o ege z
<@ sustainability ﬂw\p\py

Article

Support or Risk? Software Project Risk Assessment
Model Based on Rough Set Theory and
Backpropagation Neural Network

Xiaoqing Li !, Qingquan Jiang 1*{J, Maxwell K. Hsu ? and Qinglan Chen *

School of Economics & Management, Xiamen University of Technology, Xiamen 361024, China
2 Marketing, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
* Correspondence: jianggingquan@xmut.edu.cn (Q.].); chenginglan@xmut.edu.cn (Q.C.)

check for
Received: 27 July 2019; Accepted: 18 August 2019; Published: 21 August 2019 updates

Abstract: Software supports continuous economic growth but has risks of uncertainty. In order
to improve the risk-assessing accuracy of software project development, this paper proposes an
assessment model based on the combination of backpropagation neural network (BPNN) and rough
set theory (RST). First, a risk list with 35 risk factors were grouped into six risk categories via the
brainstorming method and the original sample data set was constructed according to the initial
risk list. Subsequently, an attribute reduction algorithm of the rough set was used to eliminate the
redundancy attributes from the original sample dataset. The input factors of the software project risk
assessment model could be reduced from thirty-five to twelve by the attribute reduction. Finally,
the refined sample data subset was used to train the BPNN and the test sample data subset was used
to verify the trained BPNN. The test results showed that the proposed joint model could achieve a
better assessment than the model based only on the BPNN.

Keywords: Backpropagation neural network; risk assessment; rough set theory; software projects risk

1. Introduction

Although the software industry has contributed significantly to the economic growth in many
countries, unfortunately, the development of many software projects could not be considered
successful [1,2]. The CHAOS report conducted by the Sandish Group, which included more than 50,000
software projects around the world, revealed that the mean success rate of software development
projects during the 2011-2015 period was 30% at most (Table 1). In other words, more than 70% of
software projects would be categorized as challenging or failed [3].

Table 1. Standish Group survey on global software projects in the period 2011-2015.

2011 2012 2013 2014 2015

Successful projects 29% 27% 31% 28% 29%
Challenged projects 49% 56% 50% 55% 52%
Failed projects 22% 17% 19% 17% 19%

Serious problems exist in assessing future risks across a broad cross-section of industries [2]. In the
late 1980s, software risk management was introduced into the area of software project management for
the first time by Barry Boehm, who is considered a notable pioneer in this research field. Boehm [4]
believed that identifying and dealing with the risks in the early development stage could lessen
long-term costs and help prevent software failures. According to IEEE research in the late 1990s,
50-70% of the risks could have been found through the project analysis, while 90% of them could

Sustainability 2019, 11, 4513; doi:10.3390/su11174513 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-5163-0817
http://www.mdpi.com/2071-1050/11/17/4513?type=check_update&version=1
http://dx.doi.org/10.3390/su11174513
http://www.mdpi.com/journal/sustainability

Sustainability 2019, 11, 4513 20f12

have been avoided [5]. Therefore, assessing and predicting the risks in the early stage of software
project development are essential to manage the risks and improve the success rate of software
development projects.

Nowadays, enterprises have an increasing dependence on information technology and many
enterprises develop or customize their application software. The downside is that an unsuccessful
software development project is likely to lead to a big loss for enterprises. Thus, enterprises should
evaluate and analyze the risks of software projects to be planned by identifying the potential risks
more accurately and adopting scientific methods for risk mitigation. Software risk factors are various
and complicated, and historical data are characterized by uncertainty and are unstructured; therefore,
the models or algorithms that require prior knowledge are not applicable. In recent years, the risk
assessment methods that explore accurate value and information from a large amount of incomplete,
inaccurate, and fuzzy data have been considered. This paper proposes a risk assessment model that
integrates a backpropagation (BP) neural network (BPNN) with the rough set. It takes advantages of
both the BP neural network and the rough set to improve the accuracy of risk assessment.

This paper is organized as follows. Section 2 describes the related work. Section 3 provides a brief
overview of the related methods and approaches. Section 4 identifies the software projects risk factors
and constructs the software project risk assessment model combining the rough sets and BP neural
network. Section 5 describes the implementation details, data collection process, the experiments and
results. Lastly, Section 6 provides conclusions and guidelines for our future work.

2. Related Work

The Webster dictionary defines “risk” as “the possibility of loss or injury.” Software project risk
has been defined as a product of uncertainty associated with the project risk factors and the magnitude
of the potential loss due to project failure [6]. Boehm classified the software risk management into
two parts, risk assessment and risk control. As a primary step of risk management, risk assessment
involves risk identification, risk analysis, and risk prioritization [4]. The critical project examination by
using different risk assessment methods helps researchers and practitioners to evaluate the impact
of various project-related risks on project success. Numerous machine learning and data mining
algorithms have been used in risk analysis, including artificial neural networks [7], Bayesian belief
network [8], and discriminant analysis [9], etc. The artificial neural networks (ANNs) are commonly
applied to achieve better learning and analytic abilities in solving sophisticated software project risk
assessment problems than the traditional methods [10]. The ANNSs do not require the establishment of
relations and a conditional probability table. Thus, when it is difficult to build the relationship between
software project risks and outcomes, neural networks denote an effective solution. Therefore, neural
networks represent a good candidate for establishing a project risk assessment model. However, ANNs
have the disadvantages that an inappropriate ANN structure, which is often determined subjectively,
may result in poor training efficiency and network performance. In recent research, ANNs have
been combined with many other approaches to improve the software risk assessment. Neumann [11]
aimed to treat the software risk analysis from the objective standpoint; namely, he put forward a
technique, which combines principal component analysis and ANNs to analyze the software risk.
Hu et al. [12] employed ANNs and a support vector machine to establish a model for software project
risk assessment. Hu et al. [13] also proposed a model using the Bayesian networks with causality
constraints for risk analysis of software project development. Goyal et al. [2] integrated an ANN with
fuzzy logic to form a neuro-fuzzy technique for software project risk assessment.

As a promising method to deal with inaccurate, uncertain, and incomplete data, the rough
set theory is introduced in this paper. In computer science, the rough set theory represents a new
achievement in data mining technology, which was first introduced by the Polish scientist Z. Pawlak [14].
Unlike the fuzzy set or Bayesian theory that requires membership functions and prior knowledge, the
rough set theory could disclose hidden knowledge, reveal potential rules, and reduce attributes without
any additional information or statistical assumption but their datasets [15]. The rough set theory can

Sustainability 2019, 11, 4513 3o0f12

also effectively avoid personal subjective influence in the process of information mining. Furthermore,
it can process imprecise, inconsistent, incomplete information, and eliminate redundant data and noise
data by attribute reduction and value reduction, reducing the data dimension. However, in practice,
the rough set theory exhibits poor generalization ability and sensitivity to noise. On the other hand, BP
neural networks, as nonlinear self-learning algorithms, show good anti-noise ability by modifying the
network weights and thresholds to adjust the network accuracy [16]. However, BP neural networks
cannot determine redundant information and reduce the space dimension. Namely, massive data
input will cause a complex network structure and increase time consumption [17]. The two mentioned
algorithms can be combined to gain complementary advantages to improve the information input,
reduce noise interference, and improve network training efficiency.

In the complicated and changeable internal and external environment, the project risk is
characterized by diversity and high uncertainty. The limitation of a single project risk identification
and assessment method is obvious. Therefore, this study combines the rough set and BP neural
network to establish a software project risk assessment model to deal with uncertain, incomplete,
and imprecise risk information. First, as a front-end processor of a BP neural network, the rough set
reduces redundant data and attributes of a software project risk dataset and refines the key risk factors
to simplify the input data of BP network. Then, the network models are constructed to be trained
and tested with the training samples and testing samples, respectively, which have been refined and
simplified by the rough sets in order to get a reliable assessment model for evaluating and predicting
software project risks, which can facilitate the management’s decision-making task.

3. Methodology

3.1. Rough Set Theory (RST)

As a new data mining technology, the rough set theory represents a data analysis tool, which is
able to analyze and deal with inconsistent, inaccurate, and incomplete information effectively. It can
reduce redundant information and discover hidden knowledge and potential rules while retaining key
information. The basic concepts of the rough set are as follows:

3.1.1. Knowledge System (Information System)

A knowledge system can be expressed as S = (U, A, V, f), where U denotes a finite set of objects,
called the universe, A = C U D denotes an attribute set, which consists of the condition attribute subset
C and decision attribute D, and CN D = @.V = Up € AV, V;, denotes the set of values assumed by
the attribute p (called also the domain of attribute p), and f : UX A — V is an information function,
where f(p,q) € V for every p € U,q € A. Therefore, a form datasheet of an information system S is
sometimes referred to as a decision table.

3.1.2. Indiscernibility Relation.
For every attribute set P C A and two objects X, Y C U, X and Y are indiscernible if and only if
f(X,a) = f(Y,a)(a € P). An indiscernible relationship is defined as:
ind(P) ={(X,Y) cU;YaeP, f(X,a) = f(Y,a)} (1)

3.1.3. Upper Approximation and Lower Approximation

Suppose that U is a given universe and R is a family of equivalence relations of U, then K = (U, R)
denotes a given knowledge base. For every set X C U, X is called a definable when it can be represented
as a union in some R; otherwise, X is called an indefinable. The definable set of R is called the

Sustainability 2019, 11, 4513 40f12

precise set while the indefinable set of R is called the rough set, namely, they are the upper and lower
approximation of X, respectively, which is expressed by:

R™(X) = ulY e Ulind(R): YN X # & @)
R_(X) = u{Y e Ulind(R) : Y € X} 3)
POSg(X) = R_(X) 4)

where POSg(X) is called the R-positive region of X.

3.1.4. Attribute reduction (knowledge reduction)

For a knowledge system S = (U, A, V, f), attribute set Q C C denotes a reduction of the condition
attribute set C, if POSg(D) = POS¢(D) and each attribute from Q is indispensable to the decision
attribute set D.

3.2. Backpropagation Neural Network

The backpropagation (BP) neural network represents a multi-layer feedforward neural
network whose main features are signal forward transmission and error feedback propagation.
When transmitting signals forward, the network processes the input signal from the input layer to the
output layer through the hidden layer. Each network layer consists of neurons and affects only the next
layer. If the output layer yields an unwanted output, the network performs the feedback propagation
of the information about the error to adjust the weights and thresholds of the network according to
the prediction error, so that the BP neural network prediction output is closer to the expectation [16].
The structure of a typical three-layer BP neural network is shown in Figure 1.

Input layer Hidden layer Output layer
Hl
I, 0,
I, 0,
I, —» 0,
W, Wy

Figure 1. The structure of a typical three-layer backpropagation (BP) neural network.

As shown in Figure 1, a three-layer BP neural network is structured as a combination of three
successive layers, the processing neurons and interconnection networks. The three layers are the
input layer (I)), hidden layer (H)), and output layer (O)). The neurons in each layer have an activation
function. The activation function of the neurons within one layer is the same. Each connection between
the input layer and the hidden layer is assigned to a weight W and each neuron is associated with a
threshold V. The mapping relationships between layers are expressed as:

n

Hj:fl(Zwijli—vj),jzl,z,.._’m (5)
i=1
m

Ok:fZ(ijkHj—Uk)/k:LZ,'“,l (6)

j=1

Sustainability 2019, 11, 4513 50f12

where I; denotes the input i in the input layer, H; denotes the output j in the hidden layer, and Oy
denotes the output k in the output layer. Wj; represents the neuron connection weight between input i
and output j, and Wjk represents the neuron connection weight between input j and output k. and
denote the thresholds of the hidden layer and output layer, respectively, and denote the number of
neurons in the hidden layer and output layer, respectively.
In the output layer, actual output Oy is compared with the desired output Ei, and the error Cy is
then calculated by:
Ck=E-0Ork=12,---,1 (7)

Therefore, the weight W and threshold V are adjusted when the error is propagated back using a
standard learning algorithm. The learning (i.e., the training process) ends when the error and training
epochs reach the predefined values.

Wij = Wij + T]Hj(l - H]')Ii i w]-ka (8)
k=1
wi = wix + nH;Cy 9)
v =7j+ T]H]<1 —H]‘)Ii i w]-ka (10)
k=1
U = v +1nCy (11)

where 7 is the learning rate and it is between 0 and 1.
4. Modeling

4.1. Risk Factors Identification

Risk factors identification is the element task of risk assessment. It refers to the process of judging
and classifying the present and/or potential risk sources or risk factors, as well as identifying the
risk property. Brainstorming is a frequently-used method for risk identification [18]. In this study,
brainstorming is mainly used for the identification of software project risk factors. First, based on the
literature review, we use the methods of project research and an expert interview to identify various risk
factors and risk sources. Then, the identified risk events are summarized and finally, the initial list of
software projects risk factors is established. On the one hand, this work refers to the Boehm model [4],
the software projects risk classification method proposed by the SEI (Software Engineering Institution)
and research achievements of the authoritative software projects risk identification [19-21]. On the other
hand, 35 software project experts were invited for interviews and questionnaires. With the support
and help of the Xiamen Economic & Information Bureau and Xiamen Software Park Management
Committee, 35 experts were selected by recommendation and the snowball sampling method. These
experts included software project managers, software engineers, and professors of software engineering,
all of whom have the experience of software project development. In the interviews, the brainstorming
method was adopted. By putting heads together, the risk factors and risk sources were identified,
and the identified risk factors and events were summarized and classified using the affinity diagram
method to form the initial risk list, as shown in Table 2. This risk list included two aspects, project
risks identification and project results assessment. The project risks included 35 items of risk factor
description (c1 ~ ¢35), which were grouped into six categories as the project requirements, project
technologies, project management, project team, customers, and environmental complexity.

Sustainability 2019, 11, 4513 6 of 12

Table 2. Final survey of software project risks.

Risk Category Risk Factor and Corresponding Abbreviation

Continual system requirements changing (c1); inadequately
Project requirement identified system requirements (c2); unclear system requirements
(c3); incorrect system requirements (c4).

Project involves the usage of new technology (c5); high-level of
technology complexity (c6); immature technology (c7); poor
Project technology scalability of old system (c8); inadequate estimation of required
resources (c9); inappropriate software technical design (c10); lack of
mechanism for product validation and verification (c11).

Lack of top management commitment (c12); lack of an effective
project management methodology (c13); improper change managing
(c14); poor project planning (c15); poor project control (c16);
inexperienced project manager (c17); ineffective communication
(c18); project milestones unclearly defined (c19); corporate politics
with negative effect on project (c20);

Project management

Inexperienced team members (c21); team members lack specialized

skills required by the project (c22); insufficient/inappropriate staff

(c23); staff volatility (c24); insufficient support form manager (c25);
inadequate training of project team (c26).

Project team

Failure to gain user commitment (c27); lack of adequate user
involvement (c28); conflict of interest in key sectors of the customer
department (c29); low level of customer IT infrastructure (c30); user

resistance to change (c31)

Project user

Stability of customer environment (c32); introduction of new
Environment complexity technology (c33); change in project scope or resource (c34);
complexity and chaos in the operation flow (c35)

4.2. Software Project Risk Assessment Model

In the present study, the rough set and BP neural network are combined to construct a software
project risk assessment model to monitor the software projects risks. The core idea of this joint model
is as follows. First, the rough set is used to perform attribute reduction of the sample data of software
project risk factors; then, the reduction set is fed to the input of a BP neural network for training to
obtain the mature classification model; finally, the model output is used to evaluate the software project
risk level and help decision-makers achieve better decision-making outcomes. The specific process is
presented in Figure 2, and the specific steps are as follows:

(1) A project manager evaluates the developed projects according to the initial list of risks, collects
the historical data, and obtains the sample set of project risks. The sample set is divided into two
sample sets, one intended for learning and the other intended for testing.

(2) Once the condition attributes and risk attributes are defined, sample sets are input to ROSETTA,
which is a rough set software, where the discretization and normalization pretreatments are performed.
Using the rough set algorithm, the attribute reduction and value reduction are performed, resulting in
a simplified sample set.

(3) After the initialization of the structure and parameters of a BP neural network model, the
simplified learning sample set of risks is input to the MATLAB neural network toolkit. Through the
learning (training) process based on the signal forward-propagation and error back-propagation, the
optimal network parameters are obtained. Afterward, the test sample set is adopted to verify the
assessment accuracy of the developed neural network model.

(4) The developed model is applied to the risk assessment of practical software projects to obtain
the risk assessment report, which provides a reference frame for the subsequent risk control.

Sustainability 2019, 11, 4513 7 of 12

Raw data collection

Obtain risk sample dataset [— Data preprocessing

completion

discretization

Attribute deduction

normalization

- —— -

AP | Roughset ___________ -
e tiytuin ¥ duintulninteintetuinteinieteieteteleteietet ettt -~
Jor) \
| BP |:> Input :>f°rward Output 1
: | | propagation !
, | heural 1l !
1 1
: : network | Adjust weight back Network :
: L _,I and threshold oropagatio error .
el & R 1
N ﬂ BP neural network A

Software project risk assessment report

Figure 2. The model for software project risk assessment based on the RST and BPNN.

5. Experiments and Results

5.1. Data Collection

In this study, a questionnaire with a focus on the risk factor items was designed for a single project
(see Table 2). The questionnaire was distributed to 35 experts on software projects. With regard to one
or two delivered software projects in which these 35 experts were familiar with. The experts were
required to evaluate the involved risk factors according to the development process and historical
documents; 52 questionnaires were reclaimed. On the other hand, the online questionnaires were
distributed to software project managers or software development engineers, and 39 questionnaires
were reclaimed. Ninety-one questionnaires were obtained based on the real software projects from
2014 to 2017, including the smartphone application (APP) software development projects in Xiamen.

In view of the evaluation of project risk factors, the respondents had to evaluate both the possibility
of risk occurrence and the severity of consequence. The researchers calculated the scores of risk factors
evaluation after reclaiming the questionnaires. The risk factor evaluation was performed based on the
risk effect (RE). The RE was calculated as (Boehm,1991): RE = Prob(Loss) x Size(Loss), where Prob(Loss)
denoted the possibility of risk occurrence, and its value was in the range [0, 1], and Size(Loss) denoted
the severity of risk occurrence. This was expressed by a discrete score, which was in the range from 1
to 9, wherein 1 represented the lowest risk and 9 represented the highest risk. Therefore, the value of
RE was in the range [0, 9]; when the RE was in the range [0, 3], the risk was low; when it was in the
range (3, 6], the risk was medium; and when it was in the range (6, 9], the risk was high. Eventually,
the respondents were asked to wholly evaluate the observed projects in order to determine the risk
level D of the whole project as low risk (successful project), medium risk (challenging project), or high
risk (failed project). The obtained results are given in Table 3.

Sustainability 2019, 11, 4513 8 of 12

Table 3. Evaluation of software project risk factors.

Risk Factors Probability(Loss) Size (Loss) Risk Exposure Risk Level

C1 20% 6 1.2 low
C2 80% 9 7.2 high
C3 60% 6 3.6 medium
C4 10% 8 0.8 low

5.2. Data Preprocessing and Attribute Deduction

In this study, the software project risk dataset was obtained through questionnaires. The universe
of the domain set U = {uq,uy,- - ,u91} and condition attribute C = {cy, ¢, - ,c41} were established,
and D represented the decision attribute, which was determined by the risk level after the project
was accomplished.

As the risk factor data were obtained from different projects by different companies, and part of
the data may have been lost to some extent. Therefore, the original data was not complete and had
to be patched. Since the rough set theory can analyze only discrete data, the assessment scores were
discretized and normalized. Also, the rough set cannot dispose of continuous data, so the equidistant
mathematical discrete method was adopted to classify the risks into three levels based on the RE value:
When the RE value was in the range [0, 3], the risk was classified as a low risk, when the RE value was
in the range (3, 6], the risk was classified as a medium risk, and when the RE value was in the range
(6, 9], the risk was classified as a high risk. For the convenience of calculation, the descriptive text was
converted into a number: High risk was denoted as 2, medium risk was denoted as 1, and low risk
was denoted as 0. Thus, in the decision attribute assighment, numbers 0, 1, 2 represented the low risk
(successful project), medium risk (challenged project), and high risk (failed project), respectively.

After obtaining the assessment and decision table of software project risk factors, the rough set
theory was adopted for risk attributes reduction, and the virtue of the rough set software ROSETTA,
developed collaboratively by the Norwegian University of Science and Technology and Warsaw
University was used [22]. The frequently-used reduction methods, the genetic algorithm and Johnson’s
algorithm, were adopted for learning sample data reduction. According to the two parameters,
the support degree and reduction subset length, the optimal reduction set was selected:

C* = {c1,¢3,c4,C11,C14, C16, €18, C25, €28, C31, €33, €39} (12)

5.3. BP Neural Network Structure Initialization and Training

In this work, the traditional three-layer BP neural network structure was adopted. According to
the number of indicator factors in the above-mentioned optimal reduction set, the number of input-layer
neurons of the BP neural network was set to 12. Since the decision attributes of the above-mentioned
rough set, which corresponded to the software project risks, were classified into three levels, the
number of output-layer neurons was set to 3. The output value was expressed as a binary value. That
is, the output [1 00] represented a high risk, the output [010] represented a medium risk,

and the output [0 01] represented a low risk. The number of hidden neurons was determined

according to the following empirical formula: m = Vn + [4 a, where m denoted the number of hidden
neurons, n denoted the number of input neurons, | denoted the number of output neurons, and a
denoted a constant, and a € [1, 10]; also, m < n —1, thus m € [5, 11]. Namely, the cut-and-try method
was adopted to determine the value of m. With the aim to determine the optimal number of hidden
neurons, different models were established. The number of hidden neurons that corresponded to the
least network error was selected as the value of /. The relationship between the number of hidden
neurons and network error is presented in Figure 3, wherein it can be seen that when m = 9, the mean
square error (MSE) value was on its minimum.

Sustainability 2019, 11, 4513 90f12

0.025
0.020
0.015
MSE

0.010 +

0.005 [

0.000 1 1 L 1 L 1
5 6 7 8 9 10 11

Number of hidden neurons

Figure 3. The mean square error (MSE) for a different number of hidden neurons.

After the number of layers in the network model and the number of neurons in each layer were
determined, the network training parameters were defined. Then, given the network structure, weights
and thresholds, we compared the mean square errors of the different combinations of transfer functions,
and found the best combination. The function tansig was selected as an activation function of the
hidden layer, purelin as an activation function of the input layer; trainlm was selected as a training
function. The maximum training epochs were set to 10,000, the value of the MSE to 0.01, and the
learning rate to 0.01.

In this work, 81 simplified learning sample subsets were extracted after rough set reduction, and
the MATLAB neural network toolkit was used for BP neural network training. When the number of
iterations reached the value of 9, the mean square error of the network was 0.0099, which meant the
predefined goal was achieved, and at that moment, the network performance was the best (Figure 4).

Best Training Performance is 0.0098282 at epoch 9
10"

Train
Best

Goal

MSE

10'2 i i L 'l L ' 't J
0 1 2 3 4 5 6 7 8 9

Epoch number

Figure 4. RST-BP neural network training performance.

Next, the trained neural network was used for prediction and verification. The test sample set
included the risk data of 10 projects. The prediction results obtained by the neural network model
were compared with the actual values. The comparison results are shown in Table 4, wherein it
can be seen that prediction accuracy was 100%. Therefore, the proposed model showed excellent
classification performance.

Sustainability 2019, 11, 4513 10 of 12

Table 4. Comparison of the predicted and actual output values.

Project Network Output Expected Output M;t)cl;:ig\ l;t:::i?:‘lle d
1 0 1 0 0.1291 0.8142 0.0561 yes
2 0 0 1 0.0616 —0.0458 0.9847 yes
3 1 0 0 1.0309 —0.0650 0.0346 yes
4 0 1 0 0.0931 0.7958 0.1113 yes
5 0 0 1 -0.0236 —-0.0746 1.0981 yes
6 0 0 1 -0.0803 —-0.0622 1.1425 yes
7 1 0 0 0.9666 —-0.0191 0.0522 yes
8 0 1 0 —0.0456 0.9930 0.0523 yes
9 0 0 1 0.0412 —0.0369 0.9966 yes
10 1 0 0 0.8844 0.0717 0.0439 yes

Next, we analyzed the case where only the BP neural network model without attribute reduction
by the rough set was used to predict the whole risk of the project, where 35 risk factors in the sample
set were all regarded as the network input (Figure 5). Therefore, the number of neurons in the input
layer was set to 35, the number of hidden neurons was set to 9, and the number of output neurons was
set to 3. The training parameters were kept unchanged. After 48 iterations, the model reached the
goal regarding the predefined MSE value 0.01. However, this model had a larger prediction error than
the previous model and the accuracy on the test set was only 50%. The training results are shown
in Table 5.

Best Training Performance is 0.0099407 atepoch 48

10"
Train
Best
Goal |
10°
MSE -1
0} —©
103 . A . L
0 5 10 15 20 25 30 35 40 45

Epoch number
Figure 5. BP neural network training performance.

Table 5. Comparison of the predicted and actual output values.

. Output Signal
Project Network Output Expected Output Matching Achieved
1 0 1 0 —0.0088 0.8482 0.1606 yes
2 0 0 1 -0.0103 0.3404 0.6699 yes
3 1 0 0 0.3799 0.2096 0.4106 no
4 0 1 0 0.4959 —-0.3353 0.8394 no
5 0 0 1 —-0.0444 0.0245 1.0199 yes
6 0 0 1 —-0.0711 0.2571 0.8140 yes
7 1 0 0 0.0665 0.8324 0.1011 no
8 0 1 0 —0.4850 0.8688 0.6163 no
9 0 0 1 —0.3857 0.4871 0.8986 yes
10 1 0 0 0.2367 0.8477 —-0.0843 no

Sustainability 2019, 11, 4513 11 of 12

6. Conclusions

In this study, the software project risk assessment model based on the rough set and BP neural
network was proposed. By combining the advantages of these two algorithms, the risk prediction
problem was solved under the limitation of data incompleteness and inaccuracy.

Using the methods presented in the related literature, expert interview, and brainstorming, the
initial list of risk factors of the software project was constructed. According to this list, questionnaires
were distributed to software project managers and software development engineers. The training
samples and test samples were obtained from 91 questionnaire responses. First, the rough set software
was adopted to perform attribute reduction to obtain the learning samples, and then, the obtained
learning samples were used to train the BP neural network assessment model. Moreover, the test
sample set was used to test the trained network model. The test results indicated that, compared with
the single BP neural network model, the classification and prediction accuracy of the proposed model
based on the combination of the rough set and BP neural network was higher. Hence, the validity
of the proposed joint model was verified both theoretically and empirically. With a better software
project risk assessment model, threats to successful operations and business management are easier to
be identified, addressed, and eliminated for better enterprise performance.

The shortcoming of the proposed model is that the score of risk factors relied on expert experience;
thus, the individual subjectivity was strong. In our future work on the risk assessment, the objective
risk data will be obtained from the software project risk management system by virtue of big data
technology as correctly as possible to enhance the objectivity of a sample set.

Author Contributions: X.L. conceived and designed the conceptualization, formal analysis and methodology,
and performed writing; Q.]. performed the data curation, fund acquisition, and writing—review & editing; M.H.
being supervision and validation; Q.C. took care of the data, software, and writing.

Funding: This work is supported by the Fujian Soft Science Research Plan Project (grant number 2019R0093), Social
Science Foundation of Fujian (grant number FJ2018B062 & FJ2019B101) and the Xiamen Science and Technology
Plan Project (grant number 201852247).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schmidt, R.; Lyytinen, K.; Keil, M.; Cule, P. Identifying software project risks: An international Delphi study.
J. Manag. Inf. Syst. 2001, 17, 5-36. [CrossRef]

2. Goyal, M.V,; Satapathy, S.M.; Rath, S.K. Software project risk assessment based on cost drivers and
Neuro-Fuzzy technique. In Proceedings of the International Conference on Computing, Communication &
Automation, Greater Noida, India, 15-16 March 2015.

3. Hastie, S. Standish Group 2015 Chaos Report-Q&A with Jennifer Lynch. Available online: http://www.infoq.
com/articles/standish-chaos-2015 (accessed on 1 October 2017).

4. Boehm, B.W. Software risk management: Principles and practices. IEEE Softw. 1991, 8, 32—-41. [CrossRef]

5. Lister, T. Interview with Tim Lister. IEEE Softw. 1997, 14, 18-19.

6. Barki, H.; Rivard, S.; Talbot, J. Toward an assessment of software development risk. J. Manag. Inf. Syst. 1993,
10, 203-225. [CrossRef]

7. Rafie, M.; Namin, ES. Prediction of subsidence risk by FMEA using artificial neural network and fuzzy
inference system. Int. J. Min. Sci. Technol. 2015, 25, 655-663. [CrossRef]

8. Nepal, B.; Yadav, O.P. Bayesian belief network-based framework for sourcing risk analysis during supplier
selection. Int. |. Prod. Res. 2015, 53, 6114-6135. [CrossRef]

9. Elzamly, A.; Abu Naser, S.S.; Hussin, B.; Doheir, M. Predicting Software Analysis Process Risks Using Linear
Stepwise Discriminant Analysis: Statistical Methods. Int. |. Adv. Inf. Sci. Technol. 2015, 38, 108-115.

10. Khoshgoftaar, T.M.; Allen, E.B.; Hudepohl, J.P.; Aud, S.J. Application of neural networks to software quality
modeling of a very large telecommunications system. IEEE Trans. Neural Netw. 1997, 8, 902-909. [CrossRef]
[PubMed]

http://dx.doi.org/10.1080/07421222.2001.11045662
http://www.infoq.com/articles/standish-chaos-2015
http://www.infoq.com/articles/standish-chaos-2015
http://dx.doi.org/10.1109/52.62930
http://dx.doi.org/10.1080/07421222.1993.11518006
http://dx.doi.org/10.1016/j.ijmst.2015.05.021
http://dx.doi.org/10.1080/00207543.2015.1027011
http://dx.doi.org/10.1109/72.595888
http://www.ncbi.nlm.nih.gov/pubmed/18255693

Sustainability 2019, 11, 4513 12 of 12

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Neumann, D.E. An enhanced neural network technique for software risk analysis. IEEE Trans. Softw. Eng.
2002, 28, 904-912. [CrossRef]

Hu, Y;; Huang, J.; Chen, J.; Liu, M.; Xie, K. Software project risk management modeling with neural network
and support vector machine approaches. In Proceedings of the Third International Conference on Natural
Computation (ICNC), Haikou, China, 24-27 August 2007.

Hu, Y,; Zhang, X.; Ngai, E.; Cai, R.; Liu, M. Software project risk analysis using Bayesian networks with
causality constraints. Decis. Support. Syst. 2013, 56, 439-449. [CrossRef]

Pawlak, Z. Rough sets. Int.]. Comput. Inf. Sci. 1982, 11, 341-356. [CrossRef]

Su, C.; Hsu,]. Precision parameter in the variable precision rough sets model: An application. Omega 2006,
34, 149-157. [CrossRef]

Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Academic
Press: New York, NY, USA, 1992; pp. 65-93.

Zhang, F.; Wang, Y.; Cao, M,; Sun, X,; Du, Z; Liu, R.; Ye, X. Deep-learning-based approach for prediction of
algal blooms. Sustainability 2016, 8, 1060. [CrossRef]

Chapman, R.J. The effectiveness of working group risk identification and assessment techniques. Int. J.
Proj. Manag. 1998, 16, 333-343. [CrossRef]

Barki, H.; Rivard, S.; Talbot, J. An integrative contingency model of software project risk management.
J. Manag. Inf. Syst. 2001, 17, 37-69. [CrossRef]

Wallace, L.; Keil, M.; Rai, A. How software project risk affects project performance: An investigation of the
dimensions of risk and an exploratory model. Decis. Sci. 2004, 35, 289-321. [CrossRef]

Han, W.,; Huang, S. An empirical analysis of risk components and performance on software projects. J. Syst.
Softw. 2007, 80, 42-50. [CrossRef]

Moiz, S.A. Software Component Retrieval Using Rough Sets. In Software Engineering; Springer: Singapore,
Singapore, 2019; pp. 365-374.

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSE.2002.1033229
http://dx.doi.org/10.1016/j.dss.2012.11.001
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/j.omega.2004.08.005
http://dx.doi.org/10.3390/su8101060
http://dx.doi.org/10.1016/S0263-7863(98)00015-5
http://dx.doi.org/10.1080/07421222.2001.11045666
http://dx.doi.org/10.1111/j.00117315.2004.02059.x
http://dx.doi.org/10.1016/j.jss.2006.04.030
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	Rough Set Theory (RST)
	Knowledge System (Information System)
	Indiscernibility Relation.
	Upper Approximation and Lower Approximation
	Attribute reduction (knowledge reduction)

	Backpropagation Neural Network

	Modeling
	Risk Factors Identification
	Software Project Risk Assessment Model

	Experiments and Results
	Data Collection
	Data Preprocessing and Attribute Deduction
	BP Neural Network Structure Initialization and Training

	Conclusions
	References

