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Abstract: Understanding the spatial patterns of retail stores in urban areas contributes to effective
urban planning and business administration. A variety of methods have been proposed in the
scientific literature to identify the spatial patterns of retail stores. These methods invariably employ
arbitrary grid cells or administrative units (e.g., census tracts) as the fundamental analysis units.
As most urban retail stores are distributed along street networks, using area-based analysis units is
subject to statistical biases and may obfuscate the spatial pattern to some extent. Using the street
segment as the analysis unit, this paper derives the spatial patterns of retail stores by crawling
points of interest (POI) data in Zhengzhou, a city in central China. Then, the paper performs the
network-based kernel density estimation (NKDE) and employs several network metrics, including
the global, local, and weighted closeness centrality. Additionally, the paper discusses the correlation
between the NKDE value and the closeness centrality across different store types. Further analysis
indicates that stores with a high correlation tend to be distributed in city centers and subnetwork
centers. The comparison between NKDE and cell-based KDE shows that our proposed method can
address potential statistical issues induced by the area-based unit analysis. Our finding can help
stakeholders better understand the spatial patterns and trends of small business expansion in urban
areas and provide strategies for sustainable planning and development.

Keywords: POI; road network; kernel density estimation; closeness centrality

1. Introduction

Location is key to the success of the brick-and-mortar retail business. “Location, location, location,”
as one of the oldest mantras in business planning and investment, has often been the primary business
consideration when selecting an operating site. An excellent location may be enough to make a retailer
successful even if its strategy is mediocre. Similarly, a poor location can be a significant burden that
even a good retailer cannot overcome [1]. Finding the optimal location for a retail store and conducting
retail location analyses have been longstanding aims of both retail business and urban planning. In the
process of urban growth, the expansion of the city is increasingly dependent on the city’s function as
a consumer hub [2,3]. The spatial configuration of the urban retail industry is of great significance
for maximizing the economic benefits and optimizing the transport system [4]. Understanding the
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spatial distribution of commercial facilities is essential to the future planning of urban commercial retail
systems and contribute to the efficient design of urban commercial space. Aiming at the sustainable
development of the city, this improved understanding can avoid squandering planning resources that
could be better allocated to other needs.

Traditional retail location analysis focuses on the trading-area and site selection of individual
retail stores. These studies often use Reilly’s law or Huff’s model to infer the trading-area of stores
or facilities [5,6] to determine the location of a restaurant in conjunction with the location-allocation
model [7] in the context of Geographical Information Systems (GIS) [8]. Nevertheless, a single retail
store “does not tell the whole story” [9]. From the perspective of spatial planning, the location of
various types of retail stores determines the retail business structure of the city, which could be
leveraged to uncover the market potential. Many cases have examined the spatial structure of retail
commerce. Based on the central place theory, early studies defined the market area in a top-down
hierarchical system, spatially forming a business center network that is triangular in shape and contains
hexagonal market areas [10]. In addition, market, traffic, and public administration principles are used
to shape diversified distribution systems [11]. Thus, the commercial spatial structure becomes a more
diversified pattern when considering these non-spatial dimensions [12].

Given an increasing number of spatial analysis methodologies, most studies focused on the
location of retail stores by applying GIS techniques. For example, Porto et al. studied commercial and
service activities in Bologna, Italy. They discovered that retail and service activities in Bologna were
generally concentrated in areas that enjoyed better centrality [13]. Similar conclusions were reached
in a case study involving the correlation between retail stores and street networks in Barcelona [14],
Spain and in Changchun [15], Guangzhou [16], and Wuhan, China [17]. By utilizing a grid cell as the
analysis unit, the studies revealed the law of interaction between the location-distribution pattern of
urban retail stores and the structure of street networks. However, there are noticeable statistical biases
when using administrative units. First, the area-based unit analysis is subject to the classic modifiable
areal unit problem (MAUP), referring to the effect that both the analysis scale (i.e., the smallest unit
under observation) and the study scope considerably affect the statistical outcome. Second, using
area-based units is subject to the “edge effect” introduced by the relative placement of urban retailers:
In cities, the majority of stores are distributed along transport arterials, which are typically unit
boundaries. Thus, comparing to random distributions, the spatial pattern of stores summarized by
area-based units can be largely affected by the spatial organization of units [18]. To this end, it is better
to characterize the spatial pattern of retail stores using network-based structure.

Traditionally, streets are part of the public transportation network, and thus, people pay more
attention to their pass function. Since diverse urban economic activities occur on main streets,
they involve not only traffic but also trading, peddling, and selling in a more general sense, as when
Jacobs argued that streets are the lifeblood of cities rather than mere traffic channels [19–22]. As a
public space that carries traffic, economic activities, and other events, streets connect urban functions
physically and cognitively [22]. Early research on streets concentrated on road networks to explore
an extension of the Huff model [23] or the space syntax analysis [24,25]. Itzhak et al. [26] applied
the spatial syntax method to study the correlation between the spatial pattern of retail activities
and the spatial configuration of road networks in eight Israeli cities. With the progress of network
science, road network structures based on complex networks are receiving increasing levels of public
attention. Wang et al. [27] took population census blocks as the analysis unit to quantitatively analyze
the correlation between street centrality and land use intensity in Baton Rouge. In terms of land
use types, Wang et al. [28] explored the relationship between street centrality and different types of
urban land use in Shenzhen, China. Streets are also a key element in the urban image theory [29].
A series of cases have recently been conducted, including cases based on online street views [30–34].
By leveraging deep learning technology, Li et al. calculated the shadows of street trees in downtown
Boston by determining the Sky View Factor (SVF) from street images [35]. They then analyzed the
spatial distribution of solar radiation in the street canyons [36]. These studies reflect the unique value
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of the street as a line cell in urban research. To date, there are very few such studies employing the
spatial structure of street networks for retail analysis.

In recent years, along with the rapid growth of mobile location-based service (LBS) technologies,
a large amount of multi-source LBS data can be obtained from the public domain and social
media. These data include points of interest (POIs), social network records, and cell phone signal.
In addition to reflecting the human dynamics in cities, LBS data can be used to reveal the first-order
distribution (e.g., economic indices, population intensity, condition of public facilities) and second-order
characteristics (human movements, flow of goods, social ties) of urban properties to better understand
the urban function, urban structure, and characteristics of crowd movement within a city [37,38].
For example, Wu et al. [39] studied and modeled crowd movement patterns of more than 15 million
check-in records in Shanghai. Pucci et al. [40] analyzed urban residents’ spatiotemporal patterns and
commuting characteristics in Milan, Italy, based on mobile signal data. There are rich semantic features
for POI data, which could uncover the activity space in a city. Coupled with machine learning methods
like topic modeling and word vector, employing POI data are able to identify urban functional areas
with added semantic information [41,42] and classify urban land use with the support of remote
sensing imagery [43,44].

Currently, POI data is widely used for urban studies, but the analysis unit is dominated by
area-based grid cells. Streets and their near vicinity are the primary space for commercial activities to
take place. Uncovering spatial patterns of retail stores in street unit can address potential statistical
issues induced by the area-based unit analysis. Thus, studies employing street networks play an
important role in the evaluation of the retail industry aimed at sustainable development [45,46]. In this
paper, we take Zhengzhou, a city in central China, as an example to analyze the distribution patterns
of different types of retail stores by using the street as the analysis unit. The paper also explores the
correlation between the distribution of retail stores and the street centrality indicator. In terms of the
spatial distribution pattern, we applied the network-based kernel density estimation to analyze the
spatial distribution of six types of retail stores. After creating the road network data set, we calculated
the global, local, and weight closeness centrality indicators separately. By focusing on a street as a linear
analysis unit, this paper aims to reveal more detailed spatial distribution rules of different types of retail
stores and to explore their interrelated characteristics with street closeness centrality. These multiple
tiers of analyses can shed light on urban commercial facility planning and sustainable development.

The paper is organized as follows. Section 2 details the methodology of network-based kernel
density estimation and the formation of closeness centrality. Section 3 describes our study area and data.
Section 4 introduces the statistical and spatial distribution of different types of retail stores in a road
network structure. Section 5 concludes the paper with implications for sustainable urban planning.

2. Methodology

2.1. Network-Based Kernel Density Estimation

The Kernel Density Estimation (KDE) method derives the density of the observations in terms of
the continuous probability distribution of the point-based data [47]. The KDE estimates the density
value at each location as the average value within a spatial window (i.e., the bandwidth) based on a
kernel function. The kernel function is a continuous normalized function that is centered at a particular
point and summarizes values within a given bandwidth [48], as defined by Equation (1).

f̂ (x) =
1
h2

n∑
i=1

K
(x− xi

h

)
(1)

where h is the bandwidth and x-xi indicates the distance between the center of the kernel (x) and the
location xi. There are different types of kernels used for KDE. Here the popular quartic function is
employed [15], as given by Equation (2).
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k(x) =

3π−1
(
1− vTv

)2
vTv < 1

0, otherwise
(2)

where v is di/h (di is the distance from the kernel center), and T indicates the transpose of the matrix.
Typically, the KDE uses grid cells as the analysis unit and the Euclidean distance as the distance
metric. As the urban space is not homogenous because of the mixed land use and the structure of road
networks, other forms of analysis units (e.g., census tracts) and distance metrics (e.g., the shortest path
distance) have been applied to real-world density assessments.

The network-based kernel density estimation (NKDE) method is the network extension of the
two-dimensional KDE. The distance metric employed by the NKED method is the shortest path
distance, which avoids the oversimplified Euclidean distance measure. In addition, the topological
relationship of the line elements in the network is considered. To avoid the overestimation of the
density and improve the computational efficiency, the equal-split kernel function method is introduced
to normalize the estimation results [49]. Suppose that the shortest path from x to xi contains p nodes:
v1, . . . , vp and that ni represents the degree of the node vi, the form of the equal-split kernel function
for the network-based kernel density estimator [50] is defined by Equation (3).

K(x) =

 k
( x−xi

h

)
/((n1 − 1)(n2 − 1) · · · · · · (ns − 1)), x− xi ≤ h

0, x− xi > h
(3)

Stores may overlap in certain urban areas, such as near the central business district. To ensure
the accuracy of the measure, overlapped store locations were treated as the same point. The point
was weighted by the number of overlaps using the quantile mapping method, which could avoid
the skewed distribution of stores in highly clustered areas [51]. Then the kernel density value was
weighted for calculation. This method sorted the number of overlapped stores in ascending order, the
the ranks were used to compute the normalized weight value. Given the store set as c, the weight is
calculated by Equation (4).

wk =
(k− 1)(rmax − rmin)

mc −me − 1
+ rmin (4)

where wk is the weight of the kth ranked store location (from the smallest to the largest), rmax and rmin
are the user-defined parameters that control the influence of the weights on the kernel estimator, and
they are set to 2 and 1, respectively; mc and me are the total count of the c and the number of equal
values in c, respectively.

2.2. Closeness Centrality Index

The concept of closeness centrality has been used in the complex network theory [52,53]. It measures
how central a node is with respect to other nodes in the network [54]. Urban roads are a typical spatial
network which can be modeled by two methods. The first method is the primal network: The method
defines the road intersection as nodes; then, the road segment with the real length is abstracted into
the edge of the network. The other method is the dual network: The method abstracts the roads into
nodes and the connection between road segments into edges of the network. Comparing to the dual
network method, the primal network is able to retain the complete spatial network characteristics,
such as position and distance, and is invariably adopted by most GIS [55]. For this reason, this paper
employs the primal network and calculates the index of the closeness centrality (Cc

i ) to measure the
characteristics of the network nodes and edges. The closeness centrality is defined by Equation (5) [13].

Cc
i = (N − 1)/

N∑
j=1, j,i

di j (5)
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where N is the total number of nodes in the network, and di j are the shortest path distance between
nodes i and j.

The closeness centrality can be classified into the global closeness centrality (GCC) and the local
closeness centrality (LCC). The former calculates all the nodes in the network, while the latter only
involves nodes around a target node. To derive the LCC, an arbitrary distance value is usually applied
to estimate the buffer of the node. For example, in the case of Barcelona, Porta et al. [14] defined three
neighborhoods with a distance buffer of 800 m, 1600 m, and 2400 m, respectively. To overcome this
arbitrary nature, a method based on the modularity indicator is used to define the buffer, generating
network-based communities (or subnetworks). The modularity Mc quantifies how good a community
or a network partition is, as given by Equation (6) [56].

Mc =

nc∑
c=1

Lc

L
−

(
kc

2L

)2 (6)

where nc is the number of subnetworks, Lc is the number of edges within a subnetwork, kc is the total
degree of nodes in the subnetwork, and L is the total number of edges in the network. There are
many modularity-based community detection algorithms (e.g., Fast unfolding, Combo, Informap,
and Label propagation.) According to the study of Huang et al. [57], the Combo algorithm is more
suitable for detecting spatial network communities. With the modularity value being the optimization
objective, this algorithm discovers communities through three optimization strategies: Community
division, community merging, and intercommunity node shift [58]. The weight of the edge is defined
by the number of bus lines between nodes. The road network in the study area is thus divided into
30 subnetworks with a module value of 0.9046 by the Combo algorithm (Figure 1).
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It can be seen that Cg
i represents the global feature of the nodes in the network, while Cl

i describes
the local features. Because a road serves both the global (relative to the entire city) and the local
(relative to the subnetwork) functions, the weighted value of the Cg

i and Cl
i is used as an aggregate

measure of the closeness centrality of the node, as shown in Equation (7) [59].
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Ci = (1− um) ∗Cl
i + um ∗Cg

i , um = ecinter
m /ecm (7)

where um, ecm are the weight and the edge counts of the subnetwork m, respectively; ecinter
m is the inter

edge counts between the subnetwork m and other subnetworks. The weighted closeness centrality of
each node is calculated separately by Equation (7), and the average centrality value of the two nodes of
the road segment is generated as the closeness centrality of the road segment. Here, the Urban Network
Analysis tool developed by Sevtsuk et al. [60] was used to calculate the node closeness centrality.

3. Study Area and Data

Henan province is the most populous province in China, and its capital, Zhengzhou, is the political,
economic, technical, and educational center of over 100 million people in central China. It is located on
the south bank of the middle reaches of the Yellow River (Figure 1). It is found in China’s hinterland
and is known colloquially as “the center of sky and earth.” The geographical coordinates of the city
range from 112◦42′–114◦14′ E and 34◦16′–34◦58′ N. The total area of Zhengzhou is 7446 km2 with an
urban area of 1010 km2 and a built-up area of 549.33 km2. The economy of Zhengzhou ranks third in
central China and 17th among all Chinese cities in terms of GDP. In 2016, Zhengzhou was identified
as one of the fastest-growing cities in China [61]. Moreover, Zhengzhou is located at the intersection
of the national ordinary railway network and the high-speed railway network. The transportation
advantages have made Zhengzhou a commercial and trade mecca in central China.

Our study area is the contiguously urbanized built-up area of Zhengzhou. The area is situated
in central Zhengzhou, bounded on the north, east, west, and south of the 4th ring road of the city,
as shown in Figure 1. This area was selected because of the large concentration of retail stores in
the area. We extracted POI data using the application programming interface (API) from Baidu
Maps (map.baidu.com) and Gaode Maps (www.amap.com), which are two primary mapping service
providers in China, to construct a retail store dataset. Specifically, in order to obtain records for all
retail stores, we generated regular grid rectangles as the querying region. The rectangle is 15” in width
and 12” in height. There are 4133 rectangles in the study area. Each record collected contains a store’s
name, address, and location coordinates.

We then divided the retail stores into six broad categories consisting of specialty stores (SS),
department stores (DS), supermarkets (SMS), furniture stores (FS), construction material stores (CMS),
and consumer product stores (CPS), which mirrors the classification system used by the Chinese
government [12]. A specialty store is defined as a store that sells specific goods like clothes, footwear,
electronic products, etc. It is further refined into seven subtypes such as office supply stores (OSS),
apparel shop stores (AOS), home appliance stores (HAS), drug stores (DGS), car stores (CAS), cosmetic
stores (CTS), and other stores (OTS). The spatial datasets of the retail stores and street network were
built with ESRI ArcGIS. The final data set includes 78,777 retail stores (Table 1), 3523 network nodes,
and 5569 network edges of the street with the red line in the study area, as illustrated in Figure 2.

Table 1. Descriptive summary of retail stores in the study area.

Store Type Store Subtype Store Count Road Count Average Stores
Per Street

Line Cell
Count

Average Stores
Per Line Cell

Specialty
stores
(SS)

Office supply stores (OSS) 4285 897 4.7770 1374 3.1186
Apparel shop stores (AOS) 15456 1245 12.4145 1829 8.4505

Home appliance stores (HAS) 4919 1035 4.7527 1626 3.0252
Drug stores (DGS) 3142 979 3.2094 1555 2.0206
Car stores (CAS) 3811 434 8.7811 795 4.7937

Cosmetics stores (CTS) 3569 860 4.1500 1367 2.6108
Other stores (OTS) 6587 1491 4.4178 2156 3.0552

Subtotal 41769 2285 18.2796 3335 12.5244

Department stores (DS) 249 121 2.0579 179 1.3911
Supermarkets (SMS) 2377 823 2.8882 1375 1.7287
Furniture stores (FS) 4211 492 8.5589 803 5.2441

Construction material stores (CMS) 13271 1147 11.5702 1887 7.0329
Consumer product stores (CPS) 16900 1966 8.5961 2967 5.6960

All Stores (AS) 78777 2652 29.7048 3934 20.0247

map.baidu.com
www.amap.com
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4. Results and Discussion

4.1. Descriptive Statistics for Retail Stores

The results including the descriptive statistics of stores, roads, and line cells (with a length of
400 m where the stores are located) are given in Table 1. There are 41,769 SS distributed on 2285 roads
and within 3335 line cells, with 18.28 stores on each road and 12.52 stores in each line cell on average.
The second largest number comes from 16,900 CPS, which are evenly located in densely populated
areas. The CMS, however, are concentrated in the urban fringe due to its demand for land use and the
sensitivity to the land lease. Therefore, the density of CPS is generally lower than that of the CMS.

A 2 km bandwidth is used to calculate the NKDE value for all store types. The conditional
cumulative distribution function (CCDF) is used to calculate the statistical distribution of the NKDE
value. The CCDF indicator, which is defined as F(α) = P(x > α), reflects the statistical distribution of
samples. The sum of probabilities can be derived when the CCDF value is larger than α. Generally,
the NKDE value of all store types follows a power-law distribution (Figure 3), referring to the fact
that the number of roads decreases geometrically with the increase of the NKDE value. Among all
store types, the SS has the longest tail, which indicates that it involves more roads due to its dense
distribution. On the contrary, the DS has the shortest tail. A similar power-law distribution has been
observed in seven SS subtypes, among which the AOS has the longest tail, and the DGS has the shortest
tail (Figure 4).
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4.2. Network-Based Spatial Patterns of Retail Stores

The method described in Section 2.1 is used to calculate the density value of each line cell.
The calculation is based on each line cell. It retrieves the point events on all line cells within a given
bandwidth range (measured by the network distance) and calculates the corresponding kernel density
value through the kernel function. Then, the line cell length is used as the weight to derive the
line density, as shown in Figures 5–7. In the figures, the NKDE value of a store type represents the
concentration of the stores on the road. The NKDE is visually divided into six classes based on the
Jenks natural breaks. All stores in the study area are mainly distributed between West 3rd Ring road,
Lianyungang-Khorgos Highway, Zhongzhou Avenue, and South 3rd Ring Road (Figure 5). They are
concentrated most densely in the Erqi Square near the Zhengzhou Railway Station (position 1O in
Figure 5). As a traditional business center of Zhengzhou city, this area embodies many large shopping
malls. A large number of furniture and home appliance stores are located in the area adjacent to
Weilai Road, Zhongzhou Avenue, Zhengbian Road, and Longhai Expressway (position 2O in Figure 5).
Additionally, many stores are concentrated in the area to the east of Huayuan Road, West of Zhongzhou
Avenue, and North of Sanquan Road (position 3O in Figure 5), and at the intersection of Zhongzhou
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Avenue and South 3rd Ring Road (position 4O in Figure 5). We also performed the network-based KDE
for the six store types (Figure 6) and the seven SS subtypes (Figure 7). Table 2 shows the statistical
results of the road KDE values for these stores.

Sustainability 2019, 11, 4539 9 of 20 

concentration of the stores on the road. The NKDE is visually divided into six classes based on the 
Jenks natural breaks. All stores in the study area are mainly distributed between West 3rd Ring road, 
Lianyungang-Khorgos Highway, Zhongzhou Avenue, and South 3rd Ring Road (Figure 5). They are 
concentrated most densely in the Erqi Square near the Zhengzhou Railway Station (position ① in 
Figure 5). As a traditional business center of Zhengzhou city, this area embodies many large shopping 
malls. A large number of furniture and home appliance stores are located in the area adjacent to 
Weilai Road, Zhongzhou Avenue, Zhengbian Road, and Longhai Expressway (position ② in Figure 
5). Additionally, many stores are concentrated in the area to the east of Huayuan Road, West of 
Zhongzhou Avenue, and North of Sanquan Road (position ③ in Figure 5), and at the intersection of 
Zhongzhou Avenue and South 3rd Ring Road (position ④ in Figure 5). We also performed the 
network-based KDE for the six store types (Figure 6) and the seven SS subtypes (Figure 7). Table 2 
shows the statistical results of the road KDE values for these stores. 

 
Figure 5. Network-based KDE value for all retail stores. 

  
(a) (b) 

Figure 5. Network-based KDE value for all retail stores.

Table 2. Statistics of network-based KDE values by store type.

Store Type Store Subtype Average Median Maximum Standard Deviation

Specialty stores
(SS)

Office supply stores (OSS) 6.2003 3.2650 115.6580 8.5152
Apparel shop stores (AOS) 17.6005 6.6483 479.3170 29.8941

Home appliance stores (HAS) 6.1540 3.5878 129.5320 9.3261
Drug stores (DGS) 3.8343 2.2271 29.3573 4.1453
Car stores (CAS) 4.0902 1.1406 328.1910 16.7913

Cosmetics stores (CTS) 4.7676 3.1391 70.3148 5.9746
Other stores (OTS) 8.2742 5.9976 139.8360 8.4355

Subtotal 40.3303 22.3597 766.2540 52.1403

Department stores (DS) 0.3422 0.0388 11.8333 0.8177
Supermarkets (SMS) 3.1721 2.3872 63.3645 3.6940
Furniture stores (FS) 5.5538 1.5317 191.4990 13.9360

Construction material stores (CMS) 14.4089 5.1197 506.5090 35.1740
Consumer product stores (CPS) 17.9092 12.5695 406.3060 20.4603

All Stores (AS) 74.5491 45.1345 1105.7300 88.6215
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4.3. Correlations between NKDE and Closeness Centrality

We calculated the GCC, LCC, and WCC values in the study area (Figure 8). The definition of
the neighborhood in the LCC calculation is the road network community generated by the Combo
algorithm (Figure 2). The closeness centrality manifests a significant level of spatial heterogeneity.
The higher the closeness centrality value of a road is, the shorter the road’s average distance to other
roads. The GCC represents the average road distance, which gradually decreases from the city center
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to the periphery (Figure 8a). However, the LCC shows the average distance in a subnetwork and
identifies a road with high centrality in a local area. Unlike GCC, there are many local areas with a
high LCC value. The old town area surrounding the Zhengzhou East Railway Station has the highest
value (position 1O in Figure 8b). The roads near the Zhengzhou East Railway Station (position 2O in
Figure 8b) and the roads between the Zhengping Highway and Daxue South Road (position 3O in
Figure 8b) also have high LCC values. The WCC shows both the average distance of the global road
network and local subnetworks. Roads with a high WCC value are mainly distributed near the railway
station in the old town area. The roads near Erqi Square have the highest WCC value, which means
that those roads have a considerable level of accessibility to all other roads in the network.
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The correlation coefficient between the NKDE value and the closeness centrality is also calculated,
as shown in Table 3. Among the six store types, SS and SMS have the highest level of correlation,
meaning that they are relatively accessible to all other nodes and have considerable potential to attract
customers. In particular, the high correlation coefficient is shown between SS and WCC, between SS
and GCC, as well as between SS and LCC. This is very likely due to the location advantage of SS,
which are normally distributed in the center of the subnetworks. However, the FS and CMS show
a low level of correlation. This result is due to the relatively few stores covering a large serve area:
Because of their relative sensitivity to land lease, these stores are generally located in the urban fringe.

Table 3. The correlation coefficients between store NKDE and street closeness centrality.

Store Type Store Subtype GCC LCC WCC

Specialty stores
(SS)

Office supply stores (OSS) 0.5602 *** 0.5938 *** 0.6309 ***
Apparel shop stores (AOS) 0.4702 *** 0.5446 *** 0.5657 ***

Home appliance stores (HAS) 0.4535 *** 0.4105 *** 0.4676 ***
Drug stores (DGS) 0.5666 *** 0.3485 *** 0.4536 ***
Car stores (CAS) 0.0173 # −0.0489 *** −0.0296 *

Cosmetics stores (CTS) 0.5172 *** 0.5204 *** 0.5623 ***
Other stores (OTS) 0.6166 *** 0.4669 *** 0.5626 ***

Subtotal 0.5391 *** 0.5284 *** 0.5790 ***

Department stores (DS) 0.3367 *** 0.5049 *** 0.4856 ***
Supermarkets (SMS) 0.5344 *** 0.4564 *** 0.5290 ***
Furniture stores (FS) 0.1731 *** 0.0755 *** 0.1236 ***

Construction material stores (CMS) 0.2027 *** 0.0728 *** 0.1334 ***
Consumer product stores (CPS) 0.4432 *** 0.2722 *** 0.3568 ***

All Stores (AS) 0.5322 *** 0.4542 *** 0.5265 ***

Note: *** significance level of 0.001, * significance level of 0.1, and # not significant.

To examine the effects of different bandwidths in the NKDE, three bandwidths, including 0.5-km,
1 km, and 2 km, were implemented. Then, we compared the correlation with GCC, LCC, and WCC
with these three bandwidths (Figure 9). The results show a positive correlation coefficient for all
bandwidths except CAS; however, the correlation coefficient is comparatively small under a small
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bandwidth. For example, the correlation coefficient between SS and WCC decreases from 0.58 to 0.48,
and that between OSS and WCC decreases from 0.63 to 0.48. However, the difference between different
bandwidths is not significant.
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4.4. Discussion

Spatial distribution and location analysis of business retailers have been the focus of urban
planning and business administration. Most existing studies used regular grid cells or administrative
units to perform spatial analysis. These analyses suffer considerably from statistical biases, such as
the MAUP and the edge effect. These methodological caveats are addressed in the paper using a
network-based analysis. The correlation analysis between the store density and the street closeness
centrality are also discussed. The results show various levels of correlation by store type.

Specifically, in a road network, the node with the highest level of closeness centrality value will
always stay close to the geometric center of the network [62,63]; the higher the closeness centrality of
a road is, the shorter its average distance to other roads and the better its accessibility. In the study
area, the index of GCC shows a circular distribution similar to concentric circles in space, while LCC
shows a similar distribution in each subnetwork (Figure 8). We can see that the closeness centrality
represents the distance between a node and the centroid of the network: The higher the closeness
centrality is, the closer the node to the centroid of the network. As nodes in a network do not distribute
evenly, the centroid does not entirely coincide with the geometric center of the network. Therefore,
in actual road networks, the centroids reflected by the closeness centrality can characterize the kernel
of a city or the network-based centroid. The irregular concentric spatial circles in the distribution are
able to indicate the city structure kernel. Furthermore, stores with a high LCC correlation tend to
distribute in the center of the subnetwork. In reality, such stores tend to have relative accessibility and
are able to attract passing traffic and customers, thus helping to gain a business potential and achieve
sustainable development.

The methods and findings of the paper can provide valuable insights into urban planning.
By analyzing the correlation between the facility distribution and the closeness centrality of urban
road networks, it is possible to optimize the spatial patterns of the commercial facilities. For example,
results drawn from the study suggest that future planning strategies could include relocating part
of the facilities, such as those with a high demand for space but low sensitivity to travel distance,
to the urban fringe. In addition, the identification of a city’s sub-centers will help to delineate the city’s
polycentric spatial structure, providing evidence for taking future planning initiatives.

Physical accessibility is a crucial factor for the location strategy of retailers. The results of the
correlation analysis using the network struture is consistent with similar analyses in other case studies,
including Bologna [13], Barcelona [14], Changchun [15], and Guangzhou [16], all of which used a
grid cell structure. These studies confirm the hypothesis that street centrality is a crucial feature in
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the urban structure and land-use pattern and also indicate that commercial retail market tends to be
concentrated in areas with better centrality. Results derived from the store subtypes could be compared
with these studies and are significant for capturing trends and strategies of urban development in
different cities. For example, in the study area, the correlation between CPS and GCC is higher than that
between DS and GCC. In Changchun, a northeastern Chinese city, the conclusion is the opposite [15].
This observation is mainly attributed to the development strategy of the Zhengdong New District
in the study area. The new development in the district is separate from expanding the old town
center. It aims to establish a suburban center by following the future development goals outlined in
the planning blueprint of Zhengzhou City 2010–2030. This development plan has encouraged the
establishment of large shopping centers (i.e., DS in the analysis) in the new suburban center and can be
identified by the global correlation coefficient (e.g., between DS and GCC). It can be observed from the
analysis that urban planning and development policies differ across cities and could largely influence
the spatial structure of the retail industry. These patterns could be identified using the network-based
analysis as exemplified in the paper.

The correlation difference between the network-based and cell-based KDE (CKDE) are compared.
Firstly, the CKDE for various commercial POI and three closeness centralities are calculated based on
100 m grid cells, and then correlation analysis is conducted (Table 4, Figures 10–12). The bandwidth of
the CKDE is set to 2 km. It is illustrated that the correlation coefficients with the two types of the KDE
are generally consistent in the distribution trends for different store types, but the correlation coefficient
based on the CKDE is higher than that of the NKDE. This result is attributed to the smoothing effect of
the CKDE as the small difference in density values between adjacent cells in the CKDE calculation. In
fact, since retail stores has most points distributed along the street, the NKDE better reveals its spatial
distribution pattern.

Table 4. The correlation coefficients of cell-based KDE between stores and closeness centrality.

Store Type GCC LCC WCC

SS

OSS 0.7772 *** 0.8390 *** 0.8461 ***
AOS 0.6487 *** 0.7850 *** 0.7591 ***
HAS 0.6842 *** 0.7001 *** 0.7339 ***
DGS 0.7556 *** 0.6845 *** 0.7439 ***
CAS 0.0458 *** -0.0252 *** 0.0068 #

CTS 0.7370 *** 0.7709 *** 0.7865 ***
OTS 0.8251 *** 0.7482 *** 0.8187 ***

Subtotal 0.7381 *** 0.7914 *** 0.8041 ***

DS 0.6354 *** 0.7740 *** 0.7395 ***
SMS 0.8138 *** 0.7650 *** 0.8283 ***
FS 0.3720 *** 0.2710 *** 0.3429 ***

CMS 0.3325 *** 0.2206 *** 0.2954 ***
CPS 0.7055 *** 0.6189 *** 0.6874 ***
AS 0.7383 *** 0.7128 *** 0.7630 ***

Note: *** significance level of 0.001, # not significant.

This study also has limitations. First, there are methodological caveats in the analysis. For example,
the paper employs the closeness centrality of the network to measure the network structure while
ignoring other network metrics. In the process of closeness centrality calculation, the shortest path
algorithm only takes into account the distance metric and fails to consider the hierarchical structure of
the road network, such as the speed limit. In the calculation of the KDE, the bandwidth parameter
should be optimized using fitted models. Second, the identification of the spatial pattern is only
focused on the supply side (i.e., POI data) while ignoring the demand or the consumers’ need. Future
analysis of the retailer accessibility can employ spatial interaction models, such as the two-step floating
catchment area method [18]. Third, the distribution of commercial POI is influenced by factors separate
from the transport infrastructure, such as commuting population and land use. Thus, it is necessary to
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weight in these factors using other spatial measures such as the geographically weighted regressing
method. Lastly, the study only considers the brick-and-mortar stores and disregards other retail forms,
especially online retailers. How to evaluate the impact of the internet retailer on urban development
with cutting edge spatial methods would be an area worthy of further exploration.Sustainability 2019, 11, 4539 16 of 20 

 
Figure 10. The comparison of correlation coefficients with GCC between CKDE and NKDE. 

 
Figure 11. The comparison of correlation coefficients with LCC between CKDE and NKDE. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OSS AOS
HAS

DGS
CAS

CTS
OTS SS DS

SMS FS
CM

S
CPS AS

GCC

Cell-based KDE Network-based KDE

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OSS AOS
HAS

DGS
CAS

CTS
OTS SS DS

SMS FS
CM

S
CPS AS

LCC

Cell-based KDE Network-based KDE

Figure 10. The comparison of correlation coefficients with GCC between CKDE and NKDE.

Sustainability 2019, 11, 4539 16 of 20 

 
Figure 10. The comparison of correlation coefficients with GCC between CKDE and NKDE. 

 
Figure 11. The comparison of correlation coefficients with LCC between CKDE and NKDE. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OSS AOS
HAS

DGS
CAS

CTS
OTS SS DS

SMS FS
CM

S
CPS AS

GCC

Cell-based KDE Network-based KDE

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OSS AOS
HAS

DGS
CAS

CTS
OTS SS DS

SMS FS
CM

S
CPS AS

LCC

Cell-based KDE Network-based KDE

Figure 11. The comparison of correlation coefficients with LCC between CKDE and NKDE.



Sustainability 2019, 11, 4539 17 of 20

Sustainability 2019, 11, 4539 17 of 20 

 
Figure 12. The comparison of correlation coefficients with WCC between CKDE and NKDE. 

This study also has limitations. First, there are methodological caveats in the analysis. For 
example, the paper employs the closeness centrality of the network to measure the network structure 
while ignoring other network metrics. In the process of closeness centrality calculation, the shortest 
path algorithm only takes into account the distance metric and fails to consider the hierarchical 
structure of the road network, such as the speed limit. In the calculation of the KDE, the bandwidth 
parameter should be optimized using fitted models. Second, the identification of the spatial pattern 
is only focused on the supply side (i.e., POI data) while ignoring the demand or the consumers’ need. 
Future analysis of the retailer accessibility can employ spatial interaction models, such as the two-
step floating catchment area method [18]. Third, the distribution of commercial POI is influenced by 
factors separate from the transport infrastructure, such as commuting population and land use. Thus, 
it is necessary to weight in these factors using other spatial measures such as the geographically 
weighted regressing method. Lastly, the study only considers the brick-and-mortar stores and 
disregards other retail forms, especially online retailers. How to evaluate the impact of the internet 
retailer on urban development with cutting edge spatial methods would be an area worthy of further 
exploration. 

5. Conclusions 

Identifying the spatial pattern of urban retailers is valuable for understanding land use and 
business potential of a city. In this paper, the store density is modeled using a network structure and 
quantified by network metrics. Correlations between the store density and the network closeness 
centrality are discussed based on both the global and local effects across different store types. The 
paper also derives the store density by store type and subtype using the NKDE method. Three 
closeness centrality indicators (i.e., GCC, LCC, and WCC) are proposed to gauge the spatial pattern 
and are correlated with the NKDE. Further analysis indicates that stores with a high correlation tend 
to be distributed in either the city center (i.e., GCC) or the subnetwork center (i.e., LCC). Retail stores 
located on these roads have a relative location advantage and have the potential to attract passing 
traffic and customers. These findings can provide suggestions to optimize the spatial pattern of 
commercial facilities and are valuable for promoting the sustainable development of the city. 

Author Contributions: Z.H. designed and performed the experiments and wrote this paper. C.C. designed the 
experiments and analyzed the data. C.M. supervised the implementation of the project. H.W. contributed data 
collection and analysis. X. C. edited the manuscript. 
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5. Conclusions

Identifying the spatial pattern of urban retailers is valuable for understanding land use and
business potential of a city. In this paper, the store density is modeled using a network structure and
quantified by network metrics. Correlations between the store density and the network closeness
centrality are discussed based on both the global and local effects across different store types. The paper
also derives the store density by store type and subtype using the NKDE method. Three closeness
centrality indicators (i.e., GCC, LCC, and WCC) are proposed to gauge the spatial pattern and are
correlated with the NKDE. Further analysis indicates that stores with a high correlation tend to be
distributed in either the city center (i.e., GCC) or the subnetwork center (i.e., LCC). Retail stores located
on these roads have a relative location advantage and have the potential to attract passing traffic and
customers. These findings can provide suggestions to optimize the spatial pattern of commercial
facilities and are valuable for promoting the sustainable development of the city.
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