the perspective of single pollutants, SO2 > smoke & dust > NOx > industrial waste gas, in which
the average dynamic efficiency of SO2 is the fastest, at 1.2894, the dynamic efficiency levels of other
pollutants are small, and both static efficiency and dynamic efficiency of industrial waste gas are at a
low level.

By decomposing the total factor dynamic efficiency (T), the differences between cities are further
compared from the pure technical efficiency (PTEC), scale efficiency change index (SEC) and technology
progress change index (TPI). The results are shown in Table 5. It can be seen that for the total factor
dynamic efficiency (T), the annual dynamic efficiency in 11 cities is greater than 1, and the total
efficiency of the atmospheric environment is advanced. For pure technical efficiency, the pure technical
efficiency change index of Ningbo, Jiaxing, Shaoxing, Taizhou and Lishui is greater than 1, which is a
forward trend; Hangzhou, Wenzhou and Zhoushan are 1.0000, showing a steady development trend;
only Huzhou, Jinhua and Quzhou are less than 1, which is a downward trend, which means that the
three cities have not fully utilized the resources and technology potential, and there are still some
problems in the management of polluting enterprises involved in gas emissions. For scale efficiency,
except for Lishui which is slightly less than 1, and Zhoushan is 1.0000, the rest of the cities are greater
than 1. In addition, the technical progress index of all cities is greater than 1, showing a significant
progress. In fact, this is an important factor in promoting overall efficiency growth. This also indicates
that Zhejiang Province has relied on environmental technology advancement and eliminated backward
production capacity in the past decade. It has achieved good results in promoting industrial upgrading
and transformation.

Table 5. Results of dynamic atmospheric environmental efficiencies and its detail decomposition results
in Zhejiang Province.

Cities SO2
Smoke
& Dust NOx Industrial

Waste Gas T PTEC SEC TPI

Hangzhou 1.2772 1.3152 1.1439 1.1569 1.2147 1.0000 1.0523 1.1908
Ningbo 1.3673 1.1864 1.2880 1.0333 1.2059 1.0158 1.0661 1.1997

Wenzhou 1.3210 1.2314 1.1735 1.1276 1.1993 1.0000 1.0012 1.1827
Jiaxing 1.3271 1.1598 1.1709 1.0937 1.1691 1.0420 1.0046 1.1690

Huzhou 1.1827 1.1233 1.0861 1.1017 1.1217 0.9829 1.0011 1.1838
Shaoxing 1.2779 1.1802 1.1407 1.0915 1.1399 1.0362 1.0290 1.1580

Jinhua 1.2016 1.1568 1.1568 1.0726 1.1215 0.9837 1.0051 1.1643
Quzhou 1.0579 1.1735 1.0743 1.0357 1.0538 0.9912 1.3048 1.1760

Zhoushan 1.6377 1.2798 1.1778 0.9951 1.1884 1.0000 1.0000 1.1884
Taizhou 1.3865 1.0631 1.1963 1.1097 1.1476 1.0233 1.0192 1.1521
Lishui 1.1465 1.1193 1.0372 1.0588 1.0687 1.0237 0.9647 1.1402

Average 1.2894 1.1808 1.1496 1.0797 1.1482 1.0090 1.0407 1.1732

4. Discussions and Policy Implications

4.1. Classification of Atmospheric Pollution Efficiency in Different Cities

To effectively identify advantages and disadvantages of different cities on atmospheric pollution
reduction, referring to methods from Kapelko [39], Wang, K.L. [25], etc., respectively, from 2006 to
2016 it sets the global average boundaries of static efficiency and dynamic efficiency by marking H
for values that are greater than the average, L for values that are less than the average. We classify
the environmental performance of air pollution in 11 cities in Zhejiang Province advantages and
disadvantages into following four types: H/H represents static efficiency and dynamic efficiency are
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higher than total average value; L/L represents static efficiency and dynamic efficiency are lower than
total average value; H/L represents static efficiency is higher, while dynamic efficiency is lower than
total average value; and L/H represents static efficiency is lower, while dynamic efficiency is higher
than total average. Result is showing in Table 6 as below.

Table 6. High and Low classification of atmospheric environmental efficiency in 11 cities in
Zhejiang Province.

City SO2 Smoke & Dust NOx Industrial Waste Gas Overall Classification

Hangzhou H/L L/H H/H H/H H/H
Ningbo L/H H/H L/H L/L L/H

Wenzhou H/H H/H H/H H/H H/H
Jiaxing L/H L/L L/H L/H L/H

Huzhou L/L L/L L/L L/H L/L
Shaoxing H/L L/L H/L H/H H/L

Jinhua H/L L/L L/H H/L L/L
Quzhou L/L L/L L/L L/L L/L

Zhoushan H/H H/H H/H H/L H/H
Taizhou L/H H/L L/H H/H H/L
Lishui L/L H/L H/L H/L H/L

From the perspective of overall efficiency classification, three cities (Hangzhou, Wenzhou and
Zhoushan) belong to H/H regions. Not only do they have higher static efficiency, but also improving
rapidly, which brings into full play of the leading demonstration role of atmospheric environmental
efficiency. Three cities (Huzhou, Jinhua, and Quzhou) belong to L/L regions, as they have low static
efficiency and dynamic efficiency, which is lack of potential pursuance. Three cities (Shaoxing, Taizhou,
Lishui) belong to H/L regions. They have high level of current static efficiency, but since they have
lower dynamics, they have a higher risk of being passed by other cities. Two cities (Ningbo, Jiaxing)
belong to L/H regions. Even though they have low static efficiency, dynamics are fast with great
future potentiality. Overall, these four types of cities are relatively uniformed, doesn’t appear the
urban feature with H/H or L/L concentration of atmospheric environmental efficiency, which have no
significant polarization of the “Matthew Effect” [25].

From the aspect of SO2 environmental efficiency, Zhoushan, Wenzhou belongs to H/H. Huzhou,
Quzhou, Lishui belongs to L/L. Hangzhou, Shaoxing, Jinhua belongs to H/L. The rest of the cities
belongs to L/H. In the environmental efficiency of smoke & dust, Ningbo, Wenzhou and Zhoushan
belongs to H/H. Taizhou, Lishui belongs to H/L. Hangzhou belongs to L/H, while the rest of them
belongs to L/L. In the environmental efficiency of NOX, Hangzhou, Wenzhou, Zhoushan belongs to
H/H. Ningbo, Jiaxing belongs to L/H. Huzhou, Quzhou belongs to L/L, and the rest of them belongs to
L/H. Through the environmental efficiency of industrial waste gas, Hangzhou, Wenzhou, Shaoxing,
Taizhou belongs to H/H. Ningbo, Quzhou belongs to L/L. Jiaxing, Huzhou belongs to L/H, and rest of
them belongs to H/L. Overall, there is a large difference of single pollutant among cities, and there is
no obvious of convergence trend. In the future, to narrow the overall environmental efficiency gap
between cities, it is necessary to enhance exchanges and cooperation, share advanced technologies and
management experience in emission reduction and pollution control with each other.

4.2. Differentiation Strategy Formulation of Regional Air Pollution Emission Reduction

Based on the analysis above, Zhejiang province should take the actual situations of different cities
fully into consideration, and formulate differentiated air pollution precautions. Pattern 1, for H/H type
cities (such as Hangzhou, Wenzhou, Zhoushan): We should continue to maintain the high efficiency of
atmospheric environmental governance, pay attention to the high-quality development of economy
and the steady improvement of air quality. To achieve effective control of air pollution through the
cultivation of green, intelligent, innovative and other modern production factors. Pattern 2, for H/L type
cities (such as Shaoxing, Taizhou and Lishui): It is necessary to strengthen the effective improvement
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of dynamic efficiency, accelerate the transformation and upgrading of economic development mode,
and improve the level of atmospheric environment management through the improvement of pure
technical efficiency and the introduction and update of new technologies and equipment of enterprises.
Pattern 3, for L/H type cities (such as Ningbo, Jiaxing): It is necessary to further dig deep the potential
of air pollution reduction, strictly manage and implement precautions and share of air pollution
reduction. For instance, during the period of economic structure transformation, the proportion of
industrial output in GDP of Ningbo has been declining in recent years, but industrial emissions keep
growing. We need to increase investment in human, financial and technological pollution control,
accelerate the effective control of the total amount of pollutants, and strive to move towards H/H type
cities as soon as possible. Pattern 4, for L/L type cities (such as Huzhou, Jinhua and Quzhou): It is
necessary to speed up the technology introduction, make up for the shortcomings of low technical
efficiency, actively eliminate outdated production capacity, strictly prevent the polluting industries or
enterprises from moving in, and strengthen the environmental assessment examination and approval
of gas-related polluting enterprises.

4.3. Sustainability Proposals for Air Pollution Control

Pay attention to the positive effect of the improvement of pure technical efficiency on the
improvement of atmospheric environment efficiency. From the results of Table 2 above, it can be
seen that the average pure technical efficiency of atmospheric environmental efficiency in Zhejiang
Province is less than that of scale efficiency at the provincial level in terms of the overall or single
pollutant. It means that the improvement of pure technical efficiency is of positive significance to
the overall improvement of atmospheric environmental efficiency and sustainable development in
Zhejiang Province. Specifically, efforts can be made in the following aspects: 1) Increase the support
of enterprise’s scientific and technological innovation and deepen the prevention and control of
industrial pollution. For instance, it is necessary to speed up the transformation of ultra-low fuel gas
emissions in the power industry, cancel the desulfurization bypass of sintering machines and pellet
production equipment in the iron and steel industry, and effectively reduce the emissions of sulfur
dioxide, nitrogen oxides, smoke and dust in key industries. 2) Intensify the transformation of clean
exhaust gas from industrial boilers. All coal-fired boilers shall adopt desulfurization and dust removal
measures except those listed as obsolete objects. Coal-fired boilers with steam capacity of more than 20
tons/hour shall be installed in on-line monitoring facilities and connected with monitoring centers of
environmental protection departments. In order to reduce the emission of industrial waste gas, not
only the existing industrial boilers with long service time, high pollution and low efficiency can be
replaced by energy-saving and environmental-friendly boiler, but also clean energy sources such as
coal to gas and coal to electricity to replace coal combustion.

Strengthen exchanges and cooperation between cities to improve the efficiency of the overall
atmospheric environment control. In order to narrow the gap of atmospheric environmental
efficiency among cities, it is necessary to strengthen the exchange and cooperation of environmental
management among cities and share advanced pollution control technology and management
experience. Take Hangzhou, the capital of Zhejiang Province as an example, the city makes full use of
the spillover effect of technology to promote the efficiency of atmospheric environment in relatively
backward cities. Furthermore, each city relies on optimize the regional industrial layout and guide the
rational distribution of key industries in the province.

In addition, all 11 cities in Zhejiang Province should speed up the implementation of the “Releasing
Cage for New Birds” Plan [54], which means that to speed up the elimination of heavy pollution and
backward production capacity in urban built-up areas and promote the banning and renovate of “small
and scattered” backward enterprises (workshops) which have great negative atmospheric impact,
and enhance the overall efficiency of prevention and control in atmospheric environment.
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5. Conclusions

To improve the efficiency of air pollution emission and tap the potential of air pollution emission
reduction is an important way to improve China’s air environment quality and reduce and eliminate
the occurrence of haze weather. Based on the non-radial directional distance function DEA model,
this paper calculated the atmospheric environmental efficiency and regional differences of Zhejiang
Province and its 11 cities during 2006 to 2016 from the static and dynamic dimensions. The results
showed that the average static efficiency of Zhejiang atmospheric environment is 0.6768, about 32.3%
room for improvement from the production standard. It still has huge potential for pollution reduction
and control. Pure technical efficiency is the main factor that restricts the static efficiency improvement
of atmospheric environment in Zhejiang province.

From 2006 to 2016, the dynamic efficiency of atmospheric environment in Zhejiang province
achieved an average annual rate of 13.13%, accumulated increase of 203.51%, and the growth rate
differentiate significantly among cities: Hangzhou is the fastest, followed by Ningbo and Wenzhou.
The contribution of the four main atmospheric pollutants in the overall efficiency improvement is in
the order of: SO2 > smoke & dust > NOX > industrial waste gas. The improvement of atmospheric
environmental efficiency is mainly influenced by “dual motivations” of technological progress and
scale efficiency.

Among the four types of "static-dynamic efficiency" high and low efficiency matrix, the distribution
quantity of 11 cities is relatively uniformed, without polarization of the "Matthew Effect" of H/H and
L/L. In the future, differentiated air pollution prevention measures should be formulated to effectively
improve the efficiency of atmospheric environment, taking full account of the actual conditions of
different cities. In addition, the research framework of this paper can also provide reference for the city
scale atmospheric environmental management and sustainable development in other regions.
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